
Towards Secure and Verifiable
Database-driven Spectrum Sharing

Zhili Chen1, Lin Chen2, Hong Zhong1

1School of Computer Science and Technology, Anhui University, 230601 Hefei, China
2Lab. Recherche Informatique (LRI-CNRS UMR 8623), Univ. Paris-Sud, 91405 Orsay, France

Email: zlchen@ahu.edu.cn, chen@lri.fr, zhongh@mail.ustc.edu.cn

Abstract—Database-driven spectrum access is regarded as
an effective spectrum redistribution mechanism. However, dia-
loguing with the spectrum database requires both primary and
secondary users to reveal their sensitive data to the spectrum
database manager (SDM), leading to serious privacy concerns.
In this paper, we show that the SDM can perform database
operations (both updates and queries) without knowing any
information about the users’ sensitive inputs and the database
contents, by combining garbled circuits and secret sharing. Our
design uses data-oblivious sorting networks to leverage parallelis-
m of query operations, yielding an efficient query algorithm. We
further combine secure computations with authentication tech-
niques to get a verification mechanism for correctness checking.
As far as we know, our proposal is the first secure and verifiable
database-driven spectrum sharing scheme protecting both PUs’
and SUs’ privacies. Finally, we fully implement our system, and
demonstrate that even on commodity PC, our implementation
suffers mild performance overhead.

I. INTRODUCTION

The ever increasing spectrum demand for emerging wire-
less applications and the unbalanced utilization of radio spec-
trum resource have prompted spectrum redistribution, where
unlicensed secondary users (SUs) use or buy idle spectrum
from licensed primary users (PUs). For spectrum redistribu-
tion, two ways are applied to determine channel availability:
spectrum sensing and white space database. In the former, an
SU finds an available channel by listening and analyzing the
PU’s signal in the channel, while in the latter, an SU queries
a database to get spectrum availability information (SAI) at
its location. It has been shown that database-driven spectrum
access usually leads to more efficient spectrum utilization
over spectrum sensing, due to the large margins in incumbent
detection thresholds in spectrum sensing imposed by regulation
authorities [1]. Therefore, FCC recently designated the white
space database as a requisite for cognitive radio devices [2].

Despite its effectiveness in spectrum redistribution,
database-driven spectrum access also faces new security threat-
s [3], as summarized in the following.

• PUs’ Operational Privacy Threats. In order to update
its channel states, each PU should provide its operational
information (e.g. transmitter ID, location, antenna param-
eter, power, time of operation, etc [3]) to the spectrum
database; this may expose the PUs’ sensitive information
to the spectrum database and may bring security vulner-
ability if the spectrum database manager is not a trusted
party. PUs’ operational privacy threats have become even

more important and urgent due to the recent calls in the
United States by Federal Communications Commission
(FCC) for sharing federal government (including military)
spectrum in the 3.5 GHz band with non-government
systems [4].

• SUs’ Location Privacy Threats. Before picking a chan-
nel to use, each SU should query spectrum availability in-
formation from the spectrum database with its geographic
location; this may lead to location privacy disclosure
of SUs in case of intrusted spectrum database manager.
Location information is normally regarded as a user’s
sensitive information, which can also be used to infer the
user’s other sensitive information, e.g., health condition,
lifestyle and so on. The location privacy threats have been
widely acknowledged in the literature, e.g., [5][6][7][8].

Furthermore, if the database manager is malicious, he may
not perform database updates correctly, or he may return
outdated or false query results. Therefore, it is important
to investigate how we can build a database-driven spectrum
sharing framework under which both PUs and SUs do not
reveal their inputs in the clear and the correctness of database
operations is verifiable, which is the focus of this paper.

There exist a number of approaches for protecting users’
location privacy in traditional location based services, such
as k-anonymity approach, or collaborative location privacy
protection [5][6][7]. However, these approaches either requires
a trusted server or incur extra overhead in user cooperation, and
hence cannot be directly applied in database-driven spectrum
sharing. Recently, a scheme called PriSpectrum is proposed in
[9] to protect the location privacy of SUs in database-driven
spectrum sharing. However, as far as we know, there is no
existing work that addresses the problem of the operational
privacy of PUs and the correctness verification of database
operations in this context.

Motivated by the above arguments, in this paper we de-
vise a secure and verifiable database-driven spectrum sharing
scheme, protecting both PUs’ operational privacy and SUs’
location privacy while ensuring correctness verification of
database operations. It is not a priori clear whether spectrum
sharing can be performed practically in such a manner that
both PUs’ and SUs’ privacies are protected, and the correctness
of database operations is verified. There are three main chal-
lenges associated with this task. First, to address the privacy
concerns raised above, spectrum sharing should be performed
without the spectrum database manager ever learning the PUs’
operational information and the SUs’ location information, and

even the spectrum database. This requirement is key, since any
leakage of such information could lead to serious privacy dis-
closure. Second, such a secure algorithm ought to be efficient,
and scale gracefully with the number of operations. Third,
an appropriate verification mechanism should be conceived to
defend against malicious attacks, while does not damage the
running efficiency much. The privacy requirements imply that
our spectrum sharing algorithm ought to be data-oblivious:
its execution ought to not depend on the user input. Both
efficiency and verification requirements mean that the secure
algorithm should be elaborately designed.

Our main contributions are articulated as follows.

• Secure and verifiable protocol: We design a secure proto-
col for database-driven spectrum sharing that meets all the
above requirements: privacy, efficiency and verifiability.
The resulted protocol is hybrid, combing garbled circuits
with secret sharing. We then prove that our protocol is
cryptographically secure against semi-honest adversaries,
and demonstrate that it also defends against several ma-
licious attacks.

• Data-oblivious algorithm: We propose and use in our
design an efficient data-oblivious database query algorith-
m yielding a complexity O(M logM), where M is the
number of query operations. This is with logM factor
of query operations in the clear, and achieved by using
sorting networks, leveraging parallelism in operations.

• Correctness verification: We combine secure computa-
tions and MAC techniques to design a correctness verifi-
cation mechanism for both update and query operations.
The proposed verification can defend against various
malicious attacks tampering the spectrum database or
returning false query results.

• Experimental evaluation: We fully implement our secure
database-driven spectrum sharing system, and carry out
extensive experiments to evaluate its performance. Exper-
imental results demonstrate that our scheme is practical
in term of computation and communication performance.

The remainder of this paper is organized as follows. Section
II and III provide problem formulation and technical prelimi-
naries. We present in detail our secure and verifiable database-
driven spectrum sharing protocol in Section IV, and prove its
security in both semi-honest and malicious setting in Section
V. In Section VI, we implement our protocol, and evaluate
the performance in terms of computation and communication
overhead. Section VII briefly reviews related work. Finally, the
paper is concluded in Section VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a generic database-driven spectrum sharing
framework consisting of the following three entities:

• Primary users (PUs): licensed users with exclusive
transmission right.

• Secondary users (SUs): unlicensed users seeking spec-
trum resource unused or leased by PUs.

• Spectrum database manager (SDM): agent managing
the spectrum database and making the spectrum allocation

decision to SUs based on the spectrum availability infor-
mation from the database. The SDM can be a spectrum
broker or a decision making agent on a base station of a
cognitive radio cellular network.

The network terrain is divided into non-overlapping n × n
squares denoted by S = {sij}n×n, where sij denotes the
square (i, j). The spectrum availability information (SAI) of
the network is stored in the spectrum database, which is
represented by a n × n matrix M = {mij}n×n, where mij

indicates the SAI of the square sij . More specifically, mij

is a K-element vector {εijk }K with 1 ≤ k ≤ K, where εijk
denotes the SAI of channel k in square sij . Given square
sij and channel k, εijk can be a single-bit value indicating
whether channel k is occupied (1) or not (0), or a multi-bit
value indicating the signal level of channel k. Without loss of
generality, we apply the former for simplicity in this paper.

We denote the number of PUs and SUs by Np and Ns, and
assume that each PU k provides a channel k for simplicity (it
is simple to extend to the case with multiple channels), i.e.
Np = K. This implies that we regard transmitter ID as public
knowledge. The spectrum access and sharing is performed in
rounds. At the beginning of each round, the following actions
are performed:

• Each PU decides whether or not to use his channel
during the coming round, computes its service contour
(the geographical range where the channel cannot be
reused) using its operational information (e.g. location,
antenna parameter, power, etc.), and sends his update
request to the SDM. We denote the update request of PU
k by (k, Ck), where Ck = {cij}n×n is an n×n bit matrix
with all elements being 0 (null update) or describing the
service contour of channel k (update), where cij = 1
means that square sij overlaps with the service contour
and cij = 0 otherwise.

• Any SU wishing to use a particular channel (or several
channels) for the coming round sends a query request
containing its location (i.e. its located square) to the SDM.

• The SDM updates the spectrum database based on update
requests submitted by PUs and queries in the database
given the query requests submitted by SUs.

B. Security Goals and Threat Models

We introduce a new entity crypto-service provider (CSP)
to cooperate with SDM to carry out two-party secure compu-
tations (as illustrated in Fig. 1), and aim at designing a secure
and verifiable spectrum sharing scheme as long as SDM and
CSP do not collude with each other.

We firstly focus on the semi-honest (a.k.a. honest but
curious) threat model where SDM and CSP follow the protocol
we develop but may analyze protocol transcripts to infer
additional information. The proposed protocol should not leak
any illegitimate information to any entity. By entities we refer
to PUs, SUs, SDM and CSP. By illegitimate information
we refer to any sensitive information related to other agent.
Specifically, the following security requirements should be
satisfied:

• No other entity can learn anything about the operational
information except the public knowledge transmitter ID,

SDM

CSPPUs SUs

Update Query

Shared
Database

Shared
Database

Fig. 1. Secure and verifiable spectrum sharing architecture: inputs, outputs
and database are secretly shared between SDM and CSP.

of any PU;
• No other entity can learn anything about the location and

query result of any SU;
• No entity can learn anything about the spectrum database

except that each PU knows its current channel state;
• Any external entity cannot learn any information about

the spectrum sharing.

We then also consider the malicious threat model where an
attacker can deviate from the protocol arbitrarily, and require
that the correctness of all update and query processing should
be well verified in the presence of malicious SDM or CSP.

III. TECHNICAL PRELIMINARIES

A. Garbled Circuits

Garbled circuits (a.k.a Yao’s protocol) [10][11] is a generic
method for secure two-party computation. We give a brief
overview of garbled circuits via an illustrative example in
which two parties securely compute a function f(x1, x2) (rep-
resented by a boolean circuit) in the presence of semi-honest
adversaries. Party i (i ∈ {1, 2}) holds an input vi. Each party
privately provides its input, and both parties cooperatively run
a garbled circuit evaluating f(v1, v2) so that no party learns
more than what is revealed from the output. The protocol
requires that both parties do not collude with each other.

The core idea of garbled circuits relies in the circuit
encoding. One party (as garbler) associates two random cryp-
tographic keys, K0

wi
and K1

wi
, to each wire wi of the boolean

circuit computing f , corresponding to the bit-values bi = 0 and
bi = 1. For each binary gate g with input wires wi and wj ,
and output wire wk, the garbler computes the four ciphertexts
(e.g., the AND gate as illustrated in Fig. 2)

Enc
(K

bi
wi
,K

bj
wj

)
(Kg(bi,bj)

wk
) for bi, bj ∈ {0, 1}.

The above four randomly ordered ciphertexts define the gar-
bled gate g. Composed of a series of garbled gates, a garbled
circuit can be securely evaluated by the other party (as evalu-
ator).

In our context, all inputs are secretly shared, and finally
the garbled output and its decoding information are held
by evaluator and garbler, respectively. Continuing with the
previous example, let party 1 as garbler holding input shares
[v1]1 and [v2]1 and party 2 as evaluator holding [v1]2 and [v2]2,
our garbled circuit protocol can be outlined as follows.

0
iw

K ， 1
iw

K 0
jw

K ， 1
jw

K

ib jb

0
kw

K ， 1
kw

K
(,)i j i jg b b b b= 

ib jb (,)i jg b b Garbled value

0 0 0

0 1 0

1 0 0

1 1 1

g
0 0

0
(,)Enc ()

k
w wi j

wK K K

0 1
0

(,)Enc ()
k

w wi j
wK K K

1 0
0

(,)Enc ()
k

w wi j
wK K K

1 1
1

(,)Enc ()
k

w wi j
wK K K

Fig. 2. Illustration of a garbled AND gate (i.e., g(bi, bj) = bi ∧ bj).

• Garbler: generates a garbled circuit computing f , garbles
its input shares [v1]1 and [v2]1, and sends the garbled
circuit, garbled [v1]1 and [v2]1 to the evaluator, while
holds the output decoding information itself.

• Evaluator: upon receiving the garbled circuit, garbled
[v1]1 and [v2]1, the evaluator computes the garbled inputs
from the received garbled values and its input shares [v1]2
and [v2]2, and then feeds the garbled inputs to the garbled
circuit to obtain the garbled output.

Note that with inputs secretly shared, the garbled circuit
protocol can work without a 1-out-of-2 oblivious transfer
protocol [12].

B. XOR Secret Sharing

In this paper, we apply the XOR secret sharing [13] to split
a bit vector into two shares. Formally, the XOR secret sharing
scheme in the case of two sharing parties can be described as
Definition 1.

Definition 1 (XOR Secret Sharing). A bit vector x ∈ {0, 1}K
can be dispersed into 2 shares as follows:

• The first share [x]1 is randomly chosen in {0, 1}K;

• The second share is [x]2 ∈ {0, 1}K with [x]1 ⊕ [x]2 = x,
and thus [x]2 = [x]1 ⊕ x.

The definition has a very straightforward security property:
if an adversary obtains merely a share of x, he gets nothing
about x except the bit length of x.

C. Sorting Networks

A sorting network is a boolean circuit which sorts an input
array (a1, a2, ..., an) into a monotonically increasing array
(a′1, a

′
2, ..., a

′
n). The main building block of sorting networks is

compare-and-swap circuits, which are binary operators taking
as input a pair (a1, a2), and outputting the sorted pair (a′1, a

′
2)

with a′1 = min(a1, a2) and a′2 = max(a1, a2).

Sorting networks can be used as data-oblivious sorting
algorithms for security purposes. The efficiency of a sorting
network can be measured by its complexity, i.e. the total num-
ber of compare-and-swap circuits it includes. A theoretically
optimal sorting network is the well-known AKS network that
achieves a complexity of O(n log n). However, being an im-
portant theoretical discovery, the AKS network has no practical
application due to a large constant. Therefore, in this paper,
we use the AKS network for theoretical analysis, while use
a practically efficient sorting network, the Batcher’s odd-even

1
a

(a) Compare-and-swap (a) Sorting Network

2
a

1 2
min(,)a a

1 2
max(,)a a

1
a

2
a

3
a

4
a

'

1
a

'

2
a

'

3
a

'

4
a

Fig. 3. Odd-even merge sorting network [15]: n = 4

merge network [14][15] in the experiments. Batcher’s sorting
network can be depicted as shown in Alg. 1. A compare-and-
swap circuit and an odd-even merge sorting network for n = 4
are illustrated in Fig. 3.

Algorithm 1 Odd-even Merge Sorting Network Algorithms

(a) oeSort(a, inc)
Input: a = {a1, a2, · · · , an}, inc = 0 or 1
Output: c (inc = 0: non-increasing, inc = 1: non-decreasing)

1: if n > 1 then
2: m = n+1

2 ;
3: oeSort(a[1..m], inc);
4: oeSort(a[m+ 1..n], inc);
5: c =oeMerge(a[1..m], a[m+ 1..n], inc);
6: end if

return c;

(b) oeMerge(a, b, inc)

Input: a = {a1, a2, · · · , am}, b = {b1, b2, · · · , bn}, inc = 0
or 1

Output: c
1: if (m == 0 || n == 0) then
2: c = 〈a, b〉;
3: else if (m == 1 && n == 1) then
4: swap(a1, b1, inc == 1 ? [a1 > b1] : [a1 < b1]);
5: c = 〈a, b〉;
6: else
7: c[1, 3, · · ·] =oeMerge(a[1, 3, · · ·], b[1, 3, · · ·], inc);
8: c[2, 4, · · ·] =oeMerge(a[2, 4, · · ·], b[2, 4, · · ·], inc);
9: for (i = 2; i < n; i+ = 2) do

10: bl = (inc == 1) ? [c[i] > c[i+1]] : [c[i] < c[i+1]];
11: swap(c[i], c[i+ 1], bl);
12: end for
13: end if

return c;

D. Message Authentication Codes

Message authentication codes (MACs) are used to verify
the integrity of a message. MACs ensure that data received
are exactly as sent by, i.e., there is no modification, insertion,
deletion, or replay. Formally, A MAC is a triple of efficient
algorithms (G,S, V) satisfying:

• Key-generator G gives the key k on input 1n, i.e., k ←
G(1n), where n is the security parameter.

• Signing algorithm S outputs a tag t given the key k and
the input string x, i.e., t← S(k, x).

• Verifying algorithm V outputs accepted or rejected on
inputs including the key k, the string x and the tag t, i.e.,
V (k, x, t) = accepted|rejected.

TABLE I. NOTATIONS FOR OUR PROTOCOL

M the SAI matrix, M = {mij}n×n

mij the SAI of square sij , mij = {εijk }K
εijk the SAI of channel k in square sij
Ck the service contour of the kth spectrum channel
K the number of PUs or spectrum channels
Ns the number of SUs or query requests
lu query location of SU u, lu = (iu − 1)n + ju indexing square

(iu, ju)
du decoding information of SU u

G(.) the garbling function
[x]s, [x]c SDM’s and CSP’s shares of x, where [x]s ⊕ [x]c = x

Algorithms G, S and V must satisfy

Pr[V (k, x, S(k, x)) = accepted|k ← G(1n)] = 1

The way to develop an efficient MAC is to use crypto-
graphic hash functions which generally execute faster than
other cryptographic primitives, and the resulting MAC is called
HMAC. An HMAC can be expressed as

HMAC(K,M) = H[(K+ ⊕ opad)||H[(K+ ⊕ ipad)||M]]

where

- H is the embedded hash function (e.g., MD5, SHA-1).
- M is the message input to HMAC (including the padding

specified in the embedded hash function).
- K is the secret key, with a recommended length not less

than the security parameter n.
- K+ is K padded with zeros on the left so that the result

is b bits in length.
- ipad = 00110110 (36 in hexadecimal) repeated b/8 times.
- opad = 01011100 (5C in hexadecimal) repeated b/8

times.

In the above, b is the number of bits in a block of the hash
function H . We will use HMAC-MD5 to detect the malicious
modifications in our experiments.

IV. SECURE AND VERIFIABLE DESIGN

In this section, we first give the overview of our secure
database-driven spectrum sharing protocol. Then, the detailed
design of the protocol is presented step by step. Finally, we
augment the proposed protocol with correctness verification,
defending against some common malicious attacks.

A. Protocol Overview

The protocol overview is shown in Fig. 4, where both
SDM and CSP perform the secure computations cooperatively.
Briefly speaking, all sensitive data are secretly shared, update
operations are performed in the secret sharing form, and query
operations are performed using garbled circuits. Notations for
the protocol can be summarized in Tab. I.

More specifically, in our protocol, we apply a hybrid
approach by combining garbled circuits and secret sharing.
We let both the SDM and the CSP secretly share the spectrum
available information (SAI) matrix M using the XOR secret
sharing. Each PU (resp. SU) splits its update (resp. query)
request into two shares in the same way, and sends one share

SDM CSP
1

(1,[])
c



2
(2,)

1
(1,)

1{(,[])}K
k s k

k 

1{[] } sN

u s u
l

1{(,[])}K
k c k

k 

1{[] } sN

u c u
l

{[] }
ij s n n
m

{[] }
ij c n n
m


*{ ([])}
ij c n n

G m

Query

1
l

2
l


*{[] }
ij c n n
m

PU1:

PU2:

SU1:

SU2:

1{ } sN

u u
d

1
(1,[])

s


2
(2,[])

c


2
(2,[])

s


1
[]
c
l

2
[]
c
l

1
[]
s
l

2
[]
s
l


*{[] }
ij s n n
m

1{ ([])} sN

u c u
G l


*{ ([])}
ij c n n

G m

1{ ([])} sN

u c u
G l

1 1

*()
i j

G m

2 2

*()
i j

G m

1
d

2
d

U
pdate

U
pdate


*{ ([])}
ij c n n

G m
1{ ([])} sN

u c u
G l

Garbled Query Circuit

Fig. 4. The overview of our secure database-driven spectrum sharing protocol: SAI matrix M is initially shared between SDM and CSP. Users submit one
share of requests to SDM and the other to CSP. Update operations are performed independently over its respective share by SDM or CSP, while query operations
are performed cooperatively by both of them using garbled circuits. Finally, each garbled query result and its decoding are sent to the corresponding SU.

to SDM and the other to CSP. To perform update operations,
either SDM or CSP can simply XOR up its shares of M
and update requests; To perform query operations, both SDM
and CSP apply the garbled circuit protocol, resulting that
SDM holds the garbled query results while CSP holds the
decoding information. The appropriate garbled query result and
its corresponding decoding information are then sent to each
SU, who can thus obtain its plain query result. The protocol
for each round of spectrum sharing is illustrated in Protocol 2.
Here, two points need to be emphasized as follows.

• Each PU needs to submit its update request at the be-
ginning of each round, even though it has nothing to
update (in this case, it submits a null update request).
This protects the privacy of operation time for each PU.

• Each SU submits its query request when necessary, since
only the privacy of location for each SU is concerned.
Thus, number of participant SU in each round is probably
different.

In the above, how to perform the update processing and
how to construct the query circuit are detailed in Sec. IV-B
and Sec. IV-D, respectively. Additionally, we assume that
all communication channels are authenticated (which can be
implemented using regular cryptographic ways), and mainly
focus on the secure computations during the spectrum sharing.

B. Update Processing

In this phase, SDM and CSP update their respective shares
of M, independently. More specifically, each of them can
simply XOR up its share of SAI matrix M with its share
of all update requests from PUs. To make this workable, each
PU has to prepare its update request properly.

Let us illustrate how to prepare an update request by a
simple example in Fig. 5. Given a value v shared by SDM
(holding share [v]s) and CSP (holding share [v]c), if a PU
wants to update v to get v1, it splits v1 into [v1]s and [v1]c,

SDM CSP
[]sv []cvOld value:

1[]sv 1[]cv vUpdate request:

1[] []s sv v 1[] []c cv v v Updated value:

Fig. 5. A simple example for update request.

and sends [v1]s to SDM and v ⊕ [v1]c to CSP. Then, SDM
updates its share [v]s by computing [v∗]s = [v]s ⊕ [v1]s, and
CSP updates its share [v]c by computing [v∗]c = [v]c⊕v⊕[v1]c.
It is obvious that [v∗]s⊕ [v∗]c = v1, namely, v is successfully
updated to be v1. This ensures the independent update of v
shared between SDM and CSP.

Each PU can prepare its update request in exactly the same
way as the above example. Specifically, if PU k wants to
update its SAI {εijk }n×n shared between SDM and CSP to
get {εijk∗}n×n, it can prepare a share of update request

[Ck]s = {[Cijk]s}n×n = {[εijk∗]s}n×n
for SDM and the other share

[Ck]c = {[Cijk]c}n×n = {εijk ⊕ [εijk∗]c}n×n
for CSP.

Having all update requests prepared as above, the update
algorithm is straightforward, as shown in Alg. 3. This algo-
rithm does not apply any cryptographical tools, but updates
spectrum database directly in the secret sharing form. It is run
by both SDM and CSP independently, without any interaction.
Thus, the algorithm incurs very slight performance overhead
compared to the underlying algorithm without any security
guarantees.

The complexity of the update algorithm is O(KN) where
N = n2 is the number of squares, which is the same as that
of the underlying unsecure algorithm.

Protocol 2 Secure Database-driven Spectrum Sharing Protocol
Input: A boolean circuit Q computing query operations; the

secretly shared spectrum database M = {mij}n×n, with
one share {[mij]s}n×n held by SDM and the other share
{[mij]c}n×n held by CSP; update requests from PUs and
query requests from SUs.

Output: The updated matrixM∗ secretly shared by SDM and
CSP; the query result for each SU.

Phase 1: Secret Sharing and Submission
1: Each PU k: splits its update request (k, Ck) into two

shares (k, [Ck]s) and (k, [Ck]c), and sends the former to
SDM and the latter to CSP.

2: Each SU u: splits its query request lu into two shares [lu]s
and [lu]c, and sends the former to SDM and the latter to
CSP.

Phase 2: Update Processing
3: SDM: takes as input {[mij]s}n×n and {(k, [Ck]s)}Kk=1,

and gets its updated share of M, {[m∗ij]s}n×n, indepen-
dently.

4: CSP: takes as input {[mij]c}n×n and {(k, [Ck]c)}Kk=1, and
gets its updated share ofM, {[m∗ij]c}n×n, independently.

Phase 3: Query Processing
5: CSP: takes as input the query circuit, {[m∗ij]c}n×n and
{[lu]c}Ns

u=1, generates a garbled query circuit G(Q), gar-
bled values {G([m∗ij]c)}n×n and {G([lu]c)}Ns

u=1, and de-
coding information {du}Ns

u=1, and sends G(Q) and the
garbled values to CSP.

6: SDM: upon receiving the garbled circuit and values
from CSP, takes as input {[m∗ij]s}n×n, {[lu]s}Ns

u=1,
{G([m∗ij]c)}n×n and {G([lu]c)}Ns

u=1 to compute the gar-
bled input to query, {G(m∗ij)}n×n and {G(lu)}Ns

u=1. With
the garbled input and garbled circuit, CSP computes the
garbled query results {G(m∗iuju)}Ns

u=1.
7: SDM: sends each SU u the garbled query result G(m∗iuju).
8: CSP: sends each SU u the decoding information du.
9: Each SU u: decodes G(m∗iuju) with du to get m∗iuju .

Algorithm 3 Update Processing
Input: Matrix M = {[mij]x}n×n, {(k, [Ck]x)}Kk=1, where

“x” can be “s” or “c”.
Output: Updated matrix M∗ = {[m∗ij]x}n×n

1: for i = 1 . . . n do
2: for j = 1 . . . n do
3: [tij]x = ||Kk=1[Cijk]x;
4: [m∗ij]x = [mij]x ⊕ [tij]x;
5: end for
6: end for

C. Query Circuit: A Naive Design

We now design the query circuit. We first present a naive
design which, in spite of its naivety, allows us to get more
insights on the problem, based on which we present our
efficient design.

Consider the task of querying an entry in a matrix with

N entries given its location (i.e. indexes). We can do this
in time O(1) using random access memory. However, when
considering a secure version of this task in which the location
of entry should be protected, we need at least Ω(N) time. The
reason is that every entry should be touched, otherwise some
information about the location can be inferred by analyzing
which entries are accessed.

Along this line of thinking, we can design a naive circuit
querying an entry of the matrix as follows. The circuit com-
pares the location of the entry queried with the location of each
entry in the matrix, and then the query operation is performed
based on the comparison results. For multiple queries, the same
circuit can be applied repeatedly using different locations as
required. Using this circuit, the secure matrix query can be
achieved by running the corresponding garbled circuit protocol
between non-colluding SDM and CSP.

However, as the number of queries from SUs increases, this
design will become very inefficient. Given the number of SUs’
query requests Ns, the time complexity of this naive circuit is
O(N ·Ns). In practice, it is probable that Ns ∼ Ω(N), and the
complexity becomes Ω(N2). Even when N is normally large
(e.g. N = 100× 100 = 10000), the complexity Ω(N2) is quit
prohibitive for secure computations.

The inefficiency of the naive design arises from its inability
to batch multiple matrix accesses and to amortize the cost for
every single access, which motivates our design of a more
efficient query circuit.

D. Query Circuit: Our Efficient Design

Inspired by the applications of sorting networks in [15],
[16], we design our efficient batch matrix query using a sorting
network. Different from [15], which used sorting networks to
leverage sparsity in the data, we make use of sorting networks
to take advantage of the parallelism in multiple oblivious
random accesses to a database.

Specifically, we write the SAI matrix M = {mij}n×n as
an arrayMa = {ai}Ni=1, where N = n×n and a(i−1)×n+j =
mij . The query circuit is described in Algorithm 4. Our main
idea is to store SUs’ queries together with the SAI matrix M
in an array. Through appropriate sorting operations, the query
tuples can be placed immediately after the SAI matrix entry
with which they share an index; a linear pass through the data
allows the computation of query.

Algorithm 4 Query Circuit

Input: Tuples {(i, ai)}Ni=1, {(si, ji, vi)}Ns
i=1

1: Initialize tuple array S
2: Sort S with respect to rows 2 and 3
3: Query Computing (left-to-right pass):

s4,k = s4,k · (1− s3,k)⊕ s4,k−1 · s3,k (1)

for k = 2 . . . N +Ns
4: Sort S with respect to rows 3 and 1
5: Output item s4,k, k = 1 . . . Ns

In the following we first describe the algorithm in detail
and then discuss its implementation as a circuit.

Initialization. The algorithm takes as input the array Ma

and SUs’ queries {(si, ji)}Ns
i=1. These input data constitute

an (N + Ns) array of tuples S. The first N tuples of S
store the entries of Ma, while the remaining Ns tuples store
SUs’ queries. More specifically, for each entry ai in Ma, the
algorithm constructs a matrix tuple (0, i, 0, ai), where ai is
a K-element vector indicating if each channel is used. For
each query request i, the algorithm constructs a query tuple
(si, ji, 1, vi), where si is the ID of the SU, ji is the index
of the square the SU wishes to query, and vi is a K-element
vector storing the query result. The resulting initial tuple array
S is as follows: 1 : 0 0 . . . 0 s1 s2 . . . sNs

2 : 1 2 . . . N j1 j2 . . . jNs

3 : 0 0 . . . 0 1 1 . . . 1
4 : a1 a2 . . . aN v1 v2 . . . vNs


We denote by sl,k the l-th entry of the k-th tuple. These

entries serve the following roles:

s1,k: the IDs of SUs.
s2,k: the indexes of squares concerned.
s3,k: a binary flag indicating if the tuple is a query tuple.
s4,k: SAI vector values.

Query. The query operations consist of the following three
steps:

1. First Sorting. Sort S in the increasing order in terms of
indexes (i.e. s2,k), and then binary flags (i.e. s3,k), as shown
in Line 2 of Alg. 4. This ensures that each matrix tuple
is followed by the query tuples with the same index. The
resulting S is as follows:

1 : 0 su1
1

. . . su1
n1

. . . 0 suN
1

. . . suN
nN

2 : 1 1 . . . 1 . . . N N . . . N
3 : 0 1 . . . 1 . . . 0 1 . . . 1
4 : a1 vu1

1
. . . vu1

n1
. . . aN vuN

1
. . . vuN

nN


where query tuples from SUs {uij}

ni
j=1 share the same index

as matrix tuple i, and
∑N
i=1 ni = Ns with ni ≥ 0 for any

1 ≤ i ≤ N . After querying, it is expected that vui
j

= ai for
any 1 ≤ i ≤ N and 1 ≤ j ≤ ni.

2. Query Computing. Perform query computing through a
left-to-right traversing of the array, as shown in Line 3. By
appropriate use of flags, this operation affects query tuples,
leaving matrix tuples unchanged. After this operation, the
entry s4,k (SAI value) of each matrix tuple is copied to the
entries s4,k’s of the corresponding query tuples following
the matrix tuple with the same index.

3. Second Sorting. The tuple array S is first sorted descend-
ingly w.r.t. binary flags (i.e. s3,k), and then ascendingly
w.r.t. IDs (i.e. s1,k). This brings all query tuples in the first
Ns positions in the array, in the order in term of their IDs.

Output. The query tuples are extracted by cutting the first
Ns tuples of S.

We now show that the above algorithm is readily imple-
mentable as a circuit that takes as inputMa and {(si, ji)}Ns

i=1,
and outputs {(si, vi)}Ns

i=1. First, Step 1 can be implemented as
a circuit inputting Ma and {(si, ji)}Ns

i=1 and outputting the
initial array S, with Θ(K(N+Ns)) gates. Second, the sorting

operations can be performed using a sorting network inputting
the initial array and outputting the sorted array, requiring
Θ(K(N + Ns) log(N + Ns)) gates. Finally, the left-to-right
pass can be implemented as a circuit performing eq. (1) on
each tuple, also with Θ(K(N +Ns)) gates. Thus, the overall
complexity of the algorithm is Θ(K(N +Ns) log(N +Ns)).
When Ns ∼ Θ(N), the complexity becomes Θ(KN logN),
within a logarithmic factor of the implementation in the RAM
model without security guarantees.

E. Atomic Building-block Circuits

In order to implement our efficient query circuit, and thus
the Batchers sorting network, we need to design the following
basic building-block circuits: integer comparison, swap and
multiplexing. We call them atomic building-block circuits, or
atomic circuits more concisely. In our circuit design, we can
make use of the “XOR-free” property of garbled circuits and
aim to use as few as possible AND gates for each atomic circuit
to minimize both computation and communication overhead.
In the following, we denote two K-bit non-negative integers
by x = (xKxK−1...x2x1) and y = (yKyK−1...y2y1). The
atomic circuits can be designed and optimized as follows.

• Integer comparison. We apply directly the comparison
circuit proposed in [17] for integer comparison, which is
optimized by “XOR-free” property. To compare integers
x and y, the circuit can be described as follows:

ci+1 = xi ⊕ (xi ⊕ ci) ∧ (yi ⊕ ci)
subject to 1 ≤ i ≤ K

where for c1 = 0, the comparison result cK+1 = [x > y];
for c1 = 1, cK+1 = [x ≥ y]. Comparison circuits for
[x < y] and [x ≤ y] can be obtained by interchanging
x and y. As we can see, the K-bit integer comparison
circuit only contains K AND gates.

• Swap. To swap x and y with a swap indicator denoted
by b (If b = 1, swap x and y; else, remain untouched),
we can use the following circuit [15].

x′i = [b ∧ (xi ⊕ yi)]⊕ xi, and y′i = x′i ⊕ (xi ⊕ yi)
subject to 1 ≤ i ≤ K

Where

x′ = (x′Kx
′
K−1 · · ·x′2x′1) and y′ = (y′Ky

′
K−1 · · · y′2y′1)

are the swapping results. This swap has been optimized
with only K AND gates.

• Multiplexing. In the swap circuit, if only x′ is re-
turned, then we get a multiplexer mux(x, y, b), with
mux(x, y, 0) = x, and mux(x, y, 1) = y.

F. Verification Mechanism

So far, we have presented a secure protocol for database-
driven spectrum sharing. As we will see in next section,
the protocol achieves merely security against semi-honest
adversaries and requires that all participant parties follow the
protocol specification honestly. However, in practice, either
SDM or CSP may be malicious and deviate from the protocol
arbitrarily, and thus malicious security is usually called for.

To address malicious attacks, we combine secure computa-
tions with MAC techniques to design a verification mechanism.

Our main idea is that we let the data of spectrum available
information (SAI) carry some redundant information, so that
their integrity can be well verified. Specifically, the SAI of
each channel k in square sij is now defined as a vector of bits
as follows.

εijk = σijk ||K
ij
k ||MACL(Kij

k , i||j||k||Tr||σ
ij
k) (2)

where some parameters are described as follows.

• σijk is the real SAI of channel k in square sij , with σijk = 1
means the channel is occupied, and σijk = 0 otherwise.

• Kij
k is a random key of bit length L chosen by PU k for

channel k in square sij during the updating at the very
beginning of each round.

• Tr is the time stamp publicly designated for round r, e.g.
the start date of round r.

• MACL(Kij
k , i||j||k||Tr||σ

ij
k) is the first L bits of MAC

using Kij
k as its key and taking as input the concatenation

of values i, j, k, Tr and σijk . The MAC algorithm and L
value can be customized as needed.

Applying the verification mechanism, our secure and veri-
fiable spectrum sharing protocol then works as follows.

• Initialization. All initial SAI data are prepared as eq. (2)
by PUs, and then these data are shared between SDM and
CSP.

• Submission. All PUs prepare their update request as
eq. (2), while SUs prepare their query requests as before.

• Processing. Both SDM and CSP perform the same com-
putations as before except that each SAI matrix entry
carries more data than before.

• Output and Verification. Each SU receives the output in
the form of eq. (2), and then the SU verifies the correct-
ness by recomputing the MAC value and comparing it
with the received MAC value.

This verification mechanism ensures that even if either
SDM or CSP is malicious, it cannot update the spectrum
database falsely, or manipulate the SAI data and return false
query results.

V. SECURITY ANALYSIS

In this section, we first prove that our protocol (Proto-
col 2) without verification achieves security against semi-
honest adversaries. We then demonstrate that our protocol
with verification also defends against some common malicious
attacks.

In Protocol 2, both PUs and SUs act as either input
providers or output consumers, and they have no other in-
teractions with both SDM and CSP. Therefore, Protocol 2 can
be regarded as a two-party computation protocol with input
from and output to the users. Intuitively, the security of the
protocol implies that neither the SDM nor the CSP can learn
anything about users’ sensitive inputs or outputs. Formally, the
definition of security against semi-honest adversaries in two-
party computation can be described as follows [18].

Definition 2 (Security against semi-honest adversaries). Let
f(x, y) be a function with two inputs x and y, two outputs
fA(x, y) and fB(x, y). Suppose that protocol Π computes
f(x, y) between two parties Alice and Bob. Let V Π

A (x, y)

(V Π
B (x, y), respectively) represent Alice’s (Bob’s) view during

an execution of Π on (x, y). In other words, if (x, rΠ
A) (resp.

(y, rΠ
B)) denotes Alice’s (Bob’s) input and randomness, then

V Π
A (x, y) = (x, rΠ

A,m1,m2, ...,mt), and
V Π
B (x, y) = (y, rΠ

B ,m1,m2, ...,mt),

where {mi} denote the messages passed between the parties.
Let OΠ

A (resp. OΠ
B) denote Alice’s (Bob’s) output after an exe-

cution of Π on (x, y), and OΠ(x, y) = (OΠ
A(x, y), OΠ

B(x, y)).
Then we say that protocol Π is secure (or preserve privacy)
against semi-honest adversaries if there exist probabilistic
polynomial time (PPT) simulators S1 and S2 such that

{(S1(x, fA(x, y)), f(x, y))} c≡ {(V Π
A (x, y), OΠ(x, y))} (3)

{(S2(y, fB(x, y)), f(x, y))} c≡ {(V Π
B (x, y), OΠ(x, y))} (4)

where
c≡ denotes computational indistinguishability.

With this formal security definition, the security of Proto-
col 2 without verification can be stated as Theorem 1.

Theorem 1. As long as SDM and CSP do not collude, Protocol
2 is secure against semi-honest adversaries.

Proof: To prove the security of Protocol 2, we first prove
the security of each phase in Protocol 2 in two separate
cases, depending on which party the adversary has corrupted.
For each phase, we show that for all PPT adversaries, the
adversary’s view based on SDM and CSP’s interaction is
indistinguishable to the adversary’s view when the corrupted
party interacts with a simulator instead. In other words, we
show that there exist simulators S1 and S2 that satisfy condi-
tions (3) and (4) for each phase. Then, due to the sequential
composition theory [19], we actually prove the security of the
entire protocol.

(1) Secret Sharing and Submission. In this phase, each
PU or SU splits its update or query request into two shares
using XOR secret sharing, and sends one share to SDM and
the other to CSP. SDM (resp. CSP) receives its share of all
the requests, and initially holds its share of SAI matrix M.
In this process, if SDM (resp. CSP) is corrupted, it learns its
share of all requests and M, i.e.,

{(k, [Ck]s)}Kk=1, {[lu]s}Ns
u=1, {[mij]s}n×n

(resp.{(k, [Ck]c)}Kk=1, {[lu]c}Ns
u=1, {[mij]c}n×n)

However, due to the security of XOR secret sharing, one
share of data reveals nothing about the data, SDM (resp. CSP)
in fact learns nothing about all requests and M, except that
PU k updates channel k, which is the public knowledge (i.e.
public input). This implies that the view of SDM (resp. CSP)
in this phase can be simulated by its public input together
with some random numbers, and thus equations (3) and (4)
holds. Therefore, this phase is secure according to the security
definition.

(2) Update Processing. In this phase, SDM (resp. CSP)
updates its share of spectrum database M by XORing its
shares of old M and update requests, independently. There
is no interaction between SDM and CSP. If SDM (resp. CSP)
is corrupted, its view can be easily simulated by its shares of
old M and update requests, and security of this phase holds.

(3) Query Processing. In this phase, based on a query
circuit, CSP constructs a garbled circuit and garbles its shares
of the updated M and query requests. CSP then sends the
garbled circuit and garbled values to SDM, while holds the
decoding information for output itself. Upon receiving the
garbled query circuit and garbled values from CSP, SDM uses
them together with its shares of updatedM and query requests
to compute the garbled query results. Finally, each SU receives
its garbled query result from SDM and the corresponding
decoding information from CSP, and uses them to get its plain
query result. In the process, there are two corruption cases.

Case 1: CSP is corrupted. the view of CSP includes the
garbled circuit and its garbled shares, i.e.,

G(Q), {G([m∗ij]c)}n×n, {G([lu]c)}Ns
u=1

which can be simulated by CSP’s input of this phase, i.e.,
CSP’s shares of updated M and query requests ({[m∗ij]c}n×n
and {[lu]c}Ns

u=1), and the public input, the query circuit, to-
gether with CSP’s randomness.

Case 2: SDM is corrupted. The view of SDM includes the
garbled values and the garbled circuit received from CSP, i.e.,

G(Q), {G([m∗ij]c)}n×n, {G([lu]c)}Ns
u=1

and the garbled inputs and outputs of the query, i.e.,

{G(m∗ij)}n×n, {G(lu)}Ns
u=1 and {G(m∗iuju)}Ns

u=1

The garbled circuit and garbled values can be simulated by
SDM’s inputs of this phase, i.e., SDM’s shares {[m∗ij]s}n×n
and {[lu]s}Ns

u=1, the publicly known query circuit, together with
a series of random numbers.

Thus, we can also find S1 and S2 satisfying equations (3)
and (4), and the security of this phase also holds.

Since the above three phases are composed sequentially, it
follows from the sequential composition theory that Protocol 2
is secure against semi-honest adversaries. �

Theorem 2 states the malicious security of Protocol 2 with
verification.

Theorem 2. If either SDM or CSP is malicious, and both
PUs and SUs follow the protocol honestly, Protocol 2 with
verification defends against malicious attacks violating SAI
data integrity, such as falsification, replacement and replay.

Proof: In Protocol 2 with verification, SAI data are pre-
pared with eq. (2). Due to the security in semi-honest setting,
neither SDM nor CSP knows anything about the SAI data.
Thus, when malicious attacks violate SAI data integrity, it is
hard for the attacker (either SDM or CSP) to reconstruct SAI
data with eq. (2). Actually, to reconstruct an SAI entry, the
attacker needs to guess the random key (L bits) in the old one,
and thus succeeds with a probability 2−L. Then, if value L is
properly chosen, malicious security can be ensured.

For falsification, replacement and replay attacks, we can
show they all violate the SAI data integrity. In fact, a falsifica-
tion attack tampers the real SAI σijk (c.f. eq. (2)); a replacement
attack replaces an SAI entry εijk with another one of different
i, j or k; and a replay attack uses an SAI entry with old time

stamp. All of them require to reconstruct SAI data and thus
can be defended through verification. �

From security analysis above, it can be verified that the
security requirements illustrated in Section II-B are satisfied.
It is worth noting that, with the spectrum database and PUs’
operational privacy well protected, all attacks originating from
the disclose of these privacies, such as spectrum utilization
based location inferring (SULI) attack [9], will be inherently
prevented.

VI. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to eval-
uate our secure and verifiable scheme. We first demonstrate
that the update processing is so fast that its running time
is negligible compared to the overall running time. We then
evaluate the computation and communication performance of
the query operation by: (1) comparing our design with the
naive design; (2) testing our design in the large-scale scenario
with a large number of SUs; (3) testing our design with
verification.

A. Experiment Setup

We setup the spectrum database by adopting the spectrum
availability information (SAI) of Los Angles released by FCC
[20], [21]. In this area, we choose 60 channels and a base
station (BS) coverage region centralized in the geo-location
(−117.50◦, 34.75◦) of the scale of 100km × 100km, one of
which with its signal coverage and service contour is shown
using Google Earth in Fig. 6, and divide it into n×n squares,
where n can be parameterized. We then extract the SAI
by testing if each square overlaps with the service contours
of these channels. We perform Monte Carlo experiments by
randomly choosing different squares queried by the SUs.

We implement both our scheme and the naive query design
on top of FastGC [22], a Java-based library for garbled circuits.
In our experiments, we simulate spectrum database manager
(SDM) and crypto-service provider (CSP) with two processes
on a commodity PC, with Intel(R) Core(TM) i7 3.60GHz CPU,
16.00GB RAM, and Windows 7 OS. We focus on the following
performance metrics:

• Computation overhead: measured by running time, the
total CPU time spent by SDM and CSP.

• Communication overhead: measured by message vol-
ume, the total data of all messages communicated be-
tween the two parties.

B. Performance of Update

As described previously, update processing is performed
independently by both SDM and CSP without any interaction.
We plot the running time of SDM (or CSP) when executing
our update processing with and without verification, as shown
in Figs. 7(a) and 7(d). Note that, for verification, we use a key
length L = 7 and HMAC-MD5 algorithm in this paper, which
ensures that malicious attacks violating SAI data integrity
could be detected with a probability more than 99%.

From the update plotting, we can see that all running times
grow linearly with the number of channels (K), and dividing
into less squares (i.e. smaller N = n×n) improves the update

Fig. 6. The signal coverage and service contour of KABC-TV located at
(−118.067020◦, 34.226950◦), whose channel is ch7 and ERP is 28.700kW.

performance. Most importantly, all running times range on
the order of seconds due to the absence of cryptographical
operations, and thus are negligible compared to the overall
running times of our scheme ranging on the order of minutes,
as we will see below.

C. Performance of Query

1) Our design vs Naive design: We carry out a simulation
to compare the query performance of our design and the
naive design with N = 100 × 100. Query requests are
randomly generated over the squares. Since the naive query
is computationally-intensive, we let Ns varies from 50 to 300.
The experimental results are shown in Fig. 7(b) and 7(e).

Figs. 7(b) and 7(e) demonstrate that: (1) our design is
more efficient than the naive design in term of computation
and communication performance when Ns exceeds 100, and
the performance gaps become larger as Ns increases; (2) both
running times and message volumes of our design grow much
more slowly than those of the naive design.

The reason for (1) is that our design gains efficiency by
leveraging parallelism of multiple query operations, while the
computation and communication overheads of the naive design
scale linearly to the number of query operations. The more
query operations are executed in parallel, the more efficiency
is gained by our design over the naive design. The reason
for (2) is that when the number of query operations is much
smaller compared to the number of squares (i.e., N = n×n),
our design takes nearly constant running times and message
volumes since the number of tuples being sorted is nearly the
same, while the naive design takes running times and message
volumes linear to the number of query operations due to the
linear growth of computation and communication overheads.

2) Large-scale system performance: In large-scale systems,
the number of SUs Ns may be comparable to the total number
of squares N . We evaluate our query performance in this
context with N = 100 × 100, by varying Ns from 1000 to
10000 for K = 20, 40 and 60, respectively.

Figs. 7(c) and 7(f) trace the experimental results. We can
see that the running times and message volumes grow with
Ns almost linearly. They also grow with K in a roughly linear
fashion. The running times spent are within 2 hours, and the

TABLE II. PERFORMANCE OF QUERY WITH VERIFICATION

Ns 50 100 150 200 250 300
Time (min, K = 20) 22.59 22.61 23.45 24.12 24.77 25.67
Time (min, K = 40) 42.15 43.26 45.30 46.30 47.80 49.07
Data (MB, K = 20) 1136 1174 1212 1251 1289 1330
Data (MB, K = 40) 2149 2219 2291 2363 2434 2509

message volumes are within 6GB, which is a acceptable for
spectrum sharing on a weekly basis.

3) Query with verification: To test query with verification,
we apply the same configure as Sec. VI-B. We then use
N = 50 × 50, vary Ns from 50 to 300, with K = 20 and
40, respectively. Tab. II lists the running times and message
volumes. It can be seen that both performance metrics grow
slowly with Ns due to the complexity (N +Ns) log(N +Ns)
of our query algorithm, and their values are acceptable for
practical applications.

VII. RELATED WORK

In this section, we summarize existing work related to ours.

Privacy preservation in location-based service (LBS).
Existing work on privacy preservation in LBS typically uses
the K-anonymity technique [5][6], collaborative privacy pro-
tection such as mix-zone [7], and differential privacy such
as geo-indistinguishability [8]. However, K-anonymous loca-
tion privacy protection normally requires a trusted server,
collaborative privacy protection suffers extra cost caused by
collaboration among users, while differential privacy protec-
tion requires querying with users’ obfuscated locations and
thus getting probabilistically inaccurate query results, which
make them unadaptable in protecting SUs’ location privacy.
Moreover, these methods cannot be applied to protect the PUs’
operational privacy during the spectrum database update.

Security in cognitive radio networks (CRNs). While
being a viable option to improve spectrum utilization, CRNs
present many specifical security vulnerabilities [3]. Attacks
against sensing-driven spectrum sharing have been identified
in [23], including primary user emulation (PUE) attack [24],
spectrum sensing data falsification (SSDF) attack [25], etc.
For database-driven spectrum sharing, security threats concern
the privacy of both primary users (PUs) and secondary users
(SUs), and the database access [3]. To address these security
threats, several solutions have been proposed to prevent rogue
transmissions (e.g. rule-based [26] and ontology-based policies
[27]) or to punish non-compliant transmitters (e.g. localization
[28] and punishment [29]). However, very limited work has
been done on privacy preservation in CRNs.

Privacy preservation in database-driven CRNs. Re-
cently, the authors of [9] proposed PriSpectrum, a scheme
that protects SUs’ location privacy in database-driven CRNs.
The authors of [30] developed a location privacy-preserving
spectrum auction that can be applied in database-driven
CRNs. However, existing work has considered neither PUs’
operational privacy, nor correctness verification of spectrum
database operations. Different from [9], [30], which focused
on solely protecting SUs’ location privacy in database-driven
CRNs, our work not only enables both secure update and query

Number of Channels
10 20 30 40 50 60

R
un

ni
ng

 T
im

e
(m

s)

0

500

1000

1500

2000

n = 60
n = 80
n = 100

(a) Update without verification

Number of Secondary Users
50 100 150 200 250 300

R
un

ni
ng

 T
im

e
(m

in
)

0

20

40

60

80

100

120

Our Protocol: K = 20
Our Protocol: K = 40
Naive Protocol: K = 20
Naive Protocol: K = 40

(b) Time: naive vs our.

Number of Secondary Users
0 2000 4000 6000 8000 10000

R
un

ni
ng

 T
im

e
(m

in
)

0

20

40

60

80

100

K = 20
K = 40
K = 60

(c) Running time

Number of Channels
10 20 30 40 50 60

R
un

ni
ng

 T
im

e
(m

s)

#104

0

0.5

1

1.5

2

2.5

n = 60
n = 80
n = 100

(d) Update with verification

Number of Secondary Users
50 100 150 200 250 300

M
es

sa
ge

 V
ol

um
e

(M
B

)

0

1000

2000

3000

4000

5000

6000

Our Protocol: K = 20
Our Protocol: K = 40
Naive Protocol: K = 20
Naive Protocol: K = 40

(e) Message: naive vs our.

Number of Secondary Users
0 2000 4000 6000 8000 10000

M
es

sa
ge

 V
ol

um
e

(M
B

)

1000

2000

3000

4000

5000

6000

K = 20
K = 40
K = 60

(f) Message volume

Fig. 7. Performance evaluation. 7(a) and 7(d) show the running times of the update processing for SDM (or CSP) with or without verification. 7(b) and 7(e)
show the query performance comparison of our design and the naive design in both computation and communication overheads. 7(c) and 7(f) show the query
performance of our design in large-scale systems in both computation and communication overheads.

operations, protecting both PUs’ operational privacy and SUs’
location privacy, and the spectrum database, but also enables
correctness verification of database operations in the presence
of malicious attacks.

Two-party computation for privacy preservation. There
is a research strand that introduces a third party and applied
the two-party computation techniques for privacy preservation,
such as [31][32][15]. Our work follows this direction. To our
knowledge, we are the first to apply two-party computation
techniques (e.g. garbled circuits and cryptographical security
formulation) to privacy preservation in the context of database-
driven CRNs.

VIII. CONCLUSION

In this paper, we have proposed a secure and verifiable
scheme for database-driven spectrum sharing, allowing both
update and query operations. Our scheme not only achieves
cryptographical security against semi-honest adversaries, but
also defends against some common malicious attacks. Specif-
ically, it reveals nothing about the primary users’ (PUs’) oper-
ational information (except the public knowledge transmitter
IDs), the secondary users’ (SUs’) location information and the
spectrum database to SDM, CSP and all users, resulting that
each SU gets its respective query result. Also, the correctness
of each SU’s query result can be well verified, so that any
malicious attack violating the integrity of spectrum availability

information could be detected. To our knowledge, this is the
first secure and verifiable database-driven spectrum sharing
scheme protecting both PUs’ operational privacy and SUs’
location privacy.

ACKNOWLEDGMENT

The work of Zhili Chen is supported by the Natural Science
Foundation of China under Grant Nos. 61572031 & 61202407;
The work of Hong Zhong is supported by the Natural Science
Foundation of China under Grant No. 61572001 and the
Natural Science Foundation of Anhui Province under Grant
No. 201508085QF132.

REFERENCES

[1] D. Gurney, G. Buchwald, L. Ecklund, S. Kuffner, and J. Grosspietsch.
Geo-location database techniques for incumbent protection in the TV
white space. In Proc. IEEE DySPAN, pages 1–9, 2008.

[2] Federal Communications Commission. Third memorandum opin-
ion and order. http://hraunfoss.fcc.gov/edocs public/attachmatch/
FCC-12-36A1.pdf, 2012.

[3] J.M. Park, J.H. Reed, A.A. Beex, and T.C. Clancy. Security and
enforcement in spectrum sharing. Proceedings of the IEEE, 102(3):270–
281, 2014.

[4] Federal Communications Commission. Amendment of the commissions
rules with regard to commercial operations in the 3550-3650 mhz band.
In Notice of Proposed Rulemaking and Order, 2012.

[5] T. Xu and Y. Cai. Feeling-based location privacy protection for location-
based services. In Proc. of ACM CCS, pages 348–357, 2009.

[6] K. Vu, R. Zheng, and J. Gao. Efficient algorithms for k-anonymous
location privacy in participatory sensing. In Proc. of IEEE INFOCOM,
pages 2399–2407, 2012.

[7] J. Freudiger, M. Manshaei, J. Hubaux, and D. Parkes. On noncoopera-
tive location privacy: A game-theoretic analysis. In Proc. of ACM CCS,
pages 324–337, 2009.

[8] M.E. Andrs, N.E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi.
Geo-indistinguishability: Differential privacy for location-based system-
s. In Proc. of ACM CCS, 2013.

[9] Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao. Location privacy in database-
driven cognitive radio networks: Attacks and countermeasures. In Proc.
of IEEE INFOCOM, pages 2751–2759, 2013.

[10] A. C.-C. Yao. How to generate and exchange secrets. In Proc. FOCS,
1986.

[11] Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for
two-party computation. J. Cryptology, 22(2), 2009.

[12] M. Blanton, M. J. Atallah, K. B. Frikken, and Q. Malluhi. Secure and
efficient outsourcing of sequence comparisons. In European Symposium
on Research in Computer Security, pages 505–522. Springer, 2012.

[13] Z. Chen, L. Huang, and L. Chen. ITSEC: An information-theoretically
secure framework for truthful spectrum auctions. In Proc. of INFO-
COM, pages 2065–2073, 2015.

[14] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS
Spring Joint Computer Conference, 1968.

[15] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh. Privacy-preserving matrix factorization. In Proc. ACM CCS,
2013.

[16] O. Goldreich. Software protection and simulation on oblivious RAMs.
Journal of the ACM, 1996.

[17] V. Kolesnikov, A. R. Sadeghi, and T. Schneider. Improved garbled
circuit building blocks and applications to auctions and computing
minima. In Proc. CANS, 2009.

[18] O. Goldreich. Foundations of Cryptography: Volume 2-Basic Applica-
tions. Cambridge University Press, 2004.

[19] C. Hazay and Y. Lindell. Efficient secure two-party protocols: Tech-
niques and constructions. Springer, 2010.

[20] TV fool. Available:http://www.tvfool.com/, 2015.

[21] Federal Communications Commission. TV query broadcast
station search. Available:https://www.fcc.gov/encyclopedia/
tv-query-broadcast-station-search, 2015.

[22] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In Proc. USENIX Security, 2011.

[23] K. Bian and J.M. Park. MAC-layer misbehaviors in multi-hop cog-
nitive radio networks. In Proc. of US-Korea Conference on Science,
Technology, and Entrepreneurship, 2006.

[24] R. Chen, J.M. Park, and J. Reed. Defense against primary user
emulation attacks in cognitive radio networks. IEEE J. Sel. Areas
Commun., 26(1):25–37, 2008.

[25] R. Chen, J.M. Park, and K. Bian. Robust distributed spectrum sensing
in cognitive radio networks. In Proc. of IEEE INFOCOM, pages 1876–
1884, 2008.

[26] B. Bahrak, A. Deshpande, M. Whitaker, and J.M. Park. Bresap: A
policy reasoner for processing spectrum access policies represented by
binary decision diagrams. In Proc. of IEEE DySPAN, 2010.

[27] M. Kokar and L. Lechowicz. Language issues for cognitive radio. Proc.
IEEE, 2009.

[28] T. He, C. Huang, B.M. Blum, J.A. Stankovic, and T. Abdelzaher. Range-
free localization schemes for large scale sensor networks. In Proc. of
ACM MobiCom, pages 81–95, 2003.

[29] K. Woyach, A. Sahai, G. Atia, and V. Saligrama. Crime and punishment
for cognitive radios. In Proc. of 46th Annual Allerton Conference on
Communication, Control, and Computing, pages 236–243, 2008.

[30] S. Liu, H. Zhu, R. Du, C. Chen, and X Guan. Location privacy
preserving dynamic spectrum auction in cognitive radio network. In
Proc. of ICDCS, pages 256–265, 2013.

[31] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and
mechanism design. In Proc. EC, 1999.

[32] Q. Huang, Y. Tao, and F. Wu. SPRING: A strategy-proof and privacy
preserving spectrum auction mechanism. In Proc. INFOCOM, 2013.

