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Abstract—The practical hardware limitations bring technical
challenges to cognitive radio, e.g. limited capability of spectrum
sensing and certain frequency range of spectrum access. In
this paper, we propose a rollout-based joint spectrum sensing
and access policy incorporating the hardware limitations of
both sensing capability and spectrum aggregation, in which
the optimal policy is shown to be PSPACE-hard. Two heuristic
policies are proposed to serve as base policies, based on which the
developed rollout-based policy approximates the value function
and determines the appropriate spectrum sensing and access
actions. We establish mathematically that the rollout-based policy
achieves better performance than the base policy. We also
demonstrate that the low-complexity rollout-based policy leads to
only slight performance loss compared with the optimal policy.

I. INTRODUCTION

The proliferation of wireless mobile networks and the ever-

increasing density of wireless devices underscore the necessity

for efficient allocation and sharing of the radio spectrum

resource. Cognitive radio (CR) [1], with its capability to

flexibly configure its transmission parameters, has emerged in

recent years as a promising paradigm to enable more efficient

spectrum utilization. The objective of CR is to solve the

imbalance between spectrum scarcity and under-utilization.

With CR technique, secondary users are allowed to search

for, identify, and exploit instantaneous spectrum opportunities

while limiting the interference perceived by primary users (or

licensees).

While conceptually simple, CR presents novel challenges,

among which spectrum sensing and access are of primordial

importance and thus have attracted considerable research atten-

tion in recent years. Among representative works, a decentral-

ized MAC protocol is proposed in [2] where SUs search for
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spectrum opportunities without a centralized controller. The

optimal sensing and channel selection schemes maximize the

expected total number of bits delivered over a finite number

of slots. The authors of [3] propose a Least Channel Switch

(LCS) strategy for spectrum assignment considering the dy-

namic access of SUs with different bandwidth requirements. In

[4], considering the fusion strategy of collaborative spectrum

sensing, the authors design a multi-channel MAC protocol.

More recently, motivated the impact of hardware limitations

and physical constraints on the performance of spectrum

sensing and access, we have developed a joint spectrum

sensing and access scheme by systematically incorporating

the following practical constraints: (1) the continuous full-

spectrum sensing being impossible, SUs can only sense and

access a subset of spectrum channels; (2) only spectrum

channels within a certain frequency range can be aggregated

and accessed for data transmission [5]. A decision-theoretic

approach has been proposed in [6] to model the joint spectrum

sensing and access problem under these constraints as a

Partially Observable Markov Decision Process (POMDP) [7].

By application of linear programming, the optimal policy is

obtained which minimizes the times of channel switch, thus

reducing the system overhead and maintaining its stability

in dynamic environments. However, the formulated problem

being PSPACE-hard, the practical application of the derived

optimal policy is severely limited due to its exponential

computation complexity. Therefore, a heuristic joint spectrum

sensing and access policy is called for so as to strike a balanced

between system performance and computation complexity.

In this paper, we develop a joint spectrum sensing and

access policy based on the rollout algorithms, a class of

suboptimal solution methods inspired by the policy itera-

tion methodology of dynamic programming. Specifically, two

heuristic policies are proposed to serve as base policies, based

on which the developed rollout-based policy approximates

the value function and determines the appropriate spectrum



sensing and access actions. We establish mathematically that

the rollout-based policy achieves better performance than the

base policies. We also demonstrate that the low-complexity

rollout-based policy leads to only slight performance loss

compared with the optimal policy.

The rest of this paper is organized as follows. Section II

introduces the system model and the optimal scheme in the

POMDP framework. The rollout-based suboptimal spectrum

sensing and access scheme is proposed in Section III. Section

IV provides the performance evaluation by simulation. Finally,

this paper is concluded in Section V.

II. JOINT SPECTRUM SENSING AND ACCESS: A POMDP

FORMULATION

We consider a large-span licensed spectrum consisting of N
independent channels, each of bandwidth BW . Let the vector

S(t) denote the system state at time slot t,

S(t) = [S1(t), ..., SN (t)] ∈ {0, 1}N � S (1)

where Sn(t) ∈ {0(occupied), 1(idle)} represents the state of

channel n ∈ {1, ..., N} at time slot t. The transition probability

of system states pij = Pr{S(t + τ) = j|S(t) = i} can be

calculated based on the state of each channel Pn
xy(τ),

Pn
xy(τ) = Pr{Sn(t + τ) = y|Sn(t) = x},∀x, y ∈ {0, 1} (2)

which can be estimated by the statistics of the primary network

traffic and are assumed to be known by SUs [9].

At the beginning of each time slot, the SU chooses a set

of channels A1 to sense and a set of channels A2 to access

in order to satisfy the bandwidth requirement Υ. The size

of A1 is no more than L channels, and the channels in A2

are within the frequency range Γ, which are characterized by

the spectrum sensing and aggregation limitations, respectively.

Before choosing A1 and A2, the SU checks whether its

requirement Υ is still satisfied. If yes, only A1 is selected and

the spectrum access decision A2 does not change; otherwise,

the SU has to reselect appropriate A1 and A2 and trigger

a channel switch. Define η(t) as the expected number of

channel switches from slot 0 to slot t, we focus on the SU’s

optimization problem of minimizing η(t) by appropriately

choosing A1 and A2. Such joint spectrum sensing and access

problem can be formulated as follows:

min
A1,A2

lim
t→∞

η(t)
t

(3)

s.t. |A1| ≤ L (4)

D(i, j) ≤ Γ, ∀i, j ∈ A2 (5)∑
n∈A2

Sn(t) ≥ Υ
BW

, ∀t (6)

where D(i, j) denotes the frequency distance between channel

i and j. The first two constraints indicate the spectrum sensing

and spectrum aggregation limitations respectively, and the

last constraint guarantees that the bandwidth requirement is

satisfied.
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Fig. 1. The basic operations of POMDP

To better present our analysis, we divide time into control
epoches, each composed of a number of consecutive time slots

and delimited by channel switches. Formally, let ts(k) denote

the time slot when the kth channel switch is triggered, the kth

control epoch denotes the time from ts(k − 1) to ts(k) with

ts(0) = 0. Clearly, the longer the current accessed channels

can keep satisfying the bandwidth requirement of the SU, the

longer is the corresponding control epoch.

Mathematically, the optimization problem faced by the SU

can be cast into a class of POMDP frameworks [7] by

incorporating the control epoch structure. The basic operations

in each control epoch are shown in Fig. 1, in which Tp denotes

the duration of one time slot.

Let T denote the number of control epoches within the time

horizon t, and the index m denote the m-th last control epoch

(i.e., the mth control epoch from slot t). The state transition

probability expressed in control epoches is denoted by pκ
ij =

Pr{S(m−1) = j|S(m) = i}, where κ indicates the number of

time slots in the control epoch. Taking both spectrum sensing

and access as the action, denoted by a(m) for epoch m, and

the sensing results as the observation, denoted by Θi,A1(m)
for epoch m, we have

a(m) = {A1(m);A2(m)} = {C1, C2, ..., CL; Cstart} (7)

Θi,A1(m) = {SC1(m), SC2(m), ..., SCL
(m)} (8)

where Ci is the index of the i-th sensed channel, Cstart is

the index of the first accessed channel in A2, and Θi,A1(m)
indicates the observation output with the current system state

i and the sensing action A1.

A belief vector Δ(m) is introduced to represent the SU’s

estimation of the system state based on past decisions and

observations, which is also a sufficient statistics for designing

the optimal policy for future epoches. Formally,

Δ(m) = (δi(m))i∈S � (Pr{S(m) = i|H(m)})i∈S (9)

where H(m) = {a(i), Θ(i)}i≥m. A joint spectrum sensing
and access policy (termed as policy for briefty) π � (μm, 1 ≤
m ≤ T ) is defined as a mapping from the belief vector Δ(m)
to the action a(m) for each epoch: i.e.,

μm : Δ(m) ∈ [0, 1]2
N → a(m) = {A1(m) A2(m)}. (10)



To quantify the SU’s objective, we define the reward of

a control epoch as the number of time slots in the control

epoch, i.e. the length of the control epoch. We now show

that minimizing the number of channel switches equals to

maximizing the total reward. To this end, let T denote the

total number of control epoches over the whole time horizon

(t slots) and R(T ) denote the total reward, we have

η(t) = argmin
T

{R(T ) ≥ t}. (11)

It then follows that

argmin
π

η(t)
t

= argmax
π

R(T )
t

. (12)

Moreover, it can be noted that given m, its reward for this

control epoch is a Bernoulli random variable with probability

density function (pdf) p(κ) (κ ∈ Z
+) derived as follows:

p(κ) = ζ · (1 − ξ)κ−1 · ξ, (13)

where ζ is the probability that the channels in A2 have

available bandwidth more than Υ in current time slot, and

ξ is the probability that the bandwidth requirement of the

SU would not be satisfied by A2 in the next time slot. Both

the access probability ζ and the switching probability ξ can

be calculated according to central limit theorem [12] and

asymptotic analysis as in [6].

To find an optimal policy π∗, we express the cumulated

reward in the recursive form by a function defined as the value
function formalized as follows:

V m(Δ) =

max
a∈A

{∑
i

δi

∑
κ

pκ

∑
j

pκ
ij

∑
θ

Pr[Θj,A1 = θ][κ + V m−1 (Ω(Δ|a, θ))]

}
(14)

with the initial condition V 0(Δ) = 0, and the update rule

operator of the belief vector Δ is denoted by Ω(Δ|a, θ).
It has been proved in [10] that V m(Δ) is piecewise linear

and convex. Specifically,

V m(Δ) = max
ω

[∑
i

δiα
ω
i (m)

]
(15)

where the 2N -dimensional vector �αω(m) denotes the slopes

associated with different convex regions divided from the

space of belief vectors, which can be calculated as

αi(m) =
∑
j,θ,κ

pκpκ
ij Pr[Θj,A1 = θ] · κ

+
∑
j,θ,κ

pκpκ
ij Pr[Θj,A1 = θ]αω

j (m − 1) (16)

Obviously, the calculation of a new α-vector yields an opti-

mal action a∗(m). By linear programming [11], the α-vectors

and the corresponding optimal actions in all control epoches

can be calculated by backward induction, and then stored in

a table. For a given Δ, we can find the maximum α-vector

through (15). By searching the table for the corresponding

optimal action, the optimal sensing and access scheme is

obtained, i.e. Δ ⇒ �α ⇒ a∗.

However, both the value function V m(Δ) and the α-vectors

are obtained by averaging over all possible state transitions and

observations. Since the number of system states is exponential

with respect to the number of channels, the implementation of

the optimal scheme suffers from the curse of dimensionality

and is computationally expensive or even prohibitive in some

cases. Hence, a low-complexity policy is called for to achieve a

desired balance between system performance and computation

complexity, which is the subject of the sequent study.

III. ROLLOUT-BASED JOINT SPECTRUM SENSING AND

ACCESS POLICY

In this section, we exploit the structural properties of the

problem and develop a joint spectrum sensing and access

scheme with reduced complexity and limited performance loss.

The core part of the joint optimization of spectrum sensing

and access is the calculation of the value function V m(Δ),
which is also the most computationally intensive component.

To alleviate the complexity, we adopt the rollout algorithm [8],

an approximation technique that can significantly reduce com-

putation complexity. Rollout algorithm, as an approximate

dynamic programming methodology based on policy iteration,

has been widely used in various applications ranging from

combinatorial optimization [13] to stochastic scheduling [14].

Its basic idea is one-step lookahead. To obtain the value

function in an efficient way, the rollout algorithm tries to

estimate the value function approximately rather than tracing

the accurate value. The most widely used approximation

approach is Monte Carlo method, which averages the results

of a number of randomly generated samples. As the sample

number is typically order-of-magnitude fewer compared to

the total strategy space, the computational complexity can be

significantly reduced.

We now develop a rollout framework to design the joint

spectrum sensing and access policy. To this end, the problem-

dependent heuristic method is proposed first as the base

policy, whose reward will be used by the rollout algorithm to

approximate the value function. Fig. 2 illustrates the procedure

of the proposed rollout-based policy. For simplicity, we rewrite

the value function (14) as

V m(Δ) = max
a∈A

E
{
κm(a) + V m−1(Ω(Δ|a, θ))

}
(17)

where κm(a) denotes the amount of time slots included in

the m-th last control epoch, which obviously depends on the

action choice a.

Base Policy To apply the rollout algorithm, a heuristic

algorithm is needed to serve as the base policy:

πH = [μH
1 , μH

2 , ..., μH
T ] (18)

In our study, we develop two heuristic algorithms, namely

Bandwidth-Oriented Heuristics (BOH) and Switch-Oriented

Heuristics (SOH).
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Fig. 2. Rollout-based joint spectrum sensing and access policy

In BOH, the sensing and access sets A1 and A2 are chosen

to maximize the expected available bandwidth, i.e.,

μH1
m : Δ(m) → aH1(m) = arg max

a∈A

∑
i∈A2

Pi(A1) · BW (19)

where Pi = Pr{Si = 1} can be updated based on the sensing

action A1. Intuitively, the wider the available bandwidth is,

the better the requirement of SU would be satisfied, and the

less likely a channel switch will be triggered in next time slot.

However, in BOH, the statistics of the primary traffic is not

taken into consideration to predict channel dynamics.

On the other hand, in SOH, the spectrum sensing and access

actions are chosen to maximize the expected reward (i.e., the

length of current control epoch),

μH2
m : Δ(m) → aH2(m) = arg max

a∈A

∑
κm

κm(a)pκm(a) (20)

where the calculation of pκm includes the operation of pre-

dicting the access probability ζ and the switching probability

ξ. Making full use of the dynamic statistics of the channels,

the SOH algorithm is expected to perform better than BOH.

We would like to emphasis that both heuristic algorithms

are greedy approaches with low computational complexity.

Adopting either of them as the base policy, the expected reward

from current control epoch to the end of the time horizon can

be calculated in a recursion way with the initial condition

V 0
H(Δ) = 0:

V m
H (Δ) = E

{
κm(aH) + V m−1

H (Ω(Δ|aH, θ))
}

(21)

Rollout Policy Based on the base policy πH, the rollout

policy πRL = [μRL
1 , μRL

2 , ..., μRL
T ] is defined by the following

operation.
μRL

m : Δ(m) → aRL(m) (22)
aRL(m) = arg max

a∈A
E

{
κm(a) + V m−1

H (Δ(m − 1))
}

(23)

By rolling out the heuristic algorithm and observing the

performance of a set of base policy solutions, useful informa-

tion can be obtained to guide the search for the rollout policy

solution. The rollout policy can approximate the value function

according to the reward of the base policy, and consequently

decide the action aRL(m).
In terms of efficiency, we establish in the following propo-

sition that the rollout policy is guaranteed to improve substan-

tially the performance of the base heuristics.

Proposition (Improving Property of Rollout Policy) The

rollout policy is guaranteed to lead to better aggregated reward

than the base policy. Mathematically, the following inequality

holds:

V T
H (Δ(T )) ≤ E

{
κT (aRL(T )) + V T−1

H (Δ(T − 1))
}

· · ·
≤ E{κT (aRL(T )) + κT−1(aRL(T − 1))

+ · · · + κm(aRL(m)) + V m−1
H (Δ(m − 1))}

· · ·
≤ E{κT (aRL(T )) + κT−1(aRL(T − 1))

+ · · · + κ1(aRL(1))}. (24)

Proof: We prove the proposition by backward induction.

For m = T , it follows from (23) that

aRL(T ) = arg max
a∈A

E
{
κT (a) + V T−1

H (Δ(T − 1))
}

.

Consequently,

V T
H (Δ(T )) = E

{
κT (aH) + V T−1

H (Δ(T − 1))
}

≤ E
{
κT (aRL) + V T−1

H (Δ(T − 1))
}

.

The proposition holds for m = T .

Assume the proposition holds for m < T i.e.:

V T
H (Δ(T )) ≤ E

{
κT (aRL(T )) + V T−1

H (Δ(T − 1))
}

· · ·
≤ E{κT (aRL(T )) + κT−1(aRL(T − 1))

+ · · · + κm(aRL(m)) + V m−1
H (Δ(m − 1))}.

It follows from (23) that

aRL(m − 1) = arg max
a∈A

E
{
κm−1(a) + V m−2

H (Δ(m − 2))
}

.

We then have

V m−1
H (Δ(m − 1)) = E

{
κm−1(aH) + V m−2

H (Δ(m − 2))
}

≤ E
{
κm−1(aRL(m − 1)) + V m−2

H (Δ(m − 2))
}

Consequently, it holds that

V T
H (Δ(T )) ≤ E

{
κT (aRL(T )) + V T−1

H (Δ(T − 1))
}

· · ·
≤ E{κT (aRL(T )) + κT−1(aRL(T − 1))

+ · · · + κm(aRL(m)) + V m−1
H (Δ(m − 1))}

≤ E{κT (aRL(T )) + κT−1(aRL(T − 1))

+ · · · + κm(aRL(m)) + κm−1(aRL(m − 1))

+V m−2
H (Δ(m − 2))}

Therefore, the proposition holds for m− 1. We thus complete

the proof.

We now investigate the implementation of the proposed

rollout policy. To that end, define the Q-factor Qm(a) as

the expected reward that the SU can obtain from the current

control epoch to the end of the time horizon, i.e.,

Qm(a) � E
{
κm(a) + V m−1

H (Δ(m − 1))
}

. (25)



TABLE I
SIMULATION CONFIGURATION

Parameter Setting

Total number of channels N 20
Number of sensing channels L 5
Bandwidth per channel BW 10 MHz
Aggregation range Γ 80 MHz
Bandwidth requirement Υ 60 MHz
Duration of time slot Tp 2 ms

The rollout policy can be expressed as aRL(m) =
arg max

a∈A
Qm(a). Since the Q-factor may not be known in

closed form, the rollout action aRL(m) cannot be calculated

directly.

To overcome this difficulty, we adopt a widely applied

approach to compute the rollout action, the Monte Carlo

method [15]. Specifically, we define the trajectory as a se-

quence of the form

({S(T ), a(T )}, {S(T − 1), a(T − 1)}, · · · , {S(1), a(1)}) .
(26)

To implement the Monte Carlo approach, we consider all

possible actions a ∈ A and generate a number of trajectories

of the system starting from the belief vector Δ(m), using a as

the first action and the base policy πH thereafter. Under this

setting, a trajectory has the following form:({S(m), a}, {S(m − 1), aH(m − 1)}, · · · , {S(1), aH(1)})
(27)

where the system states S(m),S(m − 1), · · · ,S(1) are ran-

domly sampled according to the belief vectors which are

updated based on the past actions and observations:

Δ(i − 1) =
{

Ω(Δ|aH(i), θ) i = m − 1,m − 2, · · · , 1
Ω(Δ|a, θ) i = m

(28)

The rewards corresponding to these trajectories are then

averaged to compute Q̃m(a) as an approximation of the

Q-factor Qm(a). The approximation becomes increasingly

accurate as the number of simulated trajectories increases.

Once the approximate Q-factor Q̃m(a) corresponding to each

action a ∈ A is computed, we obtain the approximate rollout

action ãRL(m) by the following means:

ãRL(m) = arg max
a∈A

Q̃m(a) (29)

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

rollout-based spectrum sensing and access scheme by simula-

tion. The effects of both the number of Monte Carlo random

trajectories and the proportion of sensing channels L/N are

investigated. The primary network traffic statistics follows the

model of Erlang-distribution [9]. The settings of parameters

in the simulation are listed in Table I. For each policy, we

run 100 simulations with random channel states to obtain the

average performance, i.e. average times of channel switch per

slot.

Fig. 3 traces the value of approximate Q-factor Q̃m(a)
with different number of Monte Carlo random trajectories.
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Fig. 4. Performance comparison

Three curves represent different rollout actions a1, a2, a3 ∈ A
chosen in the current control epoch. It is shown that, for all

the three actions, the fluctuation range of Q̃m(a) decreases

with the increase of the number of random trajectories. When

the number of trajectories exceeds 1500, the approximate

value converges, which approaches the original value of Q-

factor. In the rest of simulation results, we adopt 1500 random

trajectories for approximation, which achieves the convergent

performance.

Fig. 4 illustrates the effect of the proportion of sensing chan-

nels L/N on the performance of the rollout-based policy. The

rollout policies based on both BOH and SOH are evaluated.

The random scheme is adopted as a baseline for performance

comparison, in which M channels are chosen randomly to

access.

In Fig. 4, it is observed that the average times of channel

switch using BOH, SOH, BOH-based and SOH-based roll-

out schemes reduces as the number of sensing channels L
increases. This is because the more channels the SU senses,

the more accurate information about the system state can be

obtained. The access action determined on the basis of sensing

results has better performance in minimizing the expected

times of channel switches. On the contrary, for the random

access scheme, which determines the access channels without

considering the sensing results, the performance does not

change with the increase of L. When L is small, which means

that very limited spectrum can be sensed, the performances of

all the five schemes are almost the same, for the reason that L
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Fig. 5. Performance comparison with the optimal scheme.
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Fig. 6. Performance improvement with the increase of the number of random
trajectories.

is the main limiting factor of the system performance for the

moment. With larger L, the rollout-based spectrum sensing

and access schemes achieve much better performance than

the basis heuristics and the random scheme. Especially, the

suboptimal scheme based on the SOH algorithm outperforms

that based on BOH, which implies that the choice of the

base policy has non-neglectable effects to the performance of

the corresponding rollout policy. When the heuristic scheme

performs good, the corresponding rollout policy based on it

achieves relatively better performance.

For the performance comparison with the optimal scheme,

due to the unacceptable computational complexity of the exact

optimal policy, we adopt a new simulation setting in which

N = 10 independent channels are considered, the maximum

span of the aggregation region Γ is set to 40MHz, and the

bandwidth requirement Υ = 20MHz.

Fig. 5 compares the performance of the proposed rollout-

based policy with the optimal one. We can observe from the

result that both the optimal and rollout-based policies achieve

significant performance gain compared with the random selec-

tion policy with the optimal policy slightly outperforming the

rollout-based policy.

Fig. 6 evaluates the performance of the rollout-based policy

with different number of random trajectories when L = 3.

The performance of the rollout-based policy becomes closer

and closer to the optimal one until the number of random

trajectories converge. When more than 1500 trajectories are

considered, the performance gain is not significant. It can be

also observed that the rollout-based policy with SOH as base

heuristic performs better than that with BOH.

V. CONCLUSION

In this paper, we have studied the problem of joint spectrum

sensing and access under the hardware limitations of both

sensing capability and spectrum aggregation. Motivated by

the analysis that the optimal policy is PSPACE-hard. We

have developed a rollout-based policy in which two heuristic

policies are proposed to serve as base policies, based on

which the developed rollout-based policy approximates the

value function and calculates the appropriate spectrum sensing

and access actions. We have established mathematically that

the rollout-based policy achieves better performance than the

base policies. We have also demonstrated that the rollout-

based policy leads to order of magnitude gain in terms of

computation complexity compared with the optimal policy at

the price of only slight performance loss.
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