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Abstract—We revisit the opportunistic scheduling problem
where a server opportunistically serves multiple classes of users
under time varying multi-state Markovian channels. The aim of
the server is to find an optimal policy minimizing the average
waiting cost of users. Mathematically, the problem can be cast to
a restless bandit one, and a pivot to solve restless bandit by index
policy is to establish indexability. Despite the theoretical and
practical importance of the index policy, the indexability is still
open for the opportunistic scheduling in the heterogeneous multi-
state channel case. To fill this gap, we mathematically propose
a set of sufficient conditions on channel state transition matrix
under which the indexability is guaranteed, and consequently, the
index policy is feasible. We further develop a simplified procedure
to compute the index by reducing the complexity from more than
quadratic to linear. Our work consists of a small step toward
solving the opportunistic scheduling problem in its generic form
involving multi-state Markovian channels and multi-class users.

Index Terms—Restless bandit; indexability; stochastic schedul-
ing; performance evaluation

I. INTRODUCTION

We revisit the following opportunistic scheduling problem
involving a base station, also referred to as server, and different
classes of users with heterogeneous demands. The system
operates on time varying multi-state Markovian channels.
Each channel at different states and different classes has
different transmission rate, i.e., the evolution of channels is
Markovian and class-dependent. For users connected to (or
entered) the system but not served immediately, their waiting
costs increase with time. In such opportunistic scheduling
scenario, a central problem is how to exploit the server’s
capacity to serve the users. This problem can be formalized to
the problem of designing an optimum opportunistic scheduling
policy minimizing the average waiting cost.

The above opportunistic scheduling problem is fundamental
in many classical and emerging wireless communication
systems such as mobile cellular systems including 4G LTE
and the emerging 5G, heterogeneous networks (HetNet). A
central problem is to design efficient schedulers exploiting
the capacity of the base station to serve heterogeneous users
opportunistically.

A. State of the art
Due to its fundamental importance, the opportunistic

scheduling problem has attracted a large body of research

on channel-aware schedulers addressing one or more system
performance metrics in terms of throughput, fairness, and
stability [1–16, 18–20, 24–26].

The seminal work in [19] showed that the system capac-
ity can be improved by opportunistically serving users with
maximal transmission rate. Such schedulers are called cµ-rule
or MaxRate scheduler. In fact, the MaxRate scheduler was
myopically throughput optimal, i.e., maximizing the current
slot transmission rate but ignoring the impact of the current
scheduling on the future throughput, and consequently, was
shown to perform bad in system stability from the long-term
viewpoint. For instance, the number of waiting users in the
system explodes with the increase of system load. Meanwhile,
the MaxRate scheduler does not fairly schedule those users
with lower transmission rate.

To balance system throughput and fairness, the Proportion-
ally Fair (PF) scheduler was proposed and implemented in
CDMA 1xEV-DO system of 3G cellular networks [7]. Techni-
cally, the PF scheduler maximizes the logarithmic throughput
of the system rather than traditional throughput, and as a result,
provides better fairness [20]. In [10], the authors approximated
the PF by the relatively best (RB) scheduler, and analyzed
flow-level stability of the PF scheduler. Actually, the RB
scheduler gives priority to users according to their ratio of
the current transmission rate to the mean transmission rate.
Naturally, it is fair to users by taking future evolution into
account. Consequently, it can provide a minimal throughput to
the users with low accessible transmission rates, at the price
of being not maximally stable at flow-level [1].

Other schedulers, e.g., scored based (SB) [8], proportionally
best (PB), and potentially improvement (PI), belong to the
family of the best-condition schedulers. These schedulers give
priority to users according to their respective evaluated channel
condition, and accordingly, do not have a direct association
with transmission rate. They are not myopically throughput-
optimal, but rather have a good performance in the long-term.
They are maximally stable [6, 18], but they do not consider
fairness.

The above schedulers all assume independent and iden-
tically distributed channels. For the more challenging sce-
nario with Markovian channels, there exist some works on
homogeneous channels [3–5] and heterogeneous channels
[13, 14]. Under the Markovian channel model, the oppor-



tunistic scheduling problem can be mathematically cast to a
restless multiarmed bandit (RMAB) [27]. The RMAB is of
fundamental importance in stochastic decision theory due to
its generic nature, and has application in numerous engineering
problems. The central problem in investigating and solving an
instance of RMAB is to establish its indexability. Once the
indexability is established, an index policy can be constructed
by assigning an index for each state of each arm to measure
the reward of activating the arm at that state. The policy
thus consists of simply activating those arms with the largest
indices.

In the context of opportunistic scheduling which is the
topic of our study, the authors [5] considered a flow-level
scheduling problem with time-homogeneous channel state
transition where the probability of being in a state is fixed
for any time slot no matter how long the system evolves.
For the same channel model, the authors [3] considered the
opportunistic scheduling problem under the assumption of
traffic size following the Pascal distribution. In [3–5], the
indexability was first proved, and then the similar closed
form Whittle index was obtained [27]. For heterogeneous
channels, the authors of [13, 14] considered a generic flow-
level scheduling problem with heterogeneous channel state
transition, but carried out their work based on a conjecture that
the problem is indexable. As a result, they can only verify the
indexability of the proposed policy for very specific scenarios
by numerical test before computing the policy index. The
indexability of the opportunistic scheduling for the heteroge-
neous multi-state Markovian channels, despite its theoretical
and practical importance, is still open today.

B. Main Results and Contributions

To bridge the above theoretical gap, we investigate the
indexability of the heterogeneous channel case formulated
in [13, 14], and mathematically construct a set of sufficient
conditions on channel state transition matrix under which
the indexability is guaranteed and consequently the index
policy is feasible. Our work thus consists of a small step
towards solving the opportunistic scheduling problem in its
generic form involving multi-state Markovian channels. As a
desirable feature, the indexability conditions established in this
work only depend on channel state transition matrix without
imposing constraints on other user-dependent parameters such
as service rate and waiting cost.

Notation: Throughout the paper, boldface lower and upper
case letters represent column vectors and matrices, respec-
tively. (·)T represents the transpose of a matrix or a vector.
(·)−1 represents the inverse of a matrix. ei denotes an N -
dimensional column vector with 1 in the i-th element and 0
in others. EN denotes the N ×N identity matrix. 1N denotes
an N -dimensional column vector with 1 in all elements.
0N denotes an N -dimensional column vector with 0 in all
elements. 1k

N denotes the N -dimensional column vector with
1 in the first k elements and 0 in the remaining N−k elements.

II. SYSTEM MODEL

As mentioned in the induction, we consider a wireless com-
munication system where a server schedules jobs of hetero-
geneous users. The system operates in a time-slotted fashion
where τ denotes the slot duration and t ∈ T := {0, 1, · · · }
denote the slot index.

A. Job, channel, and user models

Suppose that there are K classes of users, k ∈ K :=
{1, 2, · · · ,K}. Each user of class k is uniquely associated
with a job of class k which he requests from the server, and
with a dedicated wireless channel of class k through which
the transmission is done.

User arrivals. For each class k ∈ K, the number of arriving
users in class k during the time slot t ∈ T , denoted as
Ak(t), forms an i.i.d. arrival process {Ak(t)}t∈T with generic
element Ak and mean ξk := E0{Ak} < 1, where E0[·] denotes
the expectation conditioned on information available at time
epoch 0. The arrivals are assumed to be mutually independent
across user classes.

Job sizes. The job (or flow) size bk of class k users in bits
is geometrically distributed with mean E{bk} < 1 for class
k ∈ K.

Channel condition. For each user, the channel condition
varies from slot to slot, independently of all other users. For
each class k user, the set of discretized channel conditions is
denoted by the finite set N ′

k := {1, 2, · · · , Nk}. The channel
conditions typically correspond to modulation and coding
schemes (MCSs) of the user’s transmission technology. The
probability that the channel condition of a class k user in
n ∈ N ′

k is denoted by qk,n > 0, where
∑

n∈N ′
k
qk,n = 1.

Channel condition evolution. We assume that at each slot,
the channel condition of each user in the system evolves
according to a class-dependent Markov chain. Thus, for each
user of class k ∈ K, we can define a Markov chain with
state space N ′

k. We further define qk,n,m := P(Zk(t + 1) =
m|Zk(t) = n), where Zk(t) denotes the channel condition of a
class k user at time t. The class k channel condition transition
probability matrix is thus defined as:

Q(k) :=

⎡

⎢⎢⎢⎣

qk,1,1 qk,1,2 · · · qk,1,Nk

qk,2,1 qk,2,2 · · · qk,2,Nk

...
...

. . .
...

qk,Nk,1 qk,Nk,2 · · · qk,Nk,Nk

⎤

⎥⎥⎥⎦
,

where
∑

m∈N ′
k
qk,n,m = 1 for every n ∈ N ′

k.
Transmission rates. When a class k user is in channel

condition n ∈ N ′
k, he can receive data at transmission rate

sk,n, i.e., his job is served at rate sk,n. We assume that
the higher the label of the channel condition, the higher the
transmission rate, i.e., 0 ! sk,1 < sk,2 < · · · < sk,Nk .

Waiting costs. For every user of class k, the system operator
accrues waiting cost ck (ck > 0) at the end of every slot if
her job is uncompleted.



B. Server model

The server is assumed to have full knowledge of the
system parameters. We investigate the case where the server
can serve one user each slot. However, our analysis can be
straightforwardly generalized to the case where multiple users
can be served each slot. At the beginning of every slot, the
server observes the actual channel conditions of all users in
the system, and decides which user to serve during the slot.
We assume that the server is preemptive, i.e, at any time it can
interrupt the service of a user whose job is not yet completed.
The server is also allowed to stay idle, and note that it is
not work-conserving because of the time varying transmission
rate. We denote by µk,n the departure probability that the job is
completed within the current time slot when the server serves
a class k user in channel condition n ∈ N ′

k. Note that the
departure probabilities are increasing in the channel condition,
i.e., 0 ! µk,1 < · · · < µk,Nk ! 1, because the transmission
rates satisfy 0 ! sk,1 < sk,2 < · · · < sk,Nk .

C. Opportunistic scheduling problem

In the opportunistic scheduling model formulated here, a
central problem is how to exploit the server’s capacity to
serve users. This problem can be formalized to the problem
of designing an optimum opportunistic scheduling policy
minimizing the average waiting cost.

III. RESTLESS BANDIT FORMULATION AND ANALYSIS

In this section we analyze the scheduling policy by casting
it to a RMAB problem. For the ease of analysis, we investigate
the discounted waiting costs by introducing a discount factor
0 ! β < 1. The time-average case is a special case where
β → 1 basically.

A. Job-channel-user bandit

We denote by Ak := {0, 1} the action space of user k where
action 1 means serving the user and 0 not serving him.

Every job-channel-user couple of class k is characterized
by the tuple

(
Nk, (Wa

k)a∈A, (Ra
k)a∈A, (Pa

k)a∈A
)
, where

(1) Nk := {0} ∪ N ′
k is the user state space, where state 0

indicates that the job is completed, and state n ∈ N ′
k

indicates that the current channel condition is n and the
job is uncompleted;

(2) Wa
k := (W a

k,n)n∈Nk , where W a
k,n is the expected one-

slot capacity consumption, or work required by a user at
state n if action a is chosen. Specifically, for every state
n ∈ Nk, W 1

k,n = 1 and W 0
k,n = 0;

(3) Ra
k := (Ra

k,n)n∈Nk , where Ra
k,n is the expected one-slot

reward earned by a user at state n if action a is selected.
Specifically, for every state n ∈ N ′

k, it is the negative of
the expected waiting cost, Ra

k,0 = 0, R1
k,n = −µ̄k,nck

where µ̄k,n = 1− µk,n, and R0
k,n = −ck.

(4) Pa
k := (pak,n,m)n,m∈Nk , where pak,n,m is the probability

for a user evolving from state n to state m if action a is

selected. The one-slot transition probability matrices for
action 0 and 1 are as below:

P0
k =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 qk,1,1 · · · qk,1,Nk

0 qk,2,1 · · · qk,2,Nk

...
...

. . .
...

0 qk,Nk,1 · · · qk,Nk,Nk

⎤

⎥⎥⎥⎥⎥⎦
,

P1
k =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
µk,1 µ̄k,1qk,1,1 · · · µ̄k,1qk,1,Nk

µk,2 µ̄k,2qk,2,1 · · · µ̄k,2qk,2,Nk

...
...

. . .
...

µk,Nk µ̄k,Nkqk,Nk,1 · · · µ̄k,Nkqk,Nk,Nk

⎤

⎥⎥⎥⎥⎥⎦
.

The dynamics of user j of class k are captured by the state
process Xk(·) and the action process aj(·), which correspond
to state Xj(t) ∈ Nk and action aj(t) ∈ Ak at any slot t.

B. Restless bandit formulation and opportunistic scheduling

Let Πt
X,a denote the set of all the policies composed of

actions a(0), a(1) · · · , a(t), where a(t) is determined by the
state history X(0), X(1), · · · , X(t) and the action history
a(0), a(1) · · · , a(t− 1), i.e.,

Πt
X,a : =

{
a(i)

∣∣∣a(i) = φ
(
X0:i, a0:i−1

)
, i = 0, 1 · · · , t

}

(e)
=

{
a(i)

∣∣∣a(i) = φ
(
X(i)

)
, i = 0, 1 · · · , t

}
,

where, φ is a mapping φ : (X0:i, a0:i−1) → a(i), X0:i :=
(X(0), · · · , X(i)) and a0:i−1 := (a(0), · · · , a(i− 1)), and (e)
is due to the Markovian feature.

Let Πt
X,a denote the space of randomized and non-

anticipative policies depending on the joint state-process X :=
(Xk(·))k∈K and the joint action-process a(·) := (ak(·))k∈K,
i.e., Πt

X,a =
⋃

k∈K Πt
Xk,ak

is the joint policy space.
Let Eπ

τ denote the expectation over the future states X(·)
and the action process a(·), conditioned on past states X(0),
X(1), · · · , X(τ) and the policy π ∈ Πτ

X,a.
Consider any expected one-slot quantity Qa(t)

X(t) that depends
on state X(t) and action a(t) at any time slot t. For any policy
π ∈ Π∞

X,a and any discount factor 0 ! β < 1, we define the
infinite horizon average quantity as

Bπ
0

{
Qa(·)

X(·),β,∞
}
:= lim

T→∞

∑T−1
t=0 βtEπ

t

{
Qa(t)

X(t)

}

∑T−1
t=0 βt

. (1)

In the following we consider the discount factor β to be
fixed and the horizon to be infinite, therefore we omit them
in Bπ

0

{
Qa(·)

X(·),β,∞
}

and write briefly Bπ
0

{
Qa(·)

X(·)

}
.

We are now ready to formulate the opportunistic scheduling
problem faced by the server as below.

Problem 1 (Optimum Opportunistic Scheduling). For any
discount factor β, the optimum opportunistic scheduling prob-
lem is to find a joint policy π = (π1, · · · ,πK) ∈ Π∞

X,a



maximizing the total discounted reward (i.e., minimizing the
total discounted cost), mathematically defined as below.

(P): max
π∈ΠX,a

Bπ
0

{
∑

k∈K
Rak(·)

k,Xk(·)

}
(2)

s.t.
∑

k∈K
ak(t) = 1, t = 0, 1, · · · . (3)

By relaxing constraint (3) and using Lagrange method [27],
we have the following subproblem for each class k ∈ K:

(SP): max
πk∈ΠXk,ak

Bπk
0

{
Rak(·)

k,Xk(·) − νW ak(·)
k,Xk(·)

}
. (4)

Hence, our goal is to find the optimal policies π∗
k for the

subproblem (SP) k ∈ K, and then construct a feasible joint
policy π = (π∗

1 , · · · ,π∗
K) for the problem (P). In the following,

we thus focus on the subproblem (SP) and drop the subscript
k.

IV. INDEXABILITY ANALYSIS

In this section, we first make a special assumption about
the channel state transition matrix, based on which we obtain
the threshold structure of optimal scheduling strategy. We
then establish the indexability of the optimum opportunistic
scheduling problem under the posed assumption.

A. Transition Matrices and Threshold Structure
Definition 1 ([22]). Let Π(N) := {(x1, · · · , xN ) :

∑N
i=1 xi =

1, x1, · · · , xN " 0}. For x1, x2 ∈ Π(N), then x1 first–
order stochastically dominates x2, denoted as x1"sx2, if the
following exists for j = 1, 2, · · · , N ,

N∑

i=j

x1i "
N∑

i=j

x2i.

Assumption 1. The channel transition matrix1 Q can be
written as

Q = O0 + ϵ1O1 + ϵ2O2 + · · ·+ ϵ2N−2O2N−2,

where q := [q1, q2, · · · , qN ]T, Oj is defined in (5) (see the top
of the next page), ϵj and λ are negative real numbers satisfying
the following inequalities:

1) ϵj ! 0 for all j (1 ! j ! 2N − 2),
2) λ ! ϵj + ϵ2N−1−j for all j (1 ! j ! N ).

Basically, the assumption implies that
1) Any two adjacent rows (i.e., Qi,Qi+1) of matrix Q differ

in only two adjacent positions (i.e, i, i+ 1).
2) The first row vector of Q first-order stochastically domi-

nates the second row, the second one dominates the third
one, and so on, i.e., Q1"sQ2"s · · ·"sQN .

Assumption 1 leads to the following lemma on the threshold
structure of optimum scheduling policy.

Lemma 1 (Threshold structure). Under Assumption 1, for
every real-valued ν, there exists n ∈ N ∪ {−1} such that

1Note that we drop the subscript class index k for conciseness.

the optimum scheduling policy only schedules transmission in
channel states δN−n := {m ∈ N : m > n}.

Proof. Please see the technical report on arxiv.

B. Indexability Proof
To circumvent the long proof of indexability of Whittle

index, we establish the indexability result by checking the LP-
indexability condition [21].

For πk ∈ Ππk,ak , we introduce the concept of serving set,
δ (δ ⊆ Nk), such that the user is served if n ∈ δ and not
served if n /∈ δ. By slightly introducing ambiguity, δ can also
be regarded as a policy of serving the set δ.

Thus, the subproblem (4) can be transformed to

max
δ∈Nk

Bδ
0

{
Rak(·)

k,Xk(·) − νW ak(·)
k,Xk(·)

}
. (6)

For further analysis, we define

Rδ
n :=

Bδ
0

{
Rak(·)

k,Xk(·)

}

1− β
, Wδ

n :=
Bδ
0

{
W ak(·)

k,Xk(·)

}

1− β
. (7)

By Lemma 1, if there exists price νn for n ∈ N ′ such that
both transmitting and not transmitting are optimal for ν = νn,
then there exists a set, δ∗, such that both including state n in
δ∗ and not including state n lead to the same reward, i.e.,

Rδ∗∪{n}
n − νnWδ∗∪{n}

n = Rδ∗\{n}
n − νnWδ∗\{n}

n . (8)

A straightforward consequence is that changing the action
only in the initial period must also lead to the same reward,
i.e.,

R⟨0,δ∗⟩
n − νnW⟨0,δ∗⟩

n = R⟨1,δ∗⟩
n − νnW⟨1,δ∗⟩

n , (9)

where ⟨a, δ∗⟩ is the policy that employs action a in the initial
period and then proceeds according to δ∗.

Then, if W⟨1,δ∗⟩
n −W⟨0,δ∗⟩

n ̸= 0, we have

νn =
R⟨1,δ∗⟩

n − R⟨0,δ∗⟩
n

W⟨1,δ∗⟩
n −W⟨0,δ∗⟩

n

. (10)

We further define

νδn :=
R⟨1,δ⟩

n − R⟨0,δ⟩
n

W⟨1,δ⟩
n −W⟨0,δ⟩

n

. (11)

Definition 2 ([21]). Problem (4) is LP-indexable with price

νn = νδN−n
n =

R⟨1,δN−n⟩
n − R⟨0,δN−n⟩

n

W⟨1,δN−n⟩
n −W⟨0,δN−n⟩

n

, (12)

if the following conditions hold:
(1) ∀ n ∈ N , W⟨1,∅⟩

n −W⟨0,∅⟩
n > 0, W⟨1,N ⟩

n −W⟨0,N ⟩
n > 0 ;

(2) ∀ n ∈ N \ {N}, W⟨1,δN−n⟩
n − W⟨0,δN−n⟩

n > 0 and
W⟨1,δN−n⟩

n+1 −W⟨0,δN−n⟩
n+1 > 0 ;

(3) For each real value ν there exists n ∈ N ∪ {−1} such
that the serving set δN−n is optimal.

In order to check the LP-indexability, we first characterize
the four quantities in (12) under δN−n for any n.



Oj :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q
(
1N

)T
+ λEN , if j = 0,

[0N , · · · ,0N︸ ︷︷ ︸
N−j−1

,−1N−j
N ,1N−j

N ,0N , · · · ,0N︸ ︷︷ ︸
j−1

], if 1 ! j ! N − 1,

[0N , · · · ,0N︸ ︷︷ ︸
j−N

,1N − 1j−N+1
N ,1j−N+1

N − 1N ,0N , · · · ,0N︸ ︷︷ ︸
2N−2−j

], if N ! j ! 2N − 2.

(5)

Based on balance equations, when n is not chosen in the
initial slot, we have the following in the matrix form

(EN − βM0) · r0 = c0, (13)

where,

M0 = [QT
1 , · · · ,QT

n, QT
n+1µ̄n+1, · · · ,QT

N µ̄N ]T,

c0 = [−c, · · · ,−c, − c, − cµ̄n+1, · · · ,−cµ̄N ]T,

r0 = [R⟨0,δN−n⟩
1 , · · · ,R⟨0,δN−n⟩

n ,R⟨1,δN−n⟩
n+1 , · · · ,R⟨1,δN−n⟩

N ]T.

Similarly, when n is chosen in the initial slot, we have the
following

(EN − βM1) · r1 = c1, (14)

where,

M1 = [QT
1 , · · · ,QT

n−1,Q
T
nµ̄n, · · · ,QT

N µ̄N ]T,

c1 = [−c, · · · ,−c, − cµ̄n,−cµ̄n+1, · · · ,−cµ̄N ]T,

r1 = [R⟨0,δN−n⟩
1 , · · · ,R⟨0,δN−n⟩

n−1 ,R⟨1,δN−n⟩
n , · · · ,R⟨1,δN−n⟩

N ]T.

Thus, from (17) and (18), we can obtain

R⟨0,δN−n⟩
n = eTn(EN − βM0

)−1
c0, (15)

R⟨1,δN−n⟩
n = eTn

(
EN − βM1

)−1
c1. (16)

Similarly, replacing c0 and c1 by 1N −1n
N and 1N −1n−1

N
from (13) and (14), respectively, we have

(EN − βM0) ·w0 = 1N − 1n
N , (17)

(EN − βM1) ·w1 = 1N − 1n−1
N , (18)

where,

w0 = [W⟨0,δN−n⟩
1 , · · · ,W⟨0,δN−n⟩

n ,W⟨1,δN−n⟩
n+1 , · · · ,W⟨1,δN−n⟩

N ]T,

w1 = [W⟨0,δN−n⟩
1 , · · · ,W⟨0,δN−n⟩

n−1 ,W⟨1,δN−n⟩
n , · · · ,W⟨1,δN−n⟩

N ]T.

Further,

W⟨0,δN−n⟩
n = eTn(EN − βM0

)−1
(1N − 1n

N ), (19)

W⟨1,δN−n⟩
n = eTn

(
EN − βM1

)−1
(1N − 1n−1

N ). (20)

After obtaining the four critical quantities, we now check
the LP-indexability condition.

Lemma 2. Under Assumption 1, for any n ∈ N \ {N}, we
have
(1) W⟨1,δN−n⟩

n > W⟨0,δN−n⟩
n ,

(2) W⟨1,δN−n⟩
n+1 > W⟨0,δN−n⟩

n+1 .

Proof. Please see the technical report on arxiv..

Lemma 3. Under Assumption 1, Problem (4) is LP-indexable
with price νn in (12).

Proof. According to Definition 2, we prove the indexability
by checking the three conditions.
(1) Obviously, W⟨0,∅⟩

n = 0, W⟨1,∅⟩
n " 1, and W⟨1,N ⟩

n = 1
1−β .

For any δ, Wδ
n ! 1

1−β , and further W⟨0,N ⟩
n < 1

1−β .
(2) The second condition is proved in Lemma 2.
(3) The third condition is proved in Lemma 1.

Therefore, the LP-indexability is proved.

Following Lemma 3, the following theorem states our main
result on the indexability of Problem (4).

Theorem 1 (indexability). Under Assumption 1, we have
(1) if ν ! νn, then it is optimal to serve the user in state n

(n ∈ N ′);
(2) if ν " νn, then it is optimal not to serve the user in state

n (n ∈ N ′)

Taking into account the time complexity O(N2.4) of com-
puting matrix determinant [17], the time complexity to calcu-
late νn is O(N2.4) according to (12). In the following section,
we present a procedure to compute the index νn, based on the
structure of transition matrix Q, with complexity O(N).

V. SCHEDULING POLICY

After obtaining the index for each subproblem, we can
construct the joint scheduling policy for the original problem.
The optimum scheduling policy is to serve the user in k∗(t)
with the highest actual price, i.e.,

k∗(t) :=
{

argmaxk∈K
[
νk,Xk(t)

]
, if νk,Xk(t) <∞

argmaxk∈K
[
limβ→1(1− β)νk,Xk(t)

]
, if νk,Xk(t) →∞.

(21)

Actually, νk,Xk(t) < ∞ always holds if 0 ! β < 1. It
happens νk,Xk(t) → ∞ only when β = 1 and Xk(t) = Nk,
corresponding to the average case. Therefore, the second item,
ckµk, of Laurent expansion of νk,Xk(t) would be taken as
the index in the case of β = 1. In particular, the marginal
productivity index (MPI) is proposed in Algorithm 1.

The MPI scheduler always serves user currently with the
best condition, and is one of the best-condition schedulers,
which has stability property in Markovian setting shown in
[18].



Algorithm 1 MPI scheduler
1: for t ∈ T
2: C ← number of system users in Nk (k ∈ K)
3: if C " 1 then
4: Serve one user in Nk with max{ckµk} (k ∈ K)
5: (breaking ties randomly)
6: else
7: Serve the user k∗(t) with highest index value
8: (breaking ties randomly)
9: end if

10: end for

Theorem 2. The MPI scheduler with one server is maximally
stable under arbitrary arrivals.

VI. NUMERICAL SIMULATION

In this section, we compare the proposed MPI scheduler
with the following policies

• the cµ rule, νcµk,n = ckµk,n,
• the RB rule, ν RB

k,n = ckµk,n∑Nk
m=1 qSS

k,mµk,m

,

• the PB rule, ν PB
k,n = ckµk,n

µk,Nk
,

• the SB rule, ν SB
k,n = ck

∑Nk

m=1 q
SS
k,m,

where qSS
k,m is the stationary probability of state m of an user

of class k.
Specifically, we only consider the case with at most one

user served at each time slot. If there are more than one user
having the highest index value, we uniformly choose one of
them. Also, we only consider two classes of users for a clear
comparison in the performance difference of policies.

We let τ = 1.67 msec for each slot for practical application
[23]. The arrival probability for one new user of class k
is characterized by ξk = ρkµk,Nk . For comparison, we
consider transmission rate sk,n adopted in [23], and job size
E0[bk] = 0.5Mb for HTML, E0[bk] = 5Mb for PDF, and
E0[bk] = 50Mb for MP3 . In this case, the departure probabil-
ity is determined by µk,n = τsk,n/E0[bk]. For simplicity, we
assume ρ1 = ρ2, and the system load ρ = ρ1+ρ2 is considered
to vary from 0.3 to 1 for better presentation. The initial channel
condition of a new user at the moment of entering system is
assumed to be determined by the stationary probability vector,
i.e., with probability qSS

k,m in state m for a new user of class
k. The parameter setting for the following scenarios is stated
in Table I.

In this case, the users are divided into two different classes
in which each user requires a job of expected size of 0.5Mb
and has the same waiting cost c1 = c2 = 1. The channel state
transition matrix is same, shown in Table I. Meanwhile, the
second class of users has a better transmission rate than the
first class. Our goal is to minimize the time-average number
of user waiting for service in the system.

Under this setting, the two policies (SB and MPI) can be
shown to bring about the same scheduling rule. Thus, Figure
1 shows that the time-average waiting cost varies with system
load ρ for four policies, and the average number of users in
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Fig. 1. Scenario 1 [U]: Time average waiting cost as a function of ρ; [D]:
Average number of users in the system as a function of time.

system varies with time slots . Obviously, we observe that the
behaviour of all policies is quite similar except RB. Figure 1
clearly shows that MPI, PB and cµ perform better than RB
since the average increase of users is 3.6 users per second for
MPI, PB and cµ while 6.5 users per second for RB. The RB
policy performs well at low loads but clearly has problems
with stability since the policy appears to become unstable
close to 0.85 at which point the time-average waiting cost
begins rising very steeply. This indicates that the policy is not
correctly balancing the utilization of both size information and
rate information.

VII. CONCLUSION

In this paper, we have investigated the opportunistic
scheduling problem involving multi-class multi-state time-
varying Markovian channels. Generally, the problem can be
formulated as a restless bandit problem. To the best of our
knowledge, the existing work only established index policy
for two-state channel process, and derived some limited results
on multi-state time-varying channels under an assumption of
indexability as a prerequisite. To fill this gap, for the class
of state transition matrices characterized by our proposed
sufficient condition, we have proved the indexability of the
index policy. Simulation results show that the proposed index
policy is effective in scheduling multiple class multi-state
channels.



TABLE I
PARAMETERS ADOPTED IN SIMULATION.

No. sk,n (Mb/s) (c1, c2) Channel Transition Matrices Job Size (Mb)

1 8.4 16.8 25.2
26.88 44.688 80.64 (1, 1)

⎛

⎝
0.00 0.80 0.20
0.30 0.50 0.20
0.30 0.60 0.10

⎞

⎠ ,

⎛

⎝
0.00 0.80 0.20
0.30 0.50 0.20
0.30 0.60 0.10

⎞

⎠ 0.5, 0.5
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