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Abstract—We develop a distributed market framework to price
the offloading service, and conduct a detailed analysis of the
incentives for offloading service providers and conflicts arising
from the interactions of different participators. Specifically,
we formulate a multi-leader multi-follower Stackelberg game
(MLMF-SG) to model the interactions between the offloading
service providers and the offloading service consumers in the
considered market framework, and investigate the cases where
the offloading capacity of APs is unlimited and limited, re-
spectively. For the case without capacity limit, we decompose
the followers’ game of the MLMF-SG (FG-MLMF-SG) into a
number of simple follower games (FGs), and prove the existence
and uniqueness of the equilibrium of the FGs from which the
existence and uniqueness of the FG-MLMF-SG also follows. For
the leaders’ game of the MLMF-SG, we also prove the existence
and uniqueness of the equilibrium. For the case with capacity
limit, by considering a symmetric strategy profile, we establish the
existence and uniqueness of the equilibrium of the corresponding
MLMF-SG, and present a distributed algorithm that allows the
leaders to achieve the equilibrium. Finally, extensive numerical
experiments demonstrate that the Stackelberg equilibrium is very
close to the corresponding social optimum for both considered
cases.

I. INTRODUCTION

The data traffic in cellular networks has seen a tremendous
growth over the past few years due to the explosion of
mobile devices, e.g. smart phones, tablets, laptops etc. The
increasing data traffic in cellular networks suggests that traffic
from cellular networks should be offloaded so as to alleviate
traffic congestion and improve user satisfaction. Thus, mobile
data offloading emerged as a promising approach to utilize
certain complementary transmission technologies to deliver
data traffic originally transmitted over cellular networks to the
users. Recently, a large number of studies have investigated
the potential benefits of mobile data offloading and various
innovative schemes have been proposed to better manage
data traffic including WiFi [1]–[4], femtocells [5]–[9], and
opportunistic offloading [10], [11]. In fact, these studies have
shown that data offloading is a cost-effective and energy-
prudent approach to resolve network congestion and improve
network capacity.

However, the merit of mobile data offloading does not
always guarantee that offloading is adopted by the offloading
service providers (OSPs) and offloading service consumers
(OSCs), i.e., mobile data flows, in practice. One of the most
important reasons for not adopting mobile data offloading is

the lack of economic incentives, i.e., OSPs may be reluctant
to make their resources available for offloading data traffic
without permission or appropriate economic reimbursement
since offloading data traffic will consume their limited wireless
resources and reduce broadband connection capacity. Thus, it
is of significant importance to analyze the economic implica-
tions of mobile data offloading from the perspective of both
OSPs and OSCs. For ease of presentation, in this paper, we
focus on WiFi offloading in which OSPs and OSCs represent
Access Points (APs) and cellular data flows, respectively.

Motivated by [12]–[14], we consider a typical offloading
scenario where a number of cellular data flows offload their
data traffic to a number of APs in their vicinity, e.g., hotspots
near base stations. In particular, we propose a pricing frame-
work based on the concept of ‘paying for offloading’ to ensure
efficient use of the offloading APs. Under this framework each
cellular data flow corresponding to a mobile source-destination
pair offers a payment to incentivize APs to participate in
offloading, and then the payment is shared in proportion to the
amount of data offloaded to each AP. Hence, the utility of an
AP is its share of received payment minus its own offloading
cost. For a cellular data flow, its utility is defined as a generic
concave function of the sum of the utilities from offloading
on the APs minus the cost paid to these offloading APs. We
model the interaction of the APs and the cellular data flows as
an MLMF-SG, where the APs are the followers who respond
to the payment offered by the cellular data flows (i.e., each AP
offloads a part of the data of some flows such that its utility
is maximized, given the payment offered by the flows and the
actions of its competing peers); and the cellular data flows
are the leaders who set the payment to maximize their own
utility in anticipation of the Nash equilibrium (NE) response of
the followers. Notwithstanding our interest in the mobile data
offloading context, the considered model is generic enough to
be applied any other scenario where a set of ‘jobs’ compete
for the services of a pool of ‘workers’, such that the jobs set
their payment rates, workers are free to choose the job they
will attempt, and payment from each job is eventually shared
according to certain allocation rules among all the workers
that serve the job.

Unlike most pricing methods in the existing literature that
involve only one type of selfish players [12] or two types of
selfish players without competition between them [13], [14],



our framework features two types of players, each of which
competes not only with its peers but also with the players of
the other type. This property distinguishes our work from the
scenario considered in [13], [14], where only players of the
same type can compete with each other although there exist
two types of selfish players. This difference cause the utility
functions of players in this paper to be completely different
from those in [13], [14] as far as concavity is concerned.
Concretely, with the strategy profile in [13], [14], the utility
functions of both followers and leaders are concave, which
ensures that there exists an equilibrium in the followers’ game
and the leaders’ game, respectively. However, in our case, the
payment from a flow is shared proportionally among all APs
according to the amount of data offloaded to each AP. As
a consequence, an AP’s utility depends not only on its own
strategy but also on the strategies of its peers, which leads to
complex interactions among the APs. Accordingly, the sharing
of payment causes the utility functions to be non-concave,
which necessitates a completely new and original study of the
game’s equilibrium.

The main contributions of this paper can be summarized as
follows:
• We develop a distributed market pricing framework for

mobile data flows to price the offloading service.
• We formulate a Stackelberg game to model the interac-

tions between offloading service providers and offloading
service consumers under the market framework, and
investigate the cases where the offloading capacity of APs
is limited and unlimited, respectively. For both cases, we
establish the existence and uniqueness of the equilibrium
of the proposed Stackelberg game, obtain the Stackelberg
equilibrium in closed form when the offloading capacity
of the APs is not limited, and further propose a distributed
pricing algorithm to ensure that the game converges to an
equilibrium when the offloading capacity of the APs is
limited.

• We conduct a large number of simulations to verify our
theoretical analysis on the proposed Stackelberg game for
the two considered cases. As a noteworthy property of
the developed framework, simulation results demonstrate
that the Stackelberg equilibrium is very close to the social
optimum.

II. PROBLEM FORMULATION

In this section, we first provide the system model of WiFi
offloading, and then introduce the pricing market framework.
Subsequently, we formulate the problem to a Stackelberg
game.

A. System Model

We consider a set F of mobile data flows (or data traffics)
in a cellular network where each flow f transmits a number of
data packets from the source Sf to the destination Df . A setR
of potential offloading APs (with |R| = R ≥ 2) in the vicinity
of the flows, may help flow f to offload its data packets to
the destination via another transmission network, e.g. WiFi. In

return, the APs may obtain a certain reimbursement from flow
f . The APs are assumed to be WiFis operating on different
carriers, and accordingly the APs’ signals do not mutually
interfere with each other. Assume that time is slotted, and there
is a network-wide slot synchronization. We focus on how the
packets of flow f should be priced such that the APs have an
incentive to offload data packets of flow f .

B. Pricing Framework

For a selfish AP i (i ∈ R), to incentivize offloading, it must
receive some reimbursement that is greater than its offloading
cost. For this purpose, each flow f offers a payment of Cf to
incentivize APs to offload data traffic, where Cf is determined
by the flow itself, i.e., Cf is the strategy of flow f . We denote
by rfi the amount of data offloaded by AP i for flow f . Hence,
the utility of flow f ∈ F is defined as the net payoff that f
gets per slot:

Uf , uf

(∑
i∈R

log(1 + rfi )
)
− Cf , (1)

where the log(1 + rfi ) term1 reflects the diminishing utility of
flow f from rfi . Function uf (·) represents the total utility from
the assistance of all APs. We assume uf (w) is continuously
differentiable, strictly increasing, and weakly concave in w,
i.e., u

′

f (w) > 0 and u
′′

f (w) ≤ 0, with uf (0) = 0.
Next, we consider the utility of the APs. For flow f (f ∈

F), the payment of Cf is shared in accordance with the level
of cooperation, i.e., the amount of data offloaded by the APs
that offload packets of flow f . The vector ri = {rfi , f ∈ F} is
the strategy of AP i where

∑
f∈F r

f
i ≤ B reflects the limited

offloading capacity B of AP i. We denote the cost (e.g. in
terms of energy) for AP i to offload a packet of flow f by efi .
Thus, the expected payoff per slot for AP i is

Vi ,
∑
f∈F

V fi =
∑
f∈F

[
Cf

rfi∑
j∈R r

f
j

− efi r
f
i

]
, (2)

where V fi , Cf
rfi∑
j∈R r

f
j

− efi r
f
i .

The payoff function of AP i has the following property.

Lemma 1. Vi is not a concave function in rfj (j ∈ R, j 6= i).

Proof: It is easy to show ∂2Vi
∂2rfj

≥ 0, which means that Vi

is not a concave function in rfj (j ∈ R, j 6= i).

C. Stackelberg Game

We model the offloading problem with pricing as a S-
tackelberg game which includes two roles (leader and fol-
lower) and two stages. In the first stage, each flow f (as
a leader) announces its reimbursement Cf , and the reim-
bursement from all flows are collected in a reimbursement
vector C = (C1, C2, · · · , C|F|). In the second stage, each
offloading AP i (as a follower) in R choose its offloading

1We adopt log(1 + rfi ) only for presentation purpose. This term can
be replaced by other types of utility functions as long as they reflect the
diminishing utility of flow f in terms of rfi



size ri = (r1i , r
2
i , · · · , r

|F|
i ) for different flows to maximize

its own utility. Hence, the flows are the leaders and the APs
are the followers in this Stackelberg game. For convenience,
let r = (r1, r2, · · · , r|R|) denote the strategy profile of all APs
where ri is the strategy profile of AP i. Let r−i denote the
strategy profile excluding ri and rf−i be the profile excluding
AP i given f . Then, r = (ri, r−i) and ri = (rfi , r

f
−i).

1) Followers’ Game: Given r−i, each follower (AP i)
chooses its strategy ri to maximize its utility in response to
the leaders’ strategies C , (Cf ,C−f ) = (C1, C2, · · · , C|F|).
Thus, the objective of AP i is to solve the following optimiza-
tion problem:

r̃i(C) = argmax
ri

Vi(ri, r−i,C) (3)

s.t.
∑
f∈F

rfi ≤ B, ∀i ∈ R (4)

rfi ≥ 0, ∀i ∈ R, ∀f ∈ F . (5)

Then, we have r̃(C) =
(
r̃1(C), · · · , r̃|R|(C)

)
. Note that the

followers’ game itself can be considered as a non-cooperative
game [?].

2) Leaders’ game: Given C−f , each leader (flow f ) choos-
es its strategy Cf to maximize its utility function Uf (·)
anticipating that the followers will eventually respond with a
collection of strategies that constitute an NE according to (3).
Thus, the leaders’ problem is

C̃f = argmax
Cf

Uf (Cf ,C−f , r̃(Cf ,C−f )). (6)

The solution of the Stackelberg game is characterized by a
Stackelberg Nash Equilibrium (SNE), that is a strategy profile
from which no player has incentive to deviate unilaterally.

III. STACKELBERG GAME EQUILIBRIUM ANALYSIS
WITHOUT CAPACITY BOUND

In this section, we investigate the existence and uniqueness
of an SNE for the considered Stackelberg game if the capacity
of the APs is not limited (corresponding to omitting the
constraint (4)).

A. Followers’ Game

Since the capacity of the APs is much larger than that of
mobile devices, it is reasonable to assume that there is no of-
floading capacity limit for the APs. Under this assumption, the
following proposition decomposes the complicated followers’
game defined in Section II into a number of simpler games.

Preposition 1. If the capacity of the APs is not limited,
FG-MLMF-SG can be decomposed into |F| followers’ games(
FG(1), · · · , FG(|F|)

)
.

Proof: If the capacity of the APs is not limited, ac-
cording to (2) and (3), FG-MLMF-SG, denoted by r̃i(C) =
argmaxri Vi(ri, r−i,C), can be decomposed into |F| fol-
lowers games

(
FG(1), · · · , FG(|F|)

)
, where FG(f), f ∈

F corresponds to the optimization problem r̃fi (Cf ) =
argmaxrfi

V fi (rfi , r
f
−i, C

f ).

Definition 1. Given Cf and rf−i, a strategy is the best
response strategy of AP i for FG(f), denoted by Γfi (rf−i),
if it maximizes V fi (rfi , r

f
−i) over rfi ≥ 0.

From ∂V fi
∂rfi

= 0, we obtain r̃fi =

√
Cf

∑
j∈R\{i} r̃

f
j

efi
−∑

j∈R\{i} r̃
f
j . Therefore, the best response Γfi (rf−i) of fol-

lower i for flow f is

Γ
f
i

(r
f
−i) =


√√√√√Cf

∑
j∈R\{i} r̃

f
j

e
f
i

−
∑
j∈R\{i} r̃

f
j
, if ef

i

∑
j∈R\{i} r̃

f
j
≤ Cf

0, otherwise.
(7)

The best responses of follower i for(
FG(1), · · · , FG(|F|)

)
are collected in the best response

vector Γi(r−i) =
(

Γ1
i (r

1
−i), · · · ,Γ

|F|
i (r

|F|
−i )
)

.
The following theorem states that the best response strategy

leads to an NE of the FG-MLMF-SG.

Theorem 1. The strategy profile r̃ = (r̃1, r̃2, · · · , r̃|F|) is an
NE of the FG-MLMF-SG, where r̃f = (r̃f1 , r̃

f
2 , · · · , r̃

f
|R|) is

an NE of FG(f), where
1) the optimal sets of offloading APs, denoted by S =

(S1,S2, · · · ,SF ), are computed by Algorithm 1;
2) r̃fi =

(|Sf |−1)Cf∑
j∈Sf

efj

(
1 − (|Sf |−1)efi∑

j∈Sf
efj

)
if i ∈ Sf ; r̃fi = 0

otherwise.

Algorithm 1 Computation of optimal sets of offloading APs
1: for f ∈ F do
2: Sort APs according to their offloading costs: efσ1

≤
efσ2
≤ · · · ≤ efσR ;

3: Sf = {σ1, σ2}, i = 3;

4: while i ≤ R and efσi <
∑
j∈Sf

efj

|Sf |−1 do
5: Sf = Sf ∪ {σi}, i = i+ 1;
6: end while
7: end for
8: return S = (S1,S2, · · · ,SF ).

Proof: Please refer to Appendix A of [15] .
After proving the existence of an NE of the FG-MLMF-SG,

we next prove the uniqueness of the NE.

Theorem 2. Given Cf , denote the strategy profile of an NE
by r̂ = (r̂1, r̂2, · · · , r̂|F|), where r̂f = (r̂f1 , r̂

f
2 , · · · , r̂

f
|R|), and

define Ŝf = {i ∈ R : r̂fi > 0}. Then, we have

1) r̂fi =
(|Ŝf |−1)Cf∑

j∈Ŝf
efj

(
1 − (|Ŝf |−1)efi∑

j∈Ŝf
efj

)
if i ∈ Ŝf ; r̂fi = 0

otherwise;
2) We sort {efj : j ∈ R} to efσ1

≤ efσ2
≤ · · · ≤ efσR , then

Ŝf = {σ1, · · · , σi}, where σ1, · · · , σR is a permutation

of R given f , efσi+1
≥

∑i
j=1 e

f
σj

i−1 , and i ≥ 2.



These statements imply that the FG-MLMF-SG has a unique
NE.

Proof: Please refer to Appendix B of [15].
Theorem 1 and Theorem 2 imply that there exists a unique

NE in the FG-MLMF-SG.

B. Leaders’ Game

According to the above analysis, the flows, which are the
leaders in the MLMF-SG, know that there exists a unique NE
for the APs for any given pricing vector C. Hence, each flow
f can maximize its benefit by setting Cf .

Given a specific flow f , feeding back into (1), we have

Uf =uf

(∑
i∈R

log(1 + rfi )
)
− Cf

=uf

( ∑
i∈Sf

log
(
1 + Cfki

))
− Cf ,

where ki =
|Sf |−1∑
j∈Sf

efj

(
1− (|Sf |−1)efi∑

j∈Sf
efj

)
.

Theorem 3. There exists a unique NE of the leaders’ game
in the MLMF-SG.

Proof: Please refer to [15].
Thus far, we have established the existence and uniqueness

of the NE for the MLMF-SG when the offloading capacity of
the APs is not limited.

IV. STACKELBERG GAME EQUILIBRIUM ANALYSIS WITH
CAPACITY BOUND

In this section, we consider the game if a capacity constraint
on the APs is present, and characterize the properties of the
NE.

A. Followers’ Game

To make the analysis of the game tractable, we assume that
the offloading cost of a specific flow does not depend on the
APs, that is, efi = ef for any AP i ∈ R given f . Note that
this assumption is reasonable as all APs are assumed to be
located in the vicinity of flow f .

We commence our discussion of the properties of the
equilibrium by considering the best response of AP i using the
strategy ri = (r1i , · · · , r

|F|
i ). The corresponding optimization

problem from the perspective of AP i can be stated as:

max
ri

Vi(ri, r−i) s.t.
∑
f∈F

rfi ≤ B, rfi ≥ 0, ∀f ∈ F . (8)

Thus, the corresponding Lagrangian function is given by:

L(ri, λi, ν) = Vi(ri, r−i)− λi ·
(∑
f∈F

rfi −B
)

+
∑
f∈F

νfi r
f
i .

(9)

Since Vi is continuously differentiable in rfi , it follows that
the Karush-Kuhn-Tucker (KKT) conditions corresponding to
problem (9) are necessary for optimality. On the other hand,
we note from (2) that, for a fixed r−i, function Vi(ri, r−i)

is concave in ri although it is not concave in r according to
Lemma 1. This implies that the KKT conditions are sufficient
for optimality as well. Thus, we conclude that a strategy profile
is an equilibrium if and only if (i.i.f) there exist λi ≥ 0
and {νfi ≥ 0, f ∈ F} such that the following conditions are
satisfied:

(A1) :
∂Vi

∂rfi
= λi − νfi , ∀f ∈ F

(A2) : λi ·
(∑

f

rfi −B
)

= 0

(A3) : νfi r
f
i = 0, ∀f ∈ F .

For ease of further discussion, we introduce the concept
of strictly interior equilibrium which is formally defined as
follows:

Definition 2. We say that an equilibrium is a strictly interior
equilibrium if the offloading size of any AP i ∈ R for any flow
f ∈ F is strictly positive, i.e., rfi > 0.

Now, we are ready to provide the following theorem, which
guarantees the symmetry of a strictly interior equilibrium.

Theorem 4. If a strictly interior equilibrium exists in the
followers’ game, then it is symmetrical, i.e., rfi = rf for any
i ∈ R.

Proof: Please refer to Appendix C of [15].
Thus, in the following, we focus on symmetric strategy

profiles, that is, all nodes use a symmetric strategy, i.e.,
rfi = rf for any i ∈ R. To this end, we define the function

gf (rf ) ,
∂Vi

∂rfi

∣∣∣
rfj=r

f , ∀j∈R
= Cf

R− 1

R2rf
−ef = Cfhf (rf )−ef ,

where hf (rf ) , R−1
R2rf

.
Given a symmetric strategy profile, by Theorem 4, the KKT

conditions for (9) can be refined to the existence of λi ≥ 0
and {νfi = 0, f ∈ F} such that (A1)-(A3) are satisfied.

Theorem 5. For any vector of flow price C, there exists a
unique set of {ρf , f ∈ F} such that the symmetric strategy
profile {rfj = ρf , j ∈ R} is a Nash equilibrium. Furthermore,
there exist λ ≥ 0 and {νf = 0, f ∈ F}, such that

(B1) : gf (ρf ) = λ− νf , ∀f ∈ F

(B2) : λ
(∑
f∈F

ρf −B
)

= 0

(B3) : νfρf = 0, ∀f ∈ F .

Proof: Please refer to Appendix D of [15].
Based on Theorem 5, we obtain that the solution of the

following convex optimization problem is the NE of the
followers’ game in the MLMF-SG.

max
ρ1···ρ|F|

∑
f∈F

(
Cf

R− 1

R2
log(ρf )− efρf

)
s.t.

∑
f∈F

ρf ≤ B, ρf > 0 ∀f ∈ F ,



which can be solved by software packages, such as Matlab.

B. Leaders’ Game

In this subsection, we study the effect of the payment rate
Cf of a specific flow f ∈ F on the followers’ symmetric equi-
librium when all other rates C−f remain fixed. To streamline
the discussion, we express the value of ρf of the equilibrium
corresponding to a given Cf as a function ρf = Ψ(Cf ) (since
we focus only on ρf and are not interested in the strategy
values for other flows). Also, we define the value of λ that
satisfies condition (B1)-(B3) in the equilibrium as a function
λ = Λ(Cf ).

We begin by exploring these functions for extreme values
of Cf . Clearly, for Cf = 0, the utility of any AP cooperating
with flow f is non-positive, implying ρf = Ψ(Cf = 0) = 0.
However, from the KKT conditions (B1)-(B3), we know ρf >
0, which implies Cf > 0. Thus, we assume that ρf must be
larger than a infinitesimal positive value, i.e., ρf = 0+. Define
Cf = Ψ−1(ρf = 0+) , Cf and λ = Λ(Cf = Cf ). Λ(Cf )
and Ψ(Cf ) have the following properties.

Lemma 2. Λ(Cf ) and Ψ(Cf ) have the following properties:
1) λ = Λ(Cf ) is continuous and non-decreasing in Cf ;
2) ρf = Ψ(Cf ) is continuous, and strictly increasing in

Cf ∈ (0,∞);
3) ρf = Ψ(Cf ) is concave in Cf ∈ (0,∞);

Proof: Please refer to Appendix E of [15].

Lemma 3. For a fixed C−f , the function Uf (Cf ,C−f ) is
concave in Cf .

Proof: Please refer to [15].

Lemma 4. The best-response function Υf (C−f ) of flow f is
bounded by 0 ≤ Υf (C−f ) ≤ uf

(
R log(1 +B)

)
.

Proof: Notice that Uf = uf

(
R log(1 + ρf )

)
− Cf .

Obviously, for the best response, the utility is nonnegative
(utility 0 can always be obtained by Cf = 0). Hence, 0 ≤
Υf (C−f ) ≤ maxρf uf

(
R log(1+ρf )

)
= uf

(
R log(1+B)

)
.

Due to the concavity of Uf in Cf (Lemma 3), a unique
solution is guaranteed; furthermore, we observe that if uf
is continuously differentiable, the best response function is
continuous as well.

Theorem 6. If the followers always respond with their sym-
metrical NE, then an equilibrium of the leaders’ game, i.e.,
an SNE of the overall system, exists and is unique.

Proof: Please refer to Appendix F of [15].
Thus far, we have obtained the static characteristics of

the leaders’ game, i.e., the existence and uniqueness of the
equilibrium. Next, we analyze the dynamic behavior of the
leaders’ game, i.e., how the game converges to the equilibrium
from any initial strategy profile by best-response strategy
updates. Before delving into the convergence analysis, we
discuss the monotonicity of Υ(C−f ) of flow f .

Lemma 5. The best response Υ(C−f ) of flow f is monotonic
and non-decreasing in Cf

′
for any f ′ ∈ F \ {f}.

Proof: Please refer to Appendix G of [15].
Now, we are ready to state the following theorem which

characterizes the dynamic behavior of the leaders’ game.

Theorem 7. Given some initial price vector C(0), if each
flow f responds according to Algorithm 2, that is, flow f ∈ F
updates its strategy as Cf (n + 1) = Υ(C−f (n)), then
limn→∞C(n) = C∗, where C∗ is the equilibrium of the
leaders’ game.

Proof: Please refer to Appendix H of [15].
Distributed Algorithm 2 computes the price Cf (n + 1) of

flow f (f ∈ F) at n+ 1, where the price Cf (n+ 1) of flow
f depends on

(
ρ1(n), · · · , ρ|F|(n)

)
rather than the price of

other flows, i.e., Cf
′
(n) (f ′ 6= f ).

Algorithm 2 Computing price for flow f

1: input: ρ1(n), · · · , ρ|F|(n);
2: if flow f ∈ F updates its strategy then
3: if ρf (n) +

∑
f ′ 6=f ρ

f ′(n) < B then
4: Cf (n+ 1) = u′f (R log(1 + ρf (n))) Rρ

f (n)
1+ρf (n)

;
5: else
6: λ =

[u′f (R log(1+ρf (n)))

ρf (n)(1+ρf (n))

R−1
R
−

∑
f′∈F

ef
′

ρf
′
(n)

]
1∑

f′∈F
1

ρf
′
(n)

;

7: Cf (n+ 1) = ρf (n)(λ+ ef ) R2

R−1 for flow f ;
8: end if
9: end if

10: ouput: Cf (n+ 1).

V. NUMERICAL SIMULATION

Here, we demonstrate some of the theoretical results derived
in this paper, and gain further insight into the behavior of the
game for different scenarios via a numerical study.

A. Convergence with Offloading Capacity Limit

We first consider the simplest scenario with two cellular
traffic flows |F| = 2 and two APs |R| = 2, which allows us to
illustrate the interactions between flows and APs. Specifically,
for the cellular traffic flow f ∈ F , we adopt a linear utility
function Uf = ωf

∑
i∈R log(1+rfi )−Cf . The parameters are

set as follows: offloading costs e1 = 0.1 and e2 = 0.3, weight
coefficients w1 = 1 and w2 = 2, and capacity limit B = 7 in
Fig. 1(a) and B = 1 in Figs. 1(b)–(d), respectively. We obtain
ρ1 = 4 and ρ2 = 2.33, and further, C1 = 1.6 and C2 = 2.8
from Cf = efρf R2

R−1 according to Algorithm 2. Note that
ρ1 + ρ2 = 6.33 < 7 implying that the condition ρ1 + ρ2 < B
holds, which is shown in Fig. 1(a). On the other hand, for B =
1, ρ1 +ρ2 = 1 must be satisfied at the NE, which is illustrated
in Figs. 1(b)–(d). Moreover, we observe from Figs. 1(b)–(d)
that the price vector and the strategy profile converge from
different initial price vectors C(0) = (0.01, 0.01), C(0) =
(5, 0.01), and C(0) = (10, 10), respectively, which validates
the proposed Algorithm 2.



(a)

(b)

Fig. 1. Convergence of price vector and policy vector to NE: e1 = 0.1,
e2 = 0.3, w1 = 1, w2 = 2, and B = 7 in (a), and B = 1 in (b).

Fig. 2. The impact of the offloading cost and heterogeneity of traffic flows
on PoA. w1 = 1, e11 = e12 = 0.2, and e21 = e22 = e2.

B. Offloading Cost with Offloading Capacity Limit

In this scenario, we consider two symmetric APs and
two traffic flows. In particular, the offloading cost of the
APs for flow f is homogeneous, i.e., e11 = e12 = 0.2 and
e21 = e22 = e2. Meanwhile, the utility function of each flow is
assumed to be a linear function, i.e, uf (

∑
i∈R log(1 + rfi )) =

wf
∑
i∈R log(1 + rfi ) where w1 = 1. Fig. 2 show how the

PoA is affected by the offloading cost and the heterogeneity
of flows. We observe that as w2 increases, corresponding to an
increasing heterogeneity of flows, the PoA tends to decrease
and approaches 1; on the other hand, as e2 increases from 0.2
to 0.8, PoA tends to increase. For example, when w2 = 2, the
APs are more reluctant to offload flow f = 2 for its larger
offloading cost, and accordingly, the two traffic flows are not
treated equally. In this case, flow f = 2 cannot participate in
the market pricing to the same extent as its counterpart f = 1,
which leads to an increase of the PoA.

VI. CONCLUSIONS

In this paper, we have proposed a pricing framework for
cellular networks to offload mobile data traffic with the
assistance of WiFi network. We have modeled the pricing
mechanism as a multi-leader multi-follower Stackelberg game
in which the offloading service providers are the followers

and the offloading service consumers are the leaders. For
the case where the APs do not have an offloading capacity
limit, we have decomposed the followers’ game of the multi-
leader multi-follower Stackelberg game into a fixed number of
followers’ games, and proved the existence and uniqueness of
the equilibrium, and obtained an efficient algorithm to compute
the equilibrium. For the case with offloading capacity limit,
by considering the symmetric strategy profile, we have estab-
lished some structural results for the equilibrium, and further
proved the existence and uniqueness of the equilibrium of the
Stackelberg game. Finally, extensive numerical experiments
were provided to demonstrate that the Stackelberg equilibrium
is very close to the corresponding social optimum for both
considered cases.
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