
Distributed Demand-Side Management in Smart
Grid: how Imitation improves Power Scheduling

Antimo Barbato†, Antonio Capone †, Lin Chen ‡, Fabio Martignon ‡¶ and Stefano Paris §‖
† DEIB ‡ LRI § Mathematical and Algorithmic Sciences Lab

Politecnico di Milano Paris-Sud University ‖ France Research Center - Huawei Technologies Co. Ltd.
{antimo.barbato,antonio.capone}@polimi.it {lin.chen,fabio.martignon}@lri.fr LIPADE - Paris-Descartes University

¶ Institut Universitaire de France (IUF) stefano.paris@{huawei.com,parisdescartes.fr}

Abstract—Demand-Side Management (DSM) systems repre-
sent an efficient method to improve the performance of Smart
Grid infrastructures by controlling users’ power loads. In this
paper, we focus our analysis on fully distributed DSM systems
especially designed to reduce the peak demand of groups of
residential users. In our proposed scheme, each appliance decides
autonomously its scheduling using only limited information on the
energy price fixed by the retailer, thus greatly reducing the system
complexity as well as the need of information exchanges. We
develop two schedule-selection policies based on the Proportional
Imitation Rule, where at each iteration all appliances switch
to a new schedule with a probability proportional to the cost
difference between the actual and cheapest schedules of the
previous iteration. We analyze the proposed learning methods
based on realistic instances in several use-case scenarios, and
show their effectiveness in terms of cost reductions (both local
and system-wide) as well as convergence speed to stable and
efficient system equilibria.

I. INTRODUCTION

The design of power grids has been historically driven by

the need to meet the peak demand of users, which is largely

uncontrollable. As a consequence, grid resources are under-

utilized for most of the time. In order to address this issue,

Demand-Side Management (DSM) methods can be used, since

they are designed to properly control and schedule users’ loads

[1]. Specifically, DSM solutions can be applied to shift users’

demand from peak to off-peak periods, thus reducing the need

for generation, transmission and distribution capacity, as well

as power grids investments. Similarly, DSM systems can also

be employed to mitigate other issues related to electric grids

such as the integration of Renewable Energy Sources (RESs),

which are intermittent and still largely uncontrollable, hence

creating problems in the demand-supply balancing process.

To this end, DSM systems can be used to properly scheduling

users’ loads based on the availability of renewable energy [2].

In the field of DSM systems, distributed methods have

gained increased momentum. Relevant improvements of the

grid efficiency and performance can indeed be obtained only

by coherently managing the energy resources of groups of

users whose differences and randomness, in terms of electricity

consumption needs, can be exploited to adapt the overall load

demand to the grid requirements. To this end, several central-

ized frameworks have been proposed in the literature, aiming

at controlling the electric loads of groups of collaborative

customers [3]. However, these solutions require a centralized

controller to gather users’ information and optimize their

energy plans. As a consequence, a large volume of data must

be collected and transmitted through the Smart Grid network,

thus introducing scalability constraints, as well as novel threats

to customers’ security and privacy [4]. For these reasons, dis-

tributed DSM methods have been proposed in which decisions

are taken locally by users. In such context, Game Theory

represents the ideal framework to design distributed DSM

solutions, since it permits to model and study the interactions

among the independent rational players of the power grid [5].

In this case, the users’ load scheduling problem is formulated

as a game, where players are the consumers and their strategies
are the schedules of their electric appliances. The goal of the

game is to reduce the peak of the total demand, the overall

energy costs, or users’ electricity bills [6].

Game theoretic DSM methods are designed to drive the

system to equilibria that improve the performance of the

power grid from a system-wide perspective. However, con-

verging to the game equilibria is a non-trivial challenge and

learning algorithms are required to enable players to reach

the desired game outcome [7]. Learning methods are usually

iterative processes in which players, in turn, estimate the

utility associated with their strategies based on their knowledge

of the game state, and decide which strategy to play in

the current iteration depending on the decision logic of the

algorithm. Several learning algorithms have been proposed

in the literature which differ in the learning style and in the

assumptions on the interaction among players. In the Regret
Matching methods [8], for example, players attempt to mini-

mize their regret from using a certain strategy. These methods

rely on the assumptions that each player is able to estimate

both its own utility and the one he would have obtained by

playing all other actions. On the other hand, in Reinforcement
Learning methods [7], players attempt to maximize their utility

rather than considering the regret associated with their actions.

Specifically, at each iteration of the algorithm, actions leading

to higher utilities are associated with higher probabilities to be

chosen in the next stage. Regret Matching and Reinforcement
Learning methods, as well as numerous other algorithms, have

been extensively studied in several research fields, including

robotics and telecommunications [9]. For this reason, some of

the solutions proposed in these fields may be applied to game

theoretic DSM frameworks. However, security and privacy

concerns may raise when applying these methods to real

implementations of demand management solutions. Learning

algorithms proposed in [6] and [10], for example, require each

player to broadcast his appliances schedule to either the energy

service provider or to other users, thus introducing serious

privacy issues [4].

In this paper, we propose a distributed learning algorithm

which enables consumers to autonomously converge to the

equilibria of DSM load scheduling games. Our algorithm is

particularly tailored for demand-side management frameworks

used to schedule the electric devices of residential consumers

on a daily basis in a distributed fashion, with the goal of mini-

mizing their bills, thus improving their Quality of Experience.

In this context, a dynamic pricing is used, where energy tariffs

are defined as a function of the overall power demand of users.

In the learning algorithm proposed in this paper, which is

based on a reinforcement learning approach, the scheduling

decision problem of each player is modeled as a Markov

chain: each feasible appliance schedule is associated with

a state of the chain, and state transition probabilities are

updated at every iteration, depending on the bills of players. In

particular, we develop two imitation-based schedule-selection

policies based on the Proportional Imitation Rule [11], where

at each iteration, all appliances switch to a new schedule with

a probability proportional to the cost difference between the

actual and cheapest schedules of the previous iteration.

We analyze the performance of the proposed learning meth-

ods based on realistic instances of the DSM load scheduling

game, and numerically show its effectiveness in converging,

in few iterations, to the system equilibria in several use-cases.

The remainder of the paper is structured as follows: Section

II provides an overview of the game theoretic demand-side

management framework that we have adopted in this work.

Section III describes the learning algorithms that we have

designed to converge to the Nash Equilibrium of the game.

Performance assessment is provided in Section IV and, finally,

conclusions are drawn in Section V.

II. DISTRIBUTED DEMAND MANAGEMENT GAME

In this work, we consider a demand-side management

framework, based on a non-cooperative game theoretical ap-

proach [12], which is used to efficiently schedule electric de-

vices in a distributed fashion. Table I summarizes the notation

used in this paper. Specifically, each user h of a group of

residential consumers, H, has a set of appliances, A, that have

to be scheduled over a 24-hour time period divided into a set,

T , of time slots. Each appliance a of user h must be executed

only once during the day within a time window delimited by

a minimum starting-time slot, STah, and a maximum ending-

time slot, ETah. Moreover, each device is characterized by a

load profile, lahf , having a duration of Fah time slots, with

lahf representing the power consumption of a in the f th time

slot of its load profile and f ∈ Fah = {1, 2.., Fah}. The

objective of each user is to minimize his daily bill. A dynamic

pricing is used to define the price of electricity at time t ∈ T ,

TABLE I
SUMMARY OF THE NOTATION USED IN THIS PAPER.

A Set of appliances (a: an appliance)
Fah Set of phases of appliance a of user h (fah: a phase)
H Set of residential consumers (h: a consumer)

I Set of strategies of all players (i.e., I � {In}n∈N)

In Set of strategies of player n (i.e., In � {xnt}n∈N)
K Set of iterations of the learning process (k: an iteration)

N = A×H Set of players (n: a player, i.e. an appliance of a user)
Sn Set of states of player n (s: a state)
T Set of time slots (t: a time slot)

U Set of utilities of all players (i.e., U � {Un}n∈N)
ct Cost function

cAnc Cost of ancillary services

cEn Slope of the cost function
ETah Maximum ending slot for appliance a of user h
Fah Duration of the load profile of appliance a of user h
laht Power consumption of appliance a of user h in slot t
STah Minimum starting slot for appliance a of user h
Un Utility of player n
xnt Binary variable (set to 1 if appliance n starts in slot t)
yt Total power demand of all users at time slot t
ynt Power demand of player n at time slot t

πSL Supply limit defined by the retailer

ct, which is modelled as an increasing function of the total

power demand, yt, of the group of users H at time t:

ct(yt) = cAnc + cEn · yt ∀t ∈ T (1)

where cAnc is the cost of ancillary services (e.g., electricity

transport, distribution and dispatching, frequency regulation,

power balance) and cEn is the slope of the cost function.

In [12], we show that if each appliance decides au-
tonomously its scheduling in a fully distributed fashion (Single-
Appliance DSM) with the goal of minimizing its bill, only a

negligible increase of the users’ bill is found with respect to

the case in which each user schedules the whole set of his

home appliances (Multiple-Appliance DSM). For this reason,

in this paper, we will use the Single-Appliance DSM model

since it requires a less complex architecture. In this case, in

fact, there is no need for a home server to collect all appliances

information and play on behalf of the householder, thus greatly

simplifying the architecture design and system configuration.

A. Single-Appliance Game Formulation

The appliance scheduling problem is modelled as a game

G = {N , I,U}: N = A × H is the players set (player

n = (a, h) is the appliance a of consumer h), I � {In}n∈N
is the set of strategies which correspond to the appliances

scheduling and U � {Un}n∈N is the set of utility functions

that coincide with the devices electricity bills. Specifically, the

strategy of player n is In � {xnt}n∈N , where xnt are binary

variables defined for each activity n ∈ N and for each time

slot t ∈ T . These variables are equal to 1 if appliance n starts

in time slot t, 0 otherwise. Each appliance (player) n chooses

its strategy In to minimize its cost Un. The utility function of

each player, Un, is defined as a function of I:

Un(I) =
∑
t∈T

ynt · ct(yt) (2)

where ynt, which represents the amount of electricity demand

of appliance n at time t, is a function of xnt and ct (the electric

energy price at time t) is a function of yt, which corresponds

to the total power demand of players at time t.
Mathematically, the power scheduling game is formalized

as follows:

G : min
In

Un(In, I−n) =
∑
t∈T

ynt · ct(yt), ∀n ∈ N . (3)

The solution of the power scheduling game is characterized

by a Nash Equilibrium (NE), a strategy profile I∗ = (I∗
n, I∗

−n)
from which no player has an incentive to deviate unilaterally.

The feasible power scheduling alternatives that form the strat-

egy space In of each player n = (a, h) (i.e., each appliance a
of consumer h) must satisfy the following set of constraints:

In =

{
−→x n =

[
xn1...xnt...xn|T |

]
∈ {0, 1}|T | :

ETn−Fn+1∑
t=STn

xnt = 1 (4)

ynt =
∑

f∈F:f≤t

lnfxn(t−f+1) ∀t ∈ T (5)

∑
a∈A

∑
f∈F:f≤t

lahfxah(t−f+1) ≤ πSL ∀t ∈ T
}
. (6)

Constraints (4) guarantee that appliance n starts in exactly

one time slot within the interval (STn, ETn). Constraints (5)

determine the daily consumption profile of the appliance in

each time slot, which depends on its scheduling. Finally, con-

straints (6) limit the overall power consumption of consumer

h, since in every time slot t ∈ T the electricity bought from

the grid cannot exceed the Supply Limit (SL) defined by the

retailer and denoted by πSL.

Let U be the total price paid by all players to the electricity

retailer. One can prove that G is a potential game if ct(yt)
is convex with respect to yt, with U(I) being the potential

function. Potential games have several nice properties, such

as the existence of at least one pure Nash equilibrium. Fur-

thermore, such games have the Finite Improvement Property:

any sequence of asynchronous improvement steps is finite and

converges to a pure equilibrium.

III. DISTRIBUTED LEARNING ALGORITHMS

The DSM load scheduling game presented in Section II can

improve the efficiency of the power grid by means of shifting

users’ demand from peak to off-peak periods. However, a

proper method is required to converge to the game equilibria.

For this reason, we have designed a learning algorithm that

enables players to reach the desired game outcome in a

distributed fashion, without any communication among users.

The learning algorithm here proposed, which is based on

the Proportional Imitation Rule [11], is defined as an iterative

process. Specifically, in each day k, all players (i.e., electric

appliances) n ∈ N = A × H simultaneously perform the

following steps.

1) Each player evaluates the game state by estimating both

his own daily bill paid at iteration k − 1 (i.e., Uk−1
n =∑

t∈T yk−1
nt · ck−1

t) and the bill he would have paid if

he had executed any other schedule; in this way, players

are able to estimate the quality (in terms of costs) of the

schedule selected in the previous iteration.

2) According to the game state and the decision logic

of the algorithm described below, each player selects

the schedule for the current iteration k,
−→
xk
n, defined as

follows:−→
xk
n =

[
xk
n1...x

k
nt...x

k
n|T |

]
.

We say that players learn to play an equilibrium if, after a

given number of iterations, the schedules profile
−→
X = {−→xn =[

x1
n...x

k
n...x

|K|
n

]
, ∀n ∈ N} converges to an equilibrium strat-

egy. Note that this algorithm relies on the assumption that after

every iteration (i.e., day) k, every player n is able to estimate

both his own daily bill and the bill he would have paid if he

had executed any other schedule. To this end, we suppose that

at the end of each iteration, the retailer broadcasts to players

the electricity tariff applied that day, ckt , defined based on the

aggregated power demand of users on day k.

The iterative learning process of each appliance n ∈ N
can be therefore modeled based on a Markov chain, shown in

Figure 1. At each iteration k of the algorithm, the process is

in some state s which gives to player n a certain utility (i.e.,

bill) Uk
n . At the next iteration k + 1, the process randomly

moves to a new state s′ based on the transition probabilities,

and receives a new bill Uk+1
n .

In our algorithm, each state of the Markov chain is associated

with a feasible schedule of the appliance n. To this end,

we define a subset of time slots Sn ⊆ T which satisfy

constraints (4):

Sn = {t ∈ T : t ∈ [STn;ETn − Fn + 1]} (7)

thus the states of the Markov chain of the appliance n
correspond to the elements of the set of feasible schedules

of n.

States transition probabilities P (si, sj), with si, sj ∈ Sn,

are updated at every iteration of the algorithm depending

on the game state. In this work, we propose two policies

to update the transition probabilities: Two-State (TS) policy

and Multi-State (MS) policy. Let ŝ be the schedule selected

for player n at iteration k − 1. The two policies update the

Fig. 1. Markov decision chain of player n used in the DSM load
scheduling learning process.

transition probabilities from ŝ to any state s ∈ Sn at iteration

k as detailed hereafter.

A. Two-State Policy

The TS policy considers only two possible alternatives:

keeping to use the old schedule or switching to the cheapest

schedule among the feasible ones. The transition probabil-

ities are updated according to the difference between the

corresponding schedules electricity prices to foster the change

whenever the alternative schedule is more convenient. More

specifically, the TS policy performs the following steps:

1) Evaluate the daily bill that player n would have paid if

he had executed any schedule s ∈ Sn at iteration k − 1,

Us,k−1
n :

Us,k−1
n =

∑
t∈T

yk−1
nt (s) · ck−1

t (8)

where yk−1
nt (s) is the power demand of player n at

iteration k−1, and is defined according to constraints (5)

(note that xnt = 1 if t = s, 0 otherwise). In estimating

these utilities, only the schedules s that satisfy

constraints (6) are considered.

2) Identify the schedule s̄ that minimizes the bill:

s̄ = min
s∈Sn

Us,k−1
n (9)

3) Update the transition probabilities, P (si, sj), for all si,
sj ∈ Sn:

P (si, sj) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− U s̄,k−1
n

U ŝ,k−1
n

if si = ŝ, sj = s̄, si �= sj

U s̄,k−1
n

U ŝ,k−1
n

if si = sj = ŝ

0 otherwise

(10)

Based on this policy, at each iteration k, the initial Markov

decision chain of Figure 1 is reduced to a two-state chain,

represented in Figure 2. As a consequence, only two schedules

are considered in each iteration: ŝ, which is the one chosen

on the previous day, and s̄, which is the one that, based on

estimates, would have given the lowest bill in the previous

iteration. The transition probabilities from ŝ are computed

based on the ratio between the bills associated with these two

states: the larger their difference (hence, the lower the
U s̄,k−1

n

U ŝ,k−1
n

ratio), the higher the probability to change and implement such

more convenient schedule.

B. Multi-State Policy

Differently from the TS approach, the MS policy consid-

ers all cheaper schedules among all the feasible alternatives

besides the old schedule. More specifically, the MS policy

performs the following steps:

1) Evaluate the daily bill that player n would have paid if

he had executed any schedule s ∈ Sn at iteration k − 1,

Us,k−1
n :

Us,k−1
n =

∑
t∈T

yk−1
nt (s) · ck−1

t (11)

where yk−1
nt (s) is defined according to constraints (5).

Also in this case, only the schedules s that satisfy

constraints (6) are considered in estimating the player’s

bill.

2) Identify the set of schedules, S̄n, whose bills are lower

than that paid by selecting the schedule ŝ:

S̄n = {s ∈ Sn : Us,k−1
n < U ŝ,k−1

n }. (12)

3) Update the transition probabilities P (si, sj) for all si,
sj ∈ Sn:

P (si, sj) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

|S̄n| (1− U
sj ,k−1
n

U ŝ,k−1
n

) if si = ŝ,sj ∈ S̄n

1−
∑

s̄l∈S̄n

P (ŝ, s̄l) if si = sj = ŝ

0 otherwise

(13)

Based on this policy, at each iteration k, the Markov

decision chain of Figure 1 is reduced to one composed of

|S̄n|+1 states, as represented in Figure 3. As a consequence,

|S̄n|+ 1 schedules are considered in each iteration: ŝ, which

is the one chosen on the previous day, and schedules S̄n,

which are those that, based on estimates, would have allowed

the player to pay a bill lower than that actually paid by

selecting the state ŝ. Similarly to the TS policy, the transition

probabilities from ŝ to other states are computed based on

the ratio between the bills associated with the corresponding

schedules. The lower the
U s̄,k−1

n

U ŝ,k−1
n

ratio between the old and

cheaper schedule, the higher is the probability to change and

use such more convenient schedule. As one can see, the Multi-
State policy has a more intensive exploration stage with respect

to the Two-State policy.

Note that at iteration 1 of the algorithm, each player selects

a schedule s according to a uniform distribution over Sn, since

no information on the game state is available.

IV. NUMERICAL RESULTS

In order to evaluate the performance of the proposed learn-

ing algorithms, we have tested them on realistic instances of

the DSM scheduling problem [13]. In this section, we first

describe the methodology used in our tests, then we present

and discuss the numerical results obtained by our algorithms.

Fig. 2. Markov decision chain of player n, at iteration k, with a
Two-State policy.

Fig. 3. Markov decision chain of player n, at iteration k, with a
Multi-State policy.

A. Tests Methodology

The proposed learning policies are evaluated over a period

of 100 days (i.e., iterations), each one represented by a set T
of 24 time slots of 1 hour each. We consider groups, H, of

10, 50 and 100 users, each one connected to the grid with a

power limit, πSL, of 3 kW . Every consumer has 4 shiftable

devices out of 11 realistically-modeled appliances1. As for the

load scheduling flexibility (i.e., size of the [STn, ETn] time-

window), three cases are considered: No Flexibility, in which

the appliances scheduling is fixed and cannot be optimized,

Low Flexibility and High Flexibility in which, respectively,

3 and 8 different possible schedules (equivalent to 3 and

8 consecutive starting time-slots) are randomly set for each

device. For each of these cases, the starting-time slot of

the appliances, STn, is randomly selected for each user to

represent a population of heterogeneous consumers. On the

other hand, the ending-time slot, ETn, is defined based on

the value chosen for STn in order to guarantee the number of

different possible schedules associated with the corresponding

flexibility level.

The electricity tariff, which is defined based on the dynamic

pricing tariff currently used in Italy, is obtained by adding to

the day-ahead market clearing prices the costs of ancillary

services (e.g., electricity transport, distribution and dispatch-

ing). More specifically, we fix the cost of ancillary services

cAnc = 50 × 10−6 e and the slope of the pricing function

cEn = (0, 11 × 10−6)/|H|e/kWh.

In order to evaluate the performance of the proposed schemes,

we compare the Nash Equilibrium of the DSM game with

the outcome obtained by applying the distributed learning

algorithms, in terms of:

• Total utility: defined as the electricity bill of the group of

consumers, H.

• Peak demand: is the peak of the aggregated power de-

mand of the group H, and is defined as maxt yt.
• Fairness: represents the fairness of the DSM solution in

terms of sharing of the energy bill among users, and is

measured using the Jain’s Fairness Index.

Note that for each scenario considered in our tests, 5 different

instances are generated. In Subsection IV-B, we only report

the average results obtained for each test case.

1Namely, shiftable devices: washing machine, dishwasher, boiler, vacuum
cleaner; fixed devices: refrigerator, purifier, lights, microwave oven, oven, TV,
iron

B. Performance Evaluation

Numerical results are reported in Figures 4, and 5. Specif-

ically, in these figures, we analyze the dynamics of our

learning policies by showing the aggregated users’ bill, the

peak demand, and the fairness of the appliances scheduling

solution obtained with the proposed learning algorithms (i.e.,

using both the Two-State and Multi-State policies) in the case

of 100 users. These results are compared with those associated

with the Nash equilibrium of the DSM game in order to

verify the convergence of the learning method. Moreover,

we also report the performance of the appliance scheduling

game with no scheduling flexibility, i.e., when the usage of

electric devices is not modified by the DSM system. Numerical

results show that both proposed learning policies converge

rapidly to the Nash equilibrium. Specifically, the Two-State
policy converges slightly more quickly than the Multi-State
one, which has more alternative schedules to select at each

iteration. The main reason for this result is that by limiting the

exploration of the appliances schedules to only two states, as in

the TS policy, at each iteration k only a few customers actually

change their strategies with respect to the previous iteration,

thus reducing the game dynamics. As a consequence, in this

scenario, the players’ estimation of the game state, which is

obtained using the information on the past iteration of the

algorithm (i.e., ck−1
t), is more accurate.

We further observe that the convergence time of the algo-

rithms strongly depends on the flexibility of the system in

scheduling the electric appliances. Specifically, the algorithms

converge more quickly to the Nash equilibrium with a short

flexibility level: in this case, each player has a lower number

of strategies to try, thus reducing the exploration process

of the learning method. However, shorter convergence times

come at the cost of worse performance of the DSM system:

smaller execution intervals for shiftable appliances always

result in a higher bill and peak demand, as well as lower

fairness, since the system contains fewer alternative schedules

and the distributed DSM mechanism spreads the execution

of the appliances over smaller time intervals. Nevertheless,

it is worth noting that even with low flexibility, the learning

algorithms always allow players to achieve better results than

those obtained with fixed scheduling choices (i.e., without the

DSM system), even before converging to the equilibrium of

the game.

We emphasize that the convergence speed for the proposed

distributed learning algorithms increases with the number of

shiftable appliances which participate in the scheduling game.

As illustrated in Table II, the scenario with 400 shiftable

appliances is always characterized by a lower convergence

time. Furthermore, it can also be observed that both learning

policies achieve solutions within 5% of the electricity price

obtained at the Nash equilibrium in very few iterations. Such

results confirm the applicability of our distributed learning

algorithms to real use-case scenarios, where thousands of users

would participate in the DSM game with the expectation of

quickly obtaining a reduction of their bills.

10 20 30 40 50 60 70 80 90 100
78

79

80

81

82

83

84

85

Iteration

T
ot

al
 U

til
ity

 [$
]

Nash Equilibrium
Two−State Policy
Multi−State Policy
No Flexibility

(a) Aggregated Utility

10 20 30 40 50 60 70 80 90 100
4.5

5

5.5

6

6.5

7x 104

Iteration

Po
w

er
 [W

]

Nash Equilibrium
Two−State Policy
Multi−State Policy
No Flexibility

(b) Peak Power

10 20 30 40 50 60 70 80 90 100
0.998

0.9985

0.999

0.9995

1

Iteration

Fa
ir

ne
ss

Nash Equilibrium
Two−State Policy
Multi−State Policy
No Flexibility

(c) Fairness

Fig. 4. Aggregated utility, peak power demand, and fairness with 100 users and high flexibility.

10 20 30 40 50 60 70 80 90 100
78

79

80

81

82

83

84

85

Iteration

T
ot

al
 U

til
ity

 [$
]

Nash Equilibrium
Two−State Policy
Multi−State Policy
No Flexibility

(a) Aggregated Utility

10 20 30 40 50 60 70 80 90 100
4.5

5

5.5

6

6.5

7x 104

Iteration

Po
w

er
 [W

]
Nash Equilibrium
Two−State Policy
Multi−State Policy
No Flexibility

(b) Peak Power

10 20 30 40 50 60 70 80 90 100
0.998

0.9985

0.999

0.9995

1

Iteration

Fa
ir

ne
ss

Nash Equilibrium
Two−State Policy
Multi−State Policy
No Flexibility

(c) Fairness

Fig. 5. Aggregated utility, peak power demand, and fairness with 100 users and high flexibility.

TABLE II
CONVERGENCE TIME (MEASURED AS NUMBER OF ITERATIONS)

10 Users 50 Users 100 Users
(40 Appliances) (200 Appliances) (400 Appliances)

NE Gap TS MS TS MS TS MS
0.1% 150 136 60 123 51 81
1% 18 38 12 27 11 26
5% 3 6 2 4 2 4
10% 1 2 1 1 1 1

V. CONCLUSIONS

In this paper, we proposed two distributed reinforcement

learning algorithms based on the proportional imitation rule

for DSM systems. Specifically, each appliance of the system

decides autonomously its best schedule for the next iteration

by modulating the schedule-selection probability according to

the difference between the paid electricity price and the cheap-

est schedule. The scheduling decision problem is modeled

as a Markov chain, where each feasible appliance schedule

is associated with a state of the chain, and states transition

probabilities are updated using the bills paid by players.

We evaluated the performance of our proposed learning

methods based on realistic instances of the DSM load schedul-

ing game, demonstrating numerically that they quickly con-

verge to stable Nash equilibria which lead to cheaper bills

than those obtained without demand-side management. For

this reason, our proposed algorithms represent promising and

very efficient solutions to implement DSM systems in future

Smart Grid infrastructures.

ACKNOWLEDGMENTS

This work has been partially funded by Italian MIUR project

SHELL “Ecosistemi domestici condivisi e interoperabili per

ambienti di vita sostenibili, confortevoli e sicuri”, Regione

Lombardia project SCUOLA “Smart Campus as Urban Open

LAbs”, and by French ANR in the framework of the Green-

Dyspan project.

REFERENCES

[1] P. Palensky and D. Dietrich, “Demand side management: Demand
response, intelligent energy systems, and smart loads,” IEEE Trans. on
Industrial Informatics, vol. 7, no. 3, pp. 381–388, 2011.

[2] G. Strbac, “Demand side management: Benefits and challenges,” Energy
Policy, vol. 36, no. 12, pp. 4419–4426, 2008.

[3] A. Barbato and A. Capone, “Optimization models and methods for
demand-side management of residential users: A survey,” Energies,
vol. 7, no. 9, pp. 5787–5824, 2014.

[4] Z. Wang and G. Zheng, “Residential appliances identification and
monitoring by a nonintrusive method,” Smart Grid, IEEE Transactions
on, vol. 3, no. 1, pp. 80–92, March 2012.

[5] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods
for the smart grid: an overview of microgrid systems, demand-side man-
agement, and smart grid communications,” Signal Processing Magazine,
IEEE, vol. 29, no. 5, pp. 86–105, 2012.

[6] A.-H. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 320–331, 2010.

[7] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT Press, 1998.

[8] M. H. Bowling, “Convergence and no-regret in multiagent learning,”
Neural Information Processing Systems (NIPS), 2004.

[9] L. Rose, S. Lasaulce, S. M. Perlaza, and M. Debbah, “Learning
equilibria with partial information in decentralized wireless networks,”
IEEE Communications Magazine, vol. 49, no. 8, pp. 136–142, 2011.

[10] C. Ibars, M. Navarro, and L. Giupponi, “Distributed demand manage-
ment in smart grid with a congestion game,” 2010, pp. 495–500.

[11] S. Iellamo, L. Chen, and M. Coupechoux, “Proportional and double im-
itation rules for spectrum access in cognitive radio networks,” Computer
Networks, vol. 57, no. 8, pp. 1863–1879, 2013.

[12] A. Barbato, A. Capone, L. Chen, F. Martignon, and S. Paris, “A
distributed demand-side management framework for the smart grid,”
Computer Communications, vol. 57, pp. 13–24, 2015.

[13] ECORET Project, Official web site (ITA), http://www.rse-web.it/
progetti.page?RSE originalURI=/progetti/progetto/documento/178/
312827&objId=178&typeDesc=Rapporto&RSE manipulatePath=
yes&docIdType=1&country=ita, apr 2014.

