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École Nationale Supérieure des Télécommunications
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Abstract—We present a non-cooperative game-theoretical
study of the power and rate control problem in IEEE
802.11 WLANs where network participants choose appro-
priate transmission power and data rate to achieve max-
imum throughput with minimum energy consumption. In
such game-theoretical study, the central question is whether
a Nash equilibrium (NE) exists, if so, whether the network
operates efficiently at the NE. In this paper, we show the
existence and uniqueness of the NE and the convergence to
the NE under best response strategy. However, the unique
NE is inefficient. Motivated by this fact, we propose both
linear and non-linear pricing scheme to improve efficiency.
We demonstrate that by wisely choosing the parameters,
the game converges to an efficient NE. Finally, we examine
the convergence to the NE under a practical rate update
scheme: the subgradient rate update.

I. introduction

In IEEE 802.11 WLANs, the wireless channel is shared
by all network participants. The contention based medium
access control (e.g., CSMA/CA) is used to access the
shared medium among contending nodes. In such dis-
tributed environment, increasing physical data transmis-
sion rate increases the throughput at the price of higher
energy consumption level. Thus one challenge for the
network participants is to achieve maximum throughput
with minimum power consumption by choosing appropri-
ate data transmission rate.

Such power and rate control problems have been stud-
ied in cellular networks under both optimization and game
theoretical frameworks where the transmission of one user
interferes other users due to the power interference among
users. The problem is different in IEEE 802.11 WLANs,
an interference-free environment in terms of transmission
power due to the contention based medium access control
mechanism. However, the contention based medium ac-
cess control creates another important feature which we
refer to as data rate interference, i.e., the data rate of
one user not only determines its own throughput, but also
influences the throughput of other users. In this paper,
we perform a cross-layer (PHY and MAC layers) study
on the power and rate control problem in IEEE 802.11
WLANs taking into account the transmission rate interfer-
ence. Since IEEE 802.11 WLANs are by nature distributed
and non-cooperative environments, we argue that the game
theoretical model is more appropriate to study the above
problem than the global optimization model. The main
contribution of our work is as follows:
• We model the power and rate control problem as non-

cooperative rate control game where each user tries to
maximize its throughput while minimizing its energy

consumption, which is a function of the transmission
rate. We show the uniqueness and the inefficiency of
the Nash equilibrium (NE) and the convergence to the
NE under best response strategy.

• We then propose both linear and non-linear pricing
schema to improve efficiency. We show that by wisely
choosing the parameters, the game converges to an
efficient NE. We also examine the convergence to the
NE under a practical rate update schema: the subgra-
dient rate update.

II. Related Work

The problem of power and rate control is widely ad-
dressed in the context of cellular networks where game
theory is exploited as a powerful tool to model the user be-
haviors [4], [7]. However, very little work has been done on
modeling the power and rate control in wireless networks
with contention based medium access mechanism such as
IEEE 802.11 WLANs although the same problem in latter
context is by nature different to that in cellular networks
due to the transmission rate interference caused by the
medium access contentions. [5] shows via both simulation
and analytical model that in a non-cooperative environ-
ment under IEEE 802.11 DCF (Distributed Coordination
Function), a selfish node may achieve higher throughput
by using a lower data transmission rate at the expense of
reduced overall network throughput. In [5], the power con-
sumption is not taken into account when maximizing the
node’s throughput. [6] restudy the problem using both co-
operative and non-cooperative approach. Their emphasis
is on the cooperative control and little analysis is done on
the non-cooperative control. Neither [5] and [6] considers
the concept of pricing in their work.

Our work differs with the existing work in that: 1) we
conduct a more in-depth analysis on the non-cooperative
power and rate control, including the existence, unique-
ness, convergence and efficiency of the Nash equilibrium;
2) based on our analysis, we propose both linear and non-
linear pricing schemas to derive an efficient Nash equilib-
rium maximizing the overall network utility.

III. System Model

We base our analysis on the results of [1]. We consider
a single-hop IEEE 802.11 WLAN of n nodes. Each node
uses the IEEE 802.11 DCF protocol with RTS/CTS frame
exchange to access the channel and each node has an equal
channel allocation probability. The network is saturated
such that every node always has packets to transmit when



2

having chance to do so. We assume that that all nodes
use the same back-off parameters and the packets are of
the same size L. With these assumptions, [1] shows the
throughput of node i is

Si =
β(1−β)n−1L

1 + nβ(1−β)n−1(To− tc + 1
n

∑n
j=1

L
Cj

)+ (1− (1−β)n−1)Tc

where β is the long run average attempt rate per node per
slot in back-off time, Ci is the data rate of i. To is the
transmission overhead in slots related to a frame transmis-
sion (SIFS/DIFS, etc), Tc is the fixed overhead for an RTS
collision in slots. We direct readers to [1] for more detail.

IV. Utility Function

In game theory, the utility function is used to describe
the satisfaction level of the player as a result of its actions.
In our context, network participants try to maximize their
throughput while minimizing the power consumption. We
adopt the utility function in [6] defined as the difference
between the throughput and the power consumption:

Ui := Si − ζiQi(Ci)

where ζi > 0 is the relative importance weight (energy con-
sumption versus throughput) of i, Qi(Ci) is the power con-
sumption and can be approximated by a linear function of
Ci: Qi(Ci) = aiCi, where ai is a constant that may depend
on the path attenuation under given channel conditions.
We can write Ui as

Ui(Ci) =
q1

nq2 + q1

∑n
j=1

1
Cj

− ζiaiCi

where q1 = nβ(1−β)n−1L, q2 = 1+nβ(1−β)n−1(T0−Tc)+
(1− (1−β)n)Tc.

Lemma 1: Let Ai =
1√
ζiai

− 1, B = n
q2

q1
. It holds that

• The utility function Ui is concave w.r.t Ci.
• If Ai > 0, then Ui(Ci) admits a unique positive maxi-

mizer C̃i =
Ai

B +
∑n

j=1,j 6=i
1

Cj

. Ui(Ci) is monotonously

increasing w.r.t Ci in (0, C̃i) and monotonously de-
creasing in (C̃i,+∞).

• If Ai ≤ 0, then Ui(Ci) is monotonously decreasing
w.r.t Ci in (0,+∞)

V. Non-cooperative Rate Control Game

We formulate the power and rate control problem as a
non-cooperative rate control game GNRC . Our motivation
of using game theoretical approach is two-fold: 1) It is a
powerful tool to model selfish behaviors and their impact
on the system performance in distributed environments
with self-interested players; 2) It can model the features
or constraints of WLANs such as lack of coordination and
network feedback. In fact in such environments, its dis-
tributed nature, selfish behavior is much more robust and
scalable than any centralized cooperative control, which is
very expensive or even impossible to implement.

Definition 1: The non-cooperative rate control game
GNRC is a 3-tuple

(N , {Pi}, {Ui(·)}
)
, where N={1, 2,

· · · , n} is the player set, Pi is the strategy set of player i,
Ui(·) is the utility function of player i defined previously.
Each player i selects its rate Ci ∈ Pi = [Cmin, Cmax] to
maximize its utility Ui. Formally, GNRC is expressed as:

GNRC : max
Ci∈Pi

Ui(Ci, C−i), i ∈ N (1)

In GNRC , the data rate optimizing player’s individual
utility Ui depends on both its own transmission rate Ci

and that of its opponents, denoted as C−i. Generally, for
non-cooperative games as GNRC , in some cases, the game
may reach an equilibrium where no player has incentive to
deviate from its current strategy. Such equilibrium is called
Nash equilibrium in game theory, which can be seen as
optimal “agreements” between the opponents of the game.

VI. Solving the Game

In the non-cooperative game, one of the most important
questions is whether there exists a NE or not. The NE is
defined as follows in the case of GNRC .

Definition 2: A data rate vector C = (C1, · · · ,Cn) is said
to be a NE of GNRC if no player can improve its utility by
unilaterally deviating from NE:

Ui(Ci, C−i) ≥ Ui(C ′i, C−i),∀C ′i ∈ [Cmin, Cmax]
The concept of NE offers a predictable, stable outcome

of a game where multiple agents with conflicting interests
compete through self-optimization and reach a point where
no player wishes to deviate. However, such a point does
not necessarily exist. First, we investigate the existence of
NE in GNRC .

Theorem 1: GNRC admits at least one NE.
Proof: In GNRC , the strategy space of each user is

a compact, convex set with minimum and maximum rate
constraints Cmin and Cmax, respectively. The utility func-
tion Ui is concave w.r.t Ci and bounded. GNRC is a n-
person game defined in [3] and admits at least a NE.

A. Best Response Strategy

At NE, the data rate chosen by a rational self-interested
player constitutes a best response to the data rate currently
chosen by other players. Formally, player i’s best response
ri : C−i → Ci is defined as follows:

ri = argmax
Cmin≤Ci≤Cmax

Ui(Ci, C−i) (2)

In GNRC , applying Lemma 1, the best response of each
player i is as follows:

Ci =





Cmin C̃i < Cmin

C̃i =
Ai

B +
∑

j∈N ,j 6=i
1

Cj

Cmin ≤ C̃i ≤ Cmax

Cmax C̃i > Cmax

(3)

The following corollary is immediate.
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Corollary 1: If {Ci} updated according to best strategy
response converges to {C∗i }, where Cmin ≤ C∗i ≤ Cmax,
then {C∗i } is a NE.

Consider GNRC is played repeated, choosing the best
response at each stage consists of a natural and ratio-
nal strategy called the best response strategy where each
player updates its transmission rate for the next time stage
such that it maximizes its utility based on the transmis-
sion rate of opponents in the current time stage. It is
commonly used to study stability of NE. Next we inves-
tigate uniqueness of NE and the convergence of the best
response strategy.

B. Uniqueness and Convergence of NE

Theorem 2: GNRC admits a unique NE. Start from any
initial point, the iteration defined by best response function
converges to the unique NE.

Proof: By Theorem 1, we know that there exists at least
one NE. Let C denote the NE. By definition, the NE has to
satisfy C = r(C), where r(C) = (r1(C), r2(C), · · · , rn(C))
is the best response vector of all players. The key point
to prove the uniqueness is to show that the best response
function r(C) is standard. A function is said to be standard
if it satisfies the following properties:
• positivity: r(C) > 0;
• monotonicity: if C ≥ C ′, then r(C)≥ r(C ′);
• scalability: for all µ > 1, µr(C) > r(µC).
In above properties, the vector inequality C > C ′ is de-

fined as a strict inequality in all components. These prop-
erties can be easily verified for r(C) in GNRC . It is shown
in [6] that the fixed point C = r(C) is unique for a stan-
dard function and that start from any point, the iteration
defined by the standard function converges to the unique
fixed point. Therefore, the NE of GNRC is unique. The
global convergence to the unique NE under the best re-
sponse strategy is also guaranteed.

Remark: Theorem 2 is a powerful result since it not only
establishes the uniqueness of NE, but also guarantees the
convergence of the NE under the best response strategy. It
follows straightforwardly that the unique NE is also stable
in that any deviated point from the NE will be dragged
back to the NE under best response strategy.

Let C∗ = {C∗i } denote the unique NE of GNRC , solving
C∗ equals to finding the fixed point of the best response
function i.e., solving r(C) = C. In the unconstraint case
where all players can attain the unique maximizer of Ui,

we obtain C∗i =
(Ai +1)

(
1−∑

j∈N
1

Aj+1

)

B
.

In general cases, some players may not be able to reach
the unconstraint maximizer of its utility function. It fol-
lows from the best response function that ∀i, j ∈ N , if
Ai < Aj , C∗i < C∗j . Hence, at the NE: a subset N1 of
nodes with small Ai values operate on Cmin; a subset N2

of nodes with large Ai values operate on Cmax; the rest
nodes k ∈N −N1−N2 operate on the unconstraint maxi-

mizer C∗k =
(Aj + 1)

(
1−∑

r∈N−N1−N2

1
Ar+1

)

B + |N1|
Cmin

+ |N2|
Cmax

. Note that

the subsets N1, N2 and N −N1−N2 may be empty, e.g., if
N1 =N2 = Φ, it is the unconstraint case. With the above
guidelines in mind, we propose the following algorithm to
find the unique NE (the correctness proof of the algorithm
is omitted here due to space limitation).

Algorithm 1 Find the NE

Sort the players according to their Ai values such that
after the sorting, A1 ≤ ·· · ≤An

N1 ← Φ, N2 ← Φ, i← 1, j ← n, changed← true

while change = true do

if
(Ai + 1)

(
1−∑

r∈N−N1−N2

1
Ar+1

)

B + |N1|
Cmin

+ |N2|
Cmax

< Cmin then

C∗i ← Cmin, N1 ← i, i ++
else

changed = false
end if

if
(Aj + 1)

(
1−∑

r∈N−N1−N2

1
Ar+1

)

B + |N1|
Cmin

+ |N2|
Cmax

> Cmax then

C∗j ← Cmax, N2 ← j, j−−
else

changed = false
end if

end while

for k = i to j do

C∗k =
(Aj +1)

(
1−∑

r∈N−N1−N2

1
Ar+1

)

B + |N1|
Cmin

+ |N2|
Cmax

end for
return C∗

Remark: We consider the unconstraint case to gain a

more in-depth insight on the NE.
∂ζiQi

∂Ci
=

1
(Ai +1)2

= ζiai

can be regarded as the price for player i operating on Ci.
The NE is thus the point where the marginal throughput

gain
∂Si

∂Ci
equals to the price. From the players’s point of

view, operating at higher transmission rate increases the
throughput at the expense of paying more in terms of en-
ergy. Hence, search the NE is actually to seek a compro-
mised point between the gain (throughput) and the cost
(energy consumption).

VII. Inefficiency of the NE – Price of Anarchy

The NE discussed in last section provides a solution
where no player can increase its utility any further through
individual effort. It is an outcome obtained as a result of
distributed decision taking which may be less efficient than
cooperation rate configuration among players. Indeed, it
is well known that in general the NE are inefficient. A nat-
ural question we pose here is whether the obtained NE of
GNRC is efficient (social optimal), i.e., whether the net-
work achieves the optimum performance at the NE. In
this section, we focus on this question by investigating the
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degradation of network performance due to the selfish be-
havior of users by comparing the social utility on the NE
with the maximum one.

We borrow the concept of Price of Anarchy (PoA) widely
applied to qualify the NE in routing game and congestion
control game to study the efficiency of the NE in GNRC .
To this end, we define PoA in our context as the ratio of
the system utility at the unique NE and the optimal social
utility. The PoA in our context measures the upper bound
of the amount of suffering to the network as a whole due
to lack of coordination.

Let Ĉ = {Ĉi} denote the social optimal point of GNRC

maximizing the global network utility
∑

i∈N Ui, by impos-

ing
∂

∑
i∈N Ui

∂Ci
= 0, we have,

Ĉi =





Cmin C̃ ′i < Cmin

C̃ ′i =
A′i

B +
∑

j∈N ,j 6=i
1

Ĉj

Cmin ≤ C̃ ′i ≤ Cmax

Cmax C̃ ′i > Cmax

(4)

where A′i =
√

n

ζiai
− 1.

Compare (4) with the best response function of GNRC

(3), we notice that by substituting Ai by A′i in (3), we
obtain a standard function r′(C) whose unique fixed point
is exactly the social optimal point.

There are several interesting engineering implications
from the above analysis: 1) If each player updates its data
rate according to r′(C), the network will converge to the
social optimal point; 2) With slight modification, the algo-
rithm proposed in last section can be applied to calculate
the social optimal point; 3) It holds that C∗ ≤ Ĉ,∀i ∈ N
(for any vectors C and C ′, C ≤ C ′ is defined such that
for any component Ci and C ′i, Ci ≤ C ′i.). This can be
shown by noticing that Ai < A′i,∀i ∈ N , thus start from
the same initial point C0, at each iteration t, it holds that
rt(C0)≤ (r′)t(C0).

We study the unconstraint case to show the ineffi-
ciency of the NE of GNRC . In such circumstance, Ĉi =
(A′i +1)

(
1−∑

j∈N
1

A′j+1

)

B
, all players transmit at lower

rate than the social optimal value. This implicates that
in such cases the NE is inefficient. The price of anarchy

PoA=
∑

i∈N Ui(C∗i )
∑

i∈N Ui(Ĉi)
< 1. We resummarizes the result in

the following theorem:
Theorem 3: In unconstraint case, the obtained unique

NE is inefficient. PoA=
∑

i∈N Ui(C∗i )
∑

i∈N Ui(Ĉi)
< 1

Remark: In fact, the NE is not Pareto optimal either. If
all players switch from the NE to the global optimal point,
both the individual and the social utility increase. This is
due to the fact of lack of cooperation and the incentive to
operate at social optimal point.

To further illustrate how inefficient the unique NE can
be, we study the PoA for the symmetric unconstraint case

where ζi = ζ, ai = a for all nodes i. In such cases, C∗i =
q1

q2

(
1

n
√

ζa
− 1

)
, Ĉi =

q1

q2

(
1√
nζa

− 1
)

.

PoA =
Ui(C∗i )

Ui(Ĉi)
=

q1
nq2+

∑
j∈N

1
Cj

− ζaCi

∣∣∣
Cj=C∗j

q1
nq2+

∑
j∈N

1
Cj

− ζaCi

∣∣∣
Cj=Ĉj

=
1−n

√
ζa

1−√ζa

We have omitted some trivial mathematical operations
in the above manipulation. One necessary condition is
that C∗i , Ĉj > 0, thus n

√
ζa < 1. We observe that in cases

where Cmin → 0 and n
√

ζa→ 1, PoA→ 0. In such cases,
the NE corresponds to a quasi collapse of the network. The
above analysis motivates us to seek incentive mechanism
to encourage players to approach the social optimal point.

VIII. Non-cooperative Rate Control Game With
Pricing

Pricing is a powerful technique in game theory to moti-
vate selfish players to adopt a social optimal behavior. In
our context, we turn to pricing to let the network converge
to an efficient NE. We implicitly encourage cooperation via
pricing in the non-cooperative environment. More specifi-
cally, noticing that at non-cooperative environment, play-
ers tend to transmit at lower rate than the data rate at the
social optimal point, we encourage the players to increase
their data rate via pricing to approach the NE to the so-
cial optimal point. In this new context, we develop a non-
cooperative game with pricing denoted by GNRCP =

(N ,
{Pi}, {U ′

i(·)}
)
, where the utility function U ′

i(·) is defined
as U ′

i = Ui+τi(Ci), where τi : Pi → R is the general form of
the pricing function. In this paper, we focus on two pricing
schemas in GNRCP : linear and non-linear pricing.

A. Linear Pricing Function

We first concentrate on the linear pricing schema where
τi(Ci) = biCi. Motivated by the fact that in unconstraint
case, at NE of GNRC , players transmit at lower rate
than the social optimal case, we impose a pricing func-
tion monotonously increasing w.r.t. Ci by setting bi > 0
to encourage the players to transmit at a higher rate. biCi

can be regarded as extra gain to players imposed by the
pricing policy. The non-cooperative rate control game
with linear pricing GNRC−LP is thus formally expressed as
GLP

NRC : maxCi∈Pi UL
i (Ci,C−i) = Ui(Ci,C−i)+ biCi, i ∈N

In this paper, we do not specify how to realize the pricing
in practice. Possible approaches include virtual currency
etc. We are now ready to discuss how to tune the pricing
factor bi to establish the efficient NE in GLP

NRC .
In GLP

NRC , the concavity of the utility function is main-
tained and the existence of NE is thus guaranteed. More-
over, player i’s best response rL

i : C−i → Ci is as follows:

Ci =





Cmin C̃L
i < Cmin

C̃L
i =

AL
i

B +
∑

j∈N ,j 6=i
1

Cj

Cmin ≤ C̃L
i ≤ Cmax

Cmax C̃L
i > Cmax

(5)
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where AL
i =

1√
ζi(ai− bi)

− 1.

It is easy to show that rL(C) is standard. The following
theorem follows immediately.

Theorem 4: GLP
NRC admits a unique NE. Start from any

initial point, the iteration defined by best response rL(C)
converges to the unique equilibrium which is the unique
fixed point of rL(C).

Compare (5) with (4), if AL
i = A′i, rL(C) becomes the

same as r′(C). As consequence, the NE of GLP
NRC coincides

with the social optimal point. This implicates that to make
the NE of GLP

NRC efficient, it suffices to set AL
i = A′i, which

can be achieved by setting bi =
(n− 1)

n
ai.

Theorem 5: In GLP
NRC , if bi =

(n− 1)
n

ai, then the unique

NE is efficient (socially optimal).

In the analysis of GNRC , we can interpret
∂ζiQi

∂Ci
=

1
(Ai +1)2

= ζiai as the price for player i operating on

Ci. Here in GLP
NRC , the above price becomes

1
(AL

i + 1)2
=

ζi(ai− bi) = ζiai/n. As the price decreases, each player i
tends to increase its transmission rate Ci at NE.

A desirable property of the linear pricing schema is that

bi =
(n− 1)

n
ai is independent to ζi, which is inaccessible to

any others except player i. However, since bi depends on
ai, any error on ai influences the effectiveness of the pric-
ing scheme. We consider the following unconstraint case
to study the above influence: if i maliciously reports ai as
a′i = gai where g > 1, the new NE of GLP

NRC CL′ = {CL′
i }

will deviate from the original NE CL = {CL
i }, which is

also the social optimal point. More specifically, we have

b′i =
n− 1

n
a′i, AL′

i < AL
i , thus CL′

j < CL
j for all players j.

We also have Ui(CL′) > Ui(CL) and Uj(CL′) < Uj(CL)
for other players j. This implies that by reporting a larger
value of ai, a malicious selfish player i can get more pay-
off at the expense of others and the sub-optimality of the
network as a whole.

With the above vulnerability of the linear pricing scheme
in mind, we propose the following non-linear pricing
scheme.

B. Non-linear Pricing Function

Note
∂

∑n
j=0 Uj

∂Ci
=

∂nSi−
∑n

j=0 ζjQj

∂Ci
=

∂(nSi− ζiQi)
∂Ci

,

we reconfigure the utility function such that UN
i = nSi−

ζQi (τi = (n− 1)Si). In this case, the best response func-
tion of the non-cooperative rate control game with non-
linear pricing GNP

NRC is the same as r′(C) in (4). We im-
mediately have the following results:

Theorem 6: The game GNRCP admits a unique NE.
Start from any initial point, the iteration defined by best
response converges to the unique equilibrium.

Theorem 7: In GNP
NRC , the unique NE is efficient.

C. Discussion

In fact, the linear and the non-linear pricing scheme rep-
resent different efforts of encouraging players two increase
their data rate. The linear pricing scheme achieves the
goal by decreasing the cost of the transmission from aiCi

to (ai − bi)Ci. Consequently players tend to transmit at
higher rates than in GNRC to maximize the new utility;
On the other hand, the non-linear scheme attain the same
goal by increasing the gain of the transmission from Si to
nSi. Again consequently players tend to transmit at higher
rates than in GNRC . An interesting property of the non-
linear pricing scheme is its independence to both ζi and ai.
Thus it can be deployed in a more general context and is
more robust to malicious attacks.

D. Subgradient Rate Update

Till now, we have studied the convergence to the NE un-
der the best response strategy. In some cases, the best re-
sponse strategy may lead to unbounded variation in strat-
egy spaces. Thus in this section, we consider an alternative
strategy which is widely used in system control and is of
practical importance: the subgradient rate update. In the
following part of this section, we study the convergence of
the subgradient update schema to the unique NE in GNP

NRC .
The analysis is also applicable in the linear pricing scheme.

Consider the subgradient rate update schema Ct+1 =
T (Ct) = {Ti(Ct)} defined as follows

Ct+1
i = T (Ct) = Ct

i +λ
∂UN

i

∂Ci
= Ct

i +λφi(Ct), ∀i ∈ N , t ≥ 0

where φi(x) =
∂UN

i

∂xi
=

n(
B +Σj∈N 1

xj

)2

(xi)2
− ζiai.

At each iteration of the subgradient update scheme, each
player takes a step in the direction of the positive subgra-
dient. The engineering implication is that if the marginal

throughput gain in GNP
NRC

∂nSi

∂Ci
is greater than the price

ζiai, player i increases its Ci, otherwise it decreases Ci.
By setting the step size λ sufficiently small, the subgradi-
ent update schema experiences much less variation and is
much smoother than the best response strategy.

We now study the sufficient conditions for the conver-
gence of the above scheme to the unique NE. Our analysis
follows the classical techniques in [8]. We first define a
function gi(τ) : [0,1]→ R for player i as

gi(τ) = τCt
i + (1− τ)C̃N

i + λφi(τCt
i + (1− τ)C̃N

i )

where C̃N
i = {C̃N

i } is the unique NE. It follows that

|Ti(Ct)−Ti(C̃N
i )| = |gi(1)− gi(0)|=

∣∣∣
∫ 1

0

dgi(τ)
dτ

dτ
∣∣∣

≤
∫ 1

0

∣∣∣dgi(τ)

dτ

∣∣∣dτ ≤ max
τ∈[0,1]

∣∣∣dgi(τ)
dτ

∣∣∣
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where C̃N is the fixed point of the mapping T . Noticing
that λ is usually sufficiently small, we have

∣∣∣dgi(τ)
dτ

∣∣∣ =

∣∣∣∣∣∣
Ct

i − C̃N
i + λ

∑

j∈N

∂φi

∂Ct
j

(
Ct

j − C̃N
j

)
∣∣∣∣∣∣

≤
∣∣∣∣1+ λ

∂φi

∂Ct
i

∣∣∣∣ ·
∣∣∣Ct

i − C̃N
i

∣∣∣ +

∣∣∣∣∣∣
λ

∑

j∈N ,j 6=i

∂φi

∂Ct
j

∣∣∣∣∣∣
·
∣∣∣Ct

j − C̃N
j

∣∣∣

Noticing that
∂φi

∂Ct
j

> 0, we have

∣∣∣dgi(τ)
dτ

∣∣∣ ≤
∣∣∣∣∣∣
1 + λ

∑

j∈N

∂φi

∂Ct
j

∣∣∣∣∣∣
·
∣∣∣
∣∣∣Ct

j − C̃N
j

∣∣∣
∣∣∣

where ||Ct||= maxi |Ct
i | is the maximum norm. By inject-

ing
∂φi

∂Ct
i

into the above equation, we obtain

∣∣∣dgi(τ)
dτ

∣∣∣ ≤
[
1− 2λain(

BCt
i + Ct

i

∑
j∈N

1
Ct

j

)3

(
B +

∑

j∈N ,j 6=i

(
1
Ct

j

− Ct
i

(Ct
j)2

))]
·
∣∣∣
∣∣∣Ct− C̃N

i

∣∣∣
∣∣∣

Define

ki = 1− 2λain(
BCt

i + Ct
i

∑
j∈N

1
Ct

j

)3


B +

∑

j∈N ,j 6=i

(
1
Ct

j

− Ct
i

(Ct
j)2

)


and k = maxi ki, the sufficient condition for the conver-
gence of the subgradient rate update scheme is k < 1. Im-
posing this condition, we get

B >
(n− 1)(Cmax − Cmin)

C2
min

Under the above condition, it follows that start from any
initial value C0, limn→+∞ Tn(C0) = C̃N

i . We summarize
the above result in the following theorem.

Theorem 8: In GNRCP with non-linear pricing function,

if B >
(n− 1)(Cmax−Cmin)

C2
min

, then the subgradient rate

update scheme converges to the unique NE C̃N
i .

Remark: Theorem 8 provides a guideline for the con-
vergence of the subgradient rate update. However, the
condition is only sufficient, not necessary and may be too
stringent in some cases. Hence, it is possible that even the
above condition is not met, the subgradient update schema
also converges to the NE.

In the above subgradient rate update scheme, each
player updates its data rate at the same time instance.
A natural and more practical generalization is the asyn-
chronous subgradient update scheme where only a random
subset of players update their data rate at a given time

instance. This scheme is actually more realistic in that
it is difficult for the players to synchronize their update
in a practical implementation. In our context, concerning
the convergence of the asynchronous subgradient update
scheme, we have the following theorem. The proof of the
theorem consists of proving two well known conditions suf-
ficient for asynchronous convergence of a non-linear itera-
tive mapping. The detailed proof is omitted here since it is
done in [7] for the same problem but in different context.

Theorem 9: In GNRCP with non-linear pricing function,

if B >
(n− 1)(Cmax−Cmin)

C2
min

, then the asynchronous sub-

gradient rate update scheme converges to the unique NE.

IX. Numerical Results

In this section, we present illustrative numerical results
for our non-cooperative game model of rate control. The
following set of parameters are used in our experiments:
L = 12000 bits (1500 bytes), ai = 0.001, b0 = 16, bk = 2kb0,
the data frame transmission overhead To = 52 slots, the
RTS collision overhead Tc = 17 slots, the slot size is 20µs
and K = 10 (see [6] for detailed description of the above pa-
rameters). Cmin and Cmax are set to 1Mbps and 100Mbps.

We study a network of 2 nodes with ζi = 5. We plot
the trajectory of the data rate under (3), i.e., the best
response strategy. It can be proven that the trajectory
of the data rate converges to the unique NE under the
best response strategy, which is confirmed in this numerical
study in Figure 1.

Figure 2 shows the node’s individual utility Ui as a func-
tion of transmission rate Ci. As shown both analytically
and numerically in the figure, the unique NE is not the
social optimal point.

We then study the inefficiency of the NE in unconstraint
case (Cmin → 0, Cmax → +∞) by plotting the PoA as a
function of n and ζi in Figure 3.

We next study the non-cooperative game model with
pricing scheme using the same scenario as in Figure 1. The
trajectory of the data rate with linear and non-linear pric-
ing scheme under the best response strategy is plotted in
Figure 4 and 5. Comparing with Figure 2, we can see that
the numerical result confirms our analytical result in that
the trajectory converges to the unique NE which is also
the social optimal point under the best response strategy.

We also study the trajectory of the data rate with non-
linear pricing scheme under subgradient update scheme in
Figure 6 and 7. We can check that the sufficient condition
of the convergence under the subgradient update scheme
does not hold in our scenario. However, The subgradi-
ent algorithm converges, indicating that in some cases, the
sufficient condition for the convergence under subgradient
update scheme may be too stringent. Under the subgra-
dient update scheme, the convergence to the NE achieves
in a much smoother way than the best response strategy.
The convergence is smoother with smaller λ, as a price,
the convergence rate is slower accordingly.

Finally, we study a more realistic scenario: a WLAN of
10 nodes with the same parameters as the previous illus-
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Fig. 1. Rate trajectory under best response
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Fig. 3. Price of anarchy (PoA)
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Fig. 4. Rate trajectory under best response:
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Fig. 5. Rate trajectory under best response:
non-linear pricing
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Fig. 6. Rate trajectory under synchronous
subgradient update: non-linear pricing
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Fig. 7. Rate trajectory under asynchronous subgradient update:
non-linear pricing

trative scenario of 2 nodes. We report that the network
converges to the NE. Table 1 compares the analytical re-
sult with the simulation result. We can see from the table
that the simulation result matches the analytical result
quite well. Besides, we can see that in this scenario, the
rate control is necessary or even indispensable to achieve
network-wide high performance.

Analytical Numerical
result result

NE (no pricing) 8.42Mbps 8.39Mbps
NE (non-linear pricing) 70.71Mbps 70.82Mbps
Social optimal data rate 70.71Mbps 70.85Mbps

PoA 0.315 0.312

TABLE I

NE analysis: a WLAN of 10 players

X. Conclusion

In this paper we formulated the power and rate con-
trol problem in IEEE 802.11 WLANs as a non-cooperative
game. We showed analytically the existence and unique-
ness of the NE and the convergence to the NE under best
response strategy. However, the unique NE is inefficient.
Motivated by this fact, we proposed both linear and non-
linear pricing scheme to improve efficiency. We demon-
strated that by wisely choosing the parameters, the game
converged to an efficient NE. In our future work, we plan
to extend our work for the multi-hop ad hoc networks.
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