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Abstract—In wireless mobile ad hoc networks where
nodes are selfish and non-cooperative, a natural and crucial
question is how well or how bad the MAC layer protocol
IEEE 802.11 DCF performs. In this paper, we study this
question by modeling the selfish MAC protocol as a non-
cooperative repeated game where players follow the TIT-
FOR-TAT (TFT) strategy which is regarded as the best
strategy in such environments. We show for single-hop ad
hoc networks the game admits a number of Nash Equilib-
ria (NE). We then perform NE refinement to eliminate the
inefficient NE and show that there exists one efficient NE
maximizing both local and global payoff. We also propose
an algorithm to approach the efficient NE. We then extend
our efforts to multi-hop case by showing that the game con-
verges to a NE which may not be globally optimal but quasi-
optimal in the sense that the global payoff is only slightly
less than the optimal case.

As conclusion, we answer the posed question by showing
that selfishness does not always lead to network collapse. On
the contrary, it can help the network operate at a NE glob-
ally which is optimal or quasi-optimal under the condition
that players are long-sighted and follow the TFT strategy.

Keywords: Wireless ad hoc network, IEEE 802.11 DCF,
Game theory, Markov chain.

I. Introduction

The IEEE 802.11 DCF (Distributed Coordination Func-
tion) has become the most popular MAC layer protocol of
ad hoc networks. It requires all network participants to
respect its rules. However, network adapters are becoming
more and more programmable, which makes a selfish node
extremely easy to tamper the wireless interface (e.g., mod-
ifying the Contention Window (CW) value) to maximize
its own benefit. Under this circumstance, a natural and
crucial question we pose is that how well or how bad IEEE
802.11 DCF performs if all nodes are selfish. More specifi-
cally, in such distributed environment as ad hoc networks
where coordination or punishment mechanisms are expen-
sive or even impossible to implement, can IEEE 802.11
DCF survive or does it lead to network collapse?

We answer the question by establishing a game theoret-
ical model of IEEE 802.11 DCF in selfish environment and
studying the network performance at the Nash Equilibria
(NE). We show both analytically and numerically that self-
ishness does not always lead to network collapse. On the
contrary, it can help the network operate at an efficient
NE globally optimal or quasi-optimal under the condition
that players are long-sighted and follow the TIT-FOR-TAT
(TFT) strategy which is regarded as the best strategy in
non-cooperative environments. We believe these are rea-
sonable conditions for participants of ad hoc networks.

The rest of the paper is organized as follows. In Sec-
tion II, we briefly review the related work. In Section III,
we extend Bianchi’s model to selfish environments where

nodes may operate on different CW values. Based on this
model, we formulate the non-cooperative multi-stage MAC
game in Section IV. In Section V, we solve the game by
showing the existence of NE and performing NE refinement
to eliminate the inefficient NE. We then extend our work
to multi-hop ad hoc networks in Section VI. Section VII
provides numerical results. Section VIII discusses some
related issues. Section IX concludes the paper.

II. Related Work

Game theory is a powerful tool in modeling interactions
among self-interested users and predicting their choice
of strategies. It is widely employed to study the non-
cooperative behaviors on the network layer. Much less
work has been done on the MAC layer, among which [6]
studies the noncooperative equilibria of Aloha networks
for heterogeneous users. [4] studies the stability of multi-
packet slotted Aloha with selfish users and perfect infor-
mation, [5] reconsider the same Aloha game with partial
information, where the transmission probability is adapted
according to collision feedback.

In the context of MAC protocols of IEEE 802.11, [7]
shows that the 802.11 MAC protocol leads to inefficient
equilibria if users configure their packet size and data rate
to maximize their own throughput. [2] shows that the exis-
tence of small population of selfish nodes leads to network
collapse. The authors thus propose a penalizing scheme to
prevent the network from being paralyzed.

Existing work shows that without coordination among
nodes, selfish behaviors degrade the network performance
or even paralyze the system. Thus punish or incentive
mechanisms are needed to encourage nodes to adopt so-
cially optimal behaviors. However, in our work, by intro-
ducing TFT, a natural strategy in non-cooperative envi-
ronments, we show that even without any coordination or
incentive mechanisms which may be expensive or even im-
possible to implement in ad hoc environments, selfishness
does not lead to network collapse. On the contrary, selfish-
ness can help the network operate at an equilibrium which
is globally optimal or quasi-optimal under the condition
that players are long-sighted and follow the TFT strategy.

III. Modeling IEEE 802.11 DCF With Selfish
Nodes

We consider a wireless ad hoc network consisting of a
set N = {1, 2, · · · , n} of selfish nodes within the same
communication range (i.e., each node can hear any other
node). By selfish we mean that each node can configure its
own CW value. We assume that the network is saturated,
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i.e., each node always has packets to send and the packets
are of the same size.

We develop a Markov chain model based on Bianchi’s
model [1] taking into consideration the selfish feature of
nodes. The initial CW value of node i is denoted by Wi.

Fig. 1. The Markov Chain model

In the jth stage, it becomes 2jWi (0 < j < m, m is the max-
imum backoff stage). τi denotes the transmission probabil-
ity of i in a random slot. pi denotes the collision probability
of i when it transmits a packet in a random slot. As il-
lustrated in Figure 1, each state is denoted by the couple
(s, b) representing the backoff stage and CW value. The
two-dimensional discrete-time Markov chain of node i can
be described by following equations:

P{j,k|j,k +1}= 1 k ∈ (0,2jWi− 2) j ∈ (0,m)
P{0,k|j,0}= 1−pi

Wi
k ∈ (0,Wi− 1) j ∈ (0,m)

P{j,k|j− 1,0}= pi

2jWi
k ∈ (0,2jWi− 1) j ∈ (1,m)

P{m,k|m,0}= pi

2mWm
k ∈ (0,2mWm− 1)

(1)
Based on the above descriptions of state transitions for
traffic flows, we can solve the Markov chain for node i.
Let qi(j,k) (0≤ j ≤m,0≤ k ≤ 2jWi−1) be the stationary
distribution of the chain. We express qi(j, k) by qi(0,0).

Apply
m∑

j=0

2jWi−1∑
k=0

= 1, we get

qi(0, 0) =
2(1− 2pi)(1− pi)

(1− 2pi)(Wi + 1) + piWi(1− (2pi)m)

τi =
m∑

j=0

qi(j,0) =
2(1− 2pi)

(1− 2pi)(Wi +1) + piWi(1− (2pi)m)

=
2

1 +Wi + piWi

∑m−1
j=0 (2pi)j

(2)

Furthermore we have the following equation on the re-
lation between τi and pi: pi is the probability that at least
one of the other (n− 1) nodes transmit in the slot:

pi = 1−
∏

j∈N ,j 6=i

(1− τj) (3)

Combining the equation (2) and (3) of all nodes i, we get
2n equations with 2n variables τ1, · · · , τn, p1, · · · , pn, which
can be solved numerically. [1] has shown that if all nodes
choose the same CW values, the Markov chain model ad-
mits a unique solution.

As an application, the above model can be used to calcu-
late the normalized throughput S, defined as the fraction
of time of successful transmission on the channel:

S =
Sslot

Tslot
=

PsPtrE[P ]
(1− Ptr)σ + PtrPsTs + Ptr(1− Ps)Tc

where Sslot is the time to successfully transmit a packet,
Tslot is the average slot length, E[P ] is the average packet
payload size, Ptr = 1−

∏
j∈N (1− τj) is the probability

that there is at least one transmission in the considered

slot time, Ps =

∑
i∈N τi

∏
j∈N ,j 6=i(1− τj)
Ptr

is the probabil-

ity that exactly one node transmits on the channel condi-
tioned by at least one node transmits. The average length
of a slot time is obtained considering that, with probabil-
ity 1−Ptr, the slot time is empty, with probability PtrPs,
it contains a successful transmission, and with probability
Ptr(1−Ps), it contains a collision. Ts is the average time
the channel is sensed busy due to a successful transmission,
Tc is the average time the channel is sensed busy by each
node during a collision. σ is the empty slot duration. In
basic IEEE 802.11 DCF without RTS/CTS dialogue, as-
suming the packet sized is the same for all packets, let H
be the time to transmit the packet header including PHY
and MAC header and P is the time to transmit a packet,
neglecting the propagation delay, we have:{

Ts = H +P +SIFS +ACK +DIFS
Tc = H +P +SIFS

IV. Game theoretical model and problem
formulation

In this section, we study the selfish MAC behaviors us-
ing game theory. All nodes are selfish, rational and do
not cooperative in managing their communication. They
are also energy-constrained. Each node i chooses its CW
value Wi to maximize its own benefit described by a utility
function defined as

ui =
τi[(1− pi)gi − ei]

Tslot

where gi is the gain of node i when successfully transmit-
ting a packet, ei is the cost of sending a packet, Tslot is
the average slot length. ui, expressed as the expected gain
during a slot time divided by the slot length, can be re-
garded as the expected gain per unit time. To simplify
the problem, we assume that gi and ei are the same for all
i, denoted respectively as g and e. Now we are ready to
introduce our non-cooperative MAC game.

We model the IEEE 802.11 MAC protocol as finite re-
peated game with unpredictable end time, which means
that the players cannot predict the end time of the game.
This is often the case in strategic interactions, in partic-
ular networking operations. In game theory this can be
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modeled as infinite multi-stage game with discount. The
discount factor is usually very close to 1, indicating that
the players is in general long-sighted. The game starts at
time 0 and each stage lasts T . The players of the game
are all the nodes in the network. The strategy set of the
players is the CW value set W = {1, 2, · · · , Wmax}. The
strategy profile W k played in the kth stage is thus the n-
tuple of individual’s stage game strategies.

W k = (W k
1 , ...,W k

n ), W k
i ∈ W

We denote the correspondent transmission probability pro-
file and collision probability profile in stage k as: τk =
(τk

1 , ..., τk
n) and pk = (pk

1 , ...,pk
n)

In the game, each player i chooses its CW value for the
kth stage W k

i ∈W at the beginning of the stage and oper-
ates on W k

i for whole stage. The decision of W k
i is made

based on previous actions of other players. We now give
the formal definition of the game.

Definition 1: The non-cooperative IEEE 802.11 MAC
game G is a 4-tuple (P,S,U , δ), where P =N is the player
set, S =×i∈PW is the strategy space, U={U1, · · · , Un} is

the utility function space where Ui =
+∞∑
k=0

δkUs
i (W k) is the

utility function expressed as the sum of the utility in each
stage k, Us

i (W k) = ui(W k)T is the stage utility function,
δ is the discounting factor which is generally close to 1.

In G, players are self-interested and rational, thus they
adopt the strategy that maximizes their own payoff. A
natural choice is the TFT strategy, a well known strategy
in game theory which is shown to be the best strategy in
non-cooperative environments and is the root of an ever
growing amount of other successful strategies. The core
idea of TFT is to cooperate for the first stage and then fol-
low the opponent’s last move for the coming stage. Before
tailoring the TFT strategy for our context and describing
how i adjusts its W k

i according to TFT strategy, we need
to get a more in-depth insight on the stage payoff.

Lemma 1: For any two players i, j, if W k
i > W k

j , then it
holds that pk

i > pk
j , τk

i < τk
j and Us

i (W k) < Us
j (W k).

Proof: See Appendix A for the sketch of the proof.
Now we are ready to introduce the following TFT strat-

egy in our context:
• In each stage k, each player i measures the CW value

of any other player j in the last stage (How to observe
CW values in saturated networks is addressed in [3].)

• Set W k
i = minj∈P{W k−1

j }
The argument behind this is that in selfish environment

each rational player is expected to take action to increase
its payoff if any other player gets more and will follow
the previous action if no player get more payoff than it-
self. TFT strategy has following desirable properties: (1)
The decision is made solely on local measurement. (2) It
is simple to implement and only the measurement of the
last stage needs to be stored. (3) It is especially suitable
for wireless ad hoc networks in that the broadcast nature
makes the observation very easy in promiscuous mode. (4)
It ensures the fairness among players. By applying it all

players converge to the same CW value, otherwise the play-
ers with greater CW values will decrease them according to
their measurement so as not to be disfavored. Thus within
finite number of stages all players will operate on the same
CW value which yields the same utility and throughput.

In practice, taking into account the various factors that
influence the measurement, a more tolerant version of TFT
called Generous TFT (GTFT) can be applied:
• Each player i measures the CW value of any other

player in the last r0 stages (from stage k− r0 to stage
k− 1)

• If there exists player l such that Wl < βWi (Wj =

1
r0

k−1∑
r=k−r0

W r
j ,∀j ∈ P), then set W k

i = minj∈P{Wj}

• Otherwise set W k
i = W k−1

i
β < 1 is the tolerance parameter which is close to 1. By

increasing r0 or decreasing β, the strategy becomes more
tolerant.

V. Solving the game

A. Nash Equilibrium of the Game

Game theoretic models are often analyzed using the con-
cept of Nash Equilibrium (NE), which can be seen as op-
timal “agreements” between the opponents of the game.
The Nash Equilibrium concept offers a predictable, stable
outcome of a game where multiple agents with conflict-
ing interests compete through self-optimization and reach
a point where no player wishes to deviate. However, such
a point does not necessarily exist. First, we investigate the
existence of NE in G.

As discussed in last section, all players converge to the
same CW value. Assume that from the stage t0, the CW
values of all nodes converge to Wc. The transmission prob-
ability of all nodes converges to τc. Thus τk

i = τi = τc for
all i ∈ P when k ≥ t0. The utility function of i can be ex-
pressed as a function of τi (expressing Ui as a function of
τi is equivalent to expressing Ui as a function of Wi while
expressing Ui by τi facilitates the following demonstration)

Ui =
+∞∑
k=0

δkUk
i T =

t0−1∑
k=0

δkUk
i T +

+∞∑
k=t0

δkUk
i T =

t0−1∑
k=0

δkUk
i T +

δt0T

1− δ

τi((1− pi)g− e)
Tslot

Given that δ is close to 1, we can ignore
t0−1∑
k=0

δkUk
i T in

the utility function. After some mathematic operations
calculating Tslot, we get:

Ui(τi) =
δt0T

1− δ
∗

τi

∏j 6=i
j∈N (1− τj)g− τie

Q
j∈N (1−τj)σ+

P
j∈N τj

Qk 6=j
k∈N (1−τk)Ts+[1−

Q
j∈N (1−τj)−

P
j∈N [τj

Qk 6=j
k∈N (1−τk)]Tc

Lemma 2: Ui(τi) is concave w.r.t τi under the condition
g� e.
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Lemma 3: Let Γc denote the profile where τi = τc for
all i ∈ P, it holds that Ui(Γc) admits a unique maximizer
τc = τ∗c and 0 < τ∗c < 1.

Proof: See Appendix B for the sketch of the proof.
Noticing the one-to-one relation between Wc and τc, we

can prove that there exists a unique Wc maximizing Ui(Γc).
We can also prove that Ui is monotonously increasing w.r.t.
τc before τ∗c and monotonously decreasing after it. Further-
more, noticing that τc is monotonously decreasing w.r.t.
Wc (This can be proven by combining (2), (3) and τi = τc,

Wi = Wc then showing
∂τc

∂Wc
< 0), it follows that Ui is

monotonously increasing w.r.t. Wc before it is maximized
and monotonously decreasing after that.

Now we introduce the following theorems on the Nash
Equilibrium of G.

Theorem 1: The game G admits at least one NE.
Proof: We have shown that the utility function of

any player Ui(τi) is concave w.r.t. τi. Furthermore, it
is easy to show that the strategy space of i expressed by
Wi: [1,Wmax] is equivalent to the closed space [τmin,1] ex-
pressed by τi, where τmin is the value of τi corresponding
to Wmax. The strategy space is thus a convex and compact
set. Hence G is a concave n-person game defined in [8] and
thus admits at least one NE (Th1, [8]).

Theorem 2: Any strategy profile that all players play Wc

where W 0
c ≤Wc ≤W ∗

c consists of a NE of G, where W ∗
c is

the CW value maximizing Ui, W 0
c is the CW value satis-

fying Ui(W 0
c , · · · ,W 0

c ) > 0 and Ui(W 0
c −1, · · · ,W 0

c −1) < 0.
Proof: We prove it by showing that no player has incen-

tive to deviate from Wc. On one hand, any player i has no
incentive to increases its CW value Wi because if i do so, it
is disfavored and gets less payoff (see Lemma 4 for the de-
tailed proof) and thus will set its Wi back to Wc according
to the TFT strategy. On the other hand, if i decreases its
Wi, say to W ′

c, other players will react by decreasing their
CW values to W ′

c, leading to the decrease of the payoff for
all players including i in following stages due to the fact
that Ui is monotonously increasing w.r.t. Wc before W ∗

c .
For i, this decrease of payoff in following stages, as will
be shown in Section V.D in a similar scenario, outweighs
the gain obtained during the stages when i operates on W ′

c

while others on Wc. Thus i gets less payoff by decreasing
Wi from Wc. Hence, i has no incentive to either decrease
or increase its Wi when operating at Wc. It follows that
Wc is a NE of G. Note that (Wc, · · · ,Wc) is not a NE if
Wc < W 0

c in that the payoff in this case is negative.
From Theorem 2, we can see that G has (W ∗

c −W 0
c +1)

NE. Usually not all of them are good. The next step is to
remove those NE that are less robust or less efficient and
to achieve a socially desirable result. This is achieved by
NE refinement addressed in next section.

B. Nash Equilibrium Refinement

In this section, we perform NE refinement through intro-
ducing extra optimality criteria which are fairness, social
welfare maximization and Pareto optimality.

Fairness: It is clear that all the NE of G achieve fairness

among players due to the TFT strategy in that each player
chooses the same CW value and gets the same payoff after
the convergence.

Social Welfare Maximization: Here the social wel-
fare refers to the sum of the players’s payoff, which re-
flects the global optimality. Among the NE, (W ∗

c , · · · ,W ∗
c )

maximizes both individual payoff Ui and the global pay-
off

∑
i∈P Ui = nUi. In fact it is the only NE maximiz-

ing the global payoff. The network operating on the NE
(W ∗

c , · · · ,W ∗
c ) achieves the global optimality.

Pareto Optimality: It is easy to check that
(W ∗

c , · · · ,W ∗
c ) is the only Pareto optimal NE. All other

NE are not Pareto optimal in that for any Wc 6= W ∗
c ,

Ui(Wc, · · · ,Wc) < Ui(W ∗
c , · · · ,W ∗

c ).
The NE refinement leads to a unique efficient NE

(W ∗
c , · · · ,W ∗

c ) maximizing both local and global payoff.

C. Approaching the Efficient Nash Equilibrium

In this section, we address the issue on how to reach the
efficient NE obtained in Section V.B. It is worth nothing if
the network cannot approach the efficient NE and operate
on it. If the number of the nodes n in the network is known
to players, the task becomes trivial in that the CW value of
the efficient NE can be computed given n. In some cases,
the network participants do not know the number of nodes
in the network, so they cannot directly calculate W ∗

c . Thus
an algorithm is needed to search W ∗

c . Next we provide such
a simple algorithm. Of course there exist better algorithms
achieving the same goal. Our objective here is to show the
necessity and the possibility of providing such an algorithm
rather than seek the best one.

The core idea is that one node l starts the search and all
nodes then the search for the CW value that maximizes l’s
payoff under the condition that they operate on the same
CW value. According to the analysis in previous section,
this value is W ∗

c . The algorithm requires all players to act
cooperatively. This does not contradict to the selfish na-
ture of players in that players are selfish in the sense that
their goal is to maximize their payoff, thus they have in-
centive to act cooperatively to reach the efficient NE which
will maximize their payoff as well as the global payoff.

An algorithm to approach the efficient NE
1. Any node l sends a message Start-Search containing the CW

value of the starting point Wl = W0 and starts the search.
2. Right-Search: l increases Wl by 1 and sends a message Ready

including the new Wl. Other nodes set their CW values to Wl

when receiving the message Ready.
l waits for a short period t for others to change their CW values
and measures its payoff in the following tm time. The payoff
can be calculated as follows: Ul = (nsg−nee)/tm, where ns is
the number of packets successfully emitted, ne is the number of
packets emitted. If the payoff is greater than the last measured
payoff with the old Wl, l continues the search until the payoff
decreases. l notes the last CW value Wm before decreasing.

3. Left-Search: If Wm 6= W0 +1, skip Left-search. Otherwise l de-
creases Wl by 1 and sends the message Ready including the new
Wl. Others set their contention window to Wl when receiving
the message Ready.
l waits or a short period t for other nodes to change their CW
values and measures its payoff in the following tm time. If the
payoff is greater than the last measured payoff, l continues the
search until the payoff decreases. l notes the last CW value Wm

before decreasing.
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4. l broadcasts Wm as the CW value of the efficient NE.

Remark: In the proposed algorithm, one may ask what
is the consequence if l broadcasts W ′

m 6= Wm = W ∗
c while

operates on W ∗
c itself. Actually l has no incentive to broad-

cast Wm < W ∗
c since this will lead the players to operate

on Wm according to TFT strategy. As a result, l gets less
payoff compared with the case where it reports W ∗

c and
operates on W ∗

c . If l broadcasts Wm > W ∗
c , the CW val-

ues will converge to W ∗
c . The only benefit of l is that it

may get certain amount of payoff before the convergence.
However, as shown in previous part of this section, the pay-
off obtained before the convergence is negligible compared
with the total payoff.

D. Impact of Short-sighted Players

In previous sections a basic assumption is that all players
are long-sighted (δ → 1). In this section we relax it to
study the impact of short-sighted players on the network
performance. We first introduce the following lemma.

Lemma 4: In G where all players play the same Wk,
the stage payoff of each player is Us

k(W k), where W k =
(Wk, · · · ,Wk). If player i deviates from Wk to Wi, while
any other player j sticks to Wk, the stage payoff of i
and j is Us

i (W k′), Us
j (W k′) respectively, where W k′ =

(Wk, · · · ,Wi, · · · ,Wk).
(1) If Wi > Wk, then Us

i (W k′) < Us
k(W k) < Us

j (W k′)
(2) If Wi < Wk, then Us

j (W k′) < Us
k(W k) < Us

i (W k′)
Proof: See Appendix C for the sketch of the proof.
We consider the scenario where there is one short-sighted

player s with the discount factor δs. s operates on Ws <
W ∗

c rather than W ∗
c to get more payoff.

We also assume that other nodes need m stages (m≥ 1)
to react according to the TFT/GTFT strategy to set their
contention window to Ws. Thus our game becomes the
following: in the first m stages s operates on Ws while
others on W ∗

c ; in the following stages, all players operate
on Ws. Thus the payoff of s is:

Us =
m−1∑
r=0

Us
s (W ∗

c , · · · ,Ws, · · · ,W ∗
c )+

∞∑
r=m

Us
s (Ws, · · · ,Ws)

=
1

1− δs
[(1− δm

s )Us
s (W ∗

c , · · · ,Ws, · · · ,W ∗
c ) +

δm
s Us

s (Ws, · · · ,Ws)]

On the other hand, if s operate on W ∗
c for all stages, its

payoff is:

U ′
s =

Us
s (W ∗

c , · · · ,W ∗
c )

(1− δs)

We consider the following two cases:
• If s is extremely short-sighted, we have δs → 0,

then according to lemma 4, we have Ws < W ∗
c =⇒

Us
s (W ∗

c , · · · ,Ws, · · · ,W ∗
c ) > Us

s (Wc, · · · ,Wc). Noticing
δs → 0, it follows that Us > U ′

s. Hence by operating
on Ws, s gets more payoff at the expense of others and
the sub-optimality of the network as a whole.

• If s is long-sight, then it will choose Ws to maximize
δm
s us(Ws, · · · ,Ws) where W ∗

c is the unique maximizer.

Generally, given δs, s can configure Ws to maximize its

payoff by imposing
dUs

dWs
= 0. To conclude, a short-sighted

player has negative impact on the network as a whole since
it will degrade the performance or even lead to network
collapse.

E. Impact of Malicious Players

Unlike selfish players, the malicious players aim at col-
lapsing the network. Hence they have no incentive to op-
erate on the efficient NE W ∗

c . To this end, they will surely
deviate from W ∗

c to fulfill their goal.
We consider the scenario where malicious player i oper-

ates on Wi < W ∗
c . Under this condition, other players will

decrease their CW values to Wi based on TFT. As conse-
quence, the network performance is degraded as the global
payoff decreases. If Wi is sufficiently small, the network is
paralyzed.

F. RTS/CTS Case

The Markov chain model for basic case is applicable in
RTS/CTS case. What differs in RTS/CTS case is that
collisions occur on RTS frames, thus{

T ′s = RTS +SIFS +CTS +H +P +SIFS +ACK +DIFS
T ′c = RTS +DIFS

Noticing T ′c � T ′s and performing the same demonstration,
we get the same result for RTS/CTS case.

VI. Multi-hop Case

We now extend our previous work to a more challeng-
ing environment – multi-hop wireless mobile ad hoc net-
works. We consider a connected multi-hop wireless mobile
ad hoc networks operating under RTS/CTS access mecha-
nism. We assume that nodes know the number of neighbor
nodes (e.g. via routing protocols or MAC layer beacons).

A. Markov Chain Model Adaptation

We need to modify the Markov chain model in Section
III to extend the model to multi-hop case. First, under the
assumption that the channel states sensed by the neighbors
of a node is the same as that sensed by the node, we can
rewrite (3) as

pi ≈ 1−
∏

j∈Mi,j 6=i

(1− τj) (4)

where Mi denotes the area within i’s transmission range.
We then modify the utility function as follows to take

into account the hidden node problem in multi-hop case:

ui =
τi((1− pi)pi

hngi − ei)
Tslot

where pi
hn is the degradation factor indicating 1−pi

hn% of
transmitted packets experience collisions at the receivers
due to the hidden node problem. The stage and total util-
ity function is derived in the same way as single-hop case.
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A key approximation in our model is that pi
hn is indepen-

dent of the CW values of players. We will show in next
section via simulation that this approximation is accurate
when n is large enough and CW values are not too small.
Note that we cannot solve τi and pi in multi-hop case with
the above model without the knowledge of the network
topology. However, as we will shown in following demon-
stration, we can establish the equilibrium of G′ using the
adapted model, which is our goal.

B. Formulating and Solving the game

The MAC layer game in multi-hop environment G′ can
be formulated in the same way as its counterpart G. How-
ever, it is obvious that the solution of G is no more appli-
cable for G′. Nevertheless, as long as players in G′ follow
TFT strategy, their CW values will converge to the small-
est one of all players after sufficiently long time although
the converged value may not be optimal for all players.
This can be shown intuitively: consider player s operates
on the smallest CW value Ws. The neighbor of s will de-
crease their CW values to Ws if they operate on higher
values according to TFT. Once their CW values are de-
creased, they have no incentive to increase it any more.
Then the CW values of the 2-hop neighbors of s will con-
verge to Ws. As a result, as long as the network is not
partitioned, the CW values of all players will converge to
Ws after sufficiently long time.

In multi-hop case, it is not possible to apply the algo-
rithm in Section V.C to reach an equilibrium point due to
the fact that the optimal CW value of l may not be optimal
for other players. Thus they have no incentive to operate
on this CW value or will not even participate in the search.
In stead, any player i relies solely on local information to
choose its CW value Wi. Under such circumstance, a nat-
ural way is to choose the initial value of Wi that maximizes
its payoff assuming its neighbors also operate on Wi and
to follow TFT in following stages. Taking into considera-
tion the approximation that pi

hn is independent of CW val-

ues and g � e, Wi is obtained by maximizing
τi(1− pi)g

Tslot
,

which is the same utility function in the single-hop game
G in case g � e. Hence, Wi is set to the CW value at
the efficient NE of the single-hop game G in which the
players are i and its neighbors (Here we implicitly assume
that nodes with the same CW values have the same packet
transmission and collision probability which is τi and pi re-
spectively. This assumption is accurate if n is sufficiently
large and the density of the network does not vary too
much.). The result is not surprising in that in multi-hop
environments without coordination among nodes, the best
strategy for a rational player is to operate on local optimal
point based on local information. Under this circumstance,
after sufficient long time, the CW value will converge to
Wm = mini∈N Wi. In the following theorem we prove that
all players operating on Wm constitutes of a NE of G′.

Theorem 3: In G′, the CW values of all players converge
to Wm = mini∈NWi, where Wi is i’s CW value at the
efficient NE of the single-hop game G in which the players

are i and its neighbors. It holds that Wm = (Wm, · · · ,Wm)
is a NE of G′.

Proof: We prove it by showing that any node j has no
incentive to deviate from Wm. If Wm is node j’s efficient
NE of local single-hop game, it is clear that j has no incen-
tive to deviate from Wm. In other cases, j has no incentive
to increase its CW in that it will be dragged back to Wm

according to the TFT strategy when j meets players oper-
ating on Wm; If j decrease its CW value to W ′

j < Wm, then
according to the TFT strategy, other nodes also decrease
their CW values to W ′

j . Note that under the condition
that all players choose the same CW value, the payoff of
j is monotonously increasing until it is maximized at Wj .
Since W ′

j < Wm = mini∈N Wi < Wj , thus the payoff of j
operating on W ′

j is less than that on Wm. Hence j has no
incentive to either decrease or increase its CW value from
Wm. It follows that Wm is the NE of G′.

Furthermore it can be shown that the above NE is Pareto
optimal, but not globally optimal. Nevertheless, we will
show in next section via simulation that the NE is quasi-
optimal in the sense that the global payoff is only slightly
outweighed by the optimal case and the fairness of the NE
is ensured in the sense that each player gets almost the
same payoff as the maximum payoff it can get.

VII. Numerical Results

We present the numerical results on our game theoretical
model. The network parameters are listed in Table I.

A. Single-hop Case

We first study the efficient NE when the CW value of
all players is converged. We conduct simulation in NS-2
and compare simulation results with our analytical results.
Table II and III show the main results in which W ∗

c is
the efficient NE according to our theoretical model, W ∗

c

is the average CW values of each node that maximizes its
own payoff in the simulation, V ar(W ∗

c ) is the variance of
W ∗

c . We can see that in both cases, the simulation results
coincide with the analytical results quite well.

Packet size 8184 bits
MAC header 272 bits
PHY header 128 bits

ACK 112 bits + PHY header
RTS 160 bits + PHY header
CTS 112 bits + PHY header

Channel bit rate 1 Mbits/s
σ 50µs

SFIS 28µs
DIFS 128µs

g 1
e 0.01
T 10s
δ 0.9999

Simulation time 1000s

TABLE I

Network parameters

We also trace the global payoff as a function of CW
values base on our model in Figure 2 and 3, where the Y-
axis is U/C where U denotes the global payoff and C =
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n W ∗
c W ∗

c V ar(W ∗
c )

5 76 75.6 3.35
20 336 337.4 2.78
50 879 880.5 2.65

TABLE II

Nash Equilibrium Point: basic case

n W ∗
c W ∗

c V ar(W ∗
c )

5 22 22.9 1.63
20 48 46.4 1.78
50 116 114.2 1.65

TABLE III

Nash Equilibrium Point: RTS/CTS case

gT

σ(1− δ)
is a constant. From the two figures especially the

CTS/RTS case (Figure 3) we can see that operating at W ∗
c

also achieves the global social optimality. Furthermore,
the efficient NE is quite robust in the sense that the CW
values near W ∗

c yield almost the same global and local
payoff. Consequently, a rational players should be satisfied
as long as it operates not too far from W ∗

c . This robust and
tolerant feature may significantly facilitate the design and
implementation of TFT/GTFT strategy and the algorithm
to reach W ∗

c .

Fig. 2. Global payoff versus CW value for basic case

Fig. 3. Global payoff versus CW value for RTS/CTS case

B. Multi-hop Case

We simulate for 1000s a network of 100 nodes with the
same transmission range of 250m moving at a speed ran-
domly picked from [0, 5m/s] according to the random way-
point model in a 1000m*1000m area. Each node has infor-
mation of its neighbors from which it calculates the local
optimal CW value.

We simulate the converged case by setting the converged
CW value to the smallest one among the nodes. This value,
26 in our scenario, is the NE according to our analytical
model. We then vary CW values to simulate both local and
global payoff and compare the results with that at NE. We
report that operating at NE, each node gets at least 96% of
the maximal local payoff it can get by varying its CW value
and the global payoff is only 3% less than the maximal
global payoff. We also observe from the simulation that
both the local and global payoff in RTS/CTS case is almost
independent w.r.t. CW values when n is large enough in
both single-hop and multi-hop cases. This independence
justifies our key approximation in Section VI.A.

The above numerical results show that selfishness leads
to a NE which is at least quasi-optimal if not optimal in the
sense that the both local and global payoff is only slightly
outweighed by the optimal case.

VIII. Discussion

In Section II, we mentioned that [2] shows the existence
of even small population of selfish nodes leads to network
collapse. Their results seem contradictory to ours. In fact
they coincide with ours. The point is that in their work,
the players are selfish and short-sighted, thus they choose
small CW values to maximize the short-term payoff. In our
work, we provide a more general analysis in both single-hop
and multi-hop networks: we first assume that the players
are selfish and long-sighted and show that selfishness does
not lead to network collapse; we then study the impact of
the short-sighted players on the network performance in
Section V.D and get the same result as [2].

In this paper, we choose a generical utility function and
do not take into account the delay and other factors. As
a result, the CW value of NE may seem too long in some
cases. To derive a more desirable NE, more factors need
to be considered depending on the target application and
other requirement.

IX. Conclusion

In this paper, we focus on the posed question: how well
or how bad does IEEE 802.11 DCF perform if all nodes are
selfish? We study it under a game theoretical framework.
Our main results are as follows:
• In single-hop ad hoc networks, selfishness does not al-

ways lead to network collapse. On the contrary, it can
help network operate at an efficient NE which is also
global optimal under the condition that players are
long-sighted and follow the TFT strategy.

• We provide a simple algorithm to approach the effi-
cient NE.
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• In multi-hop case, under the same condition, the net-
work operates on a NE not globally optimal. How-
ever, we show by numerical results that the NE is
quasi-optimal in the sense that the global payoff is
only slightly less than the optimal case.

Furthermore, we believe that the game theoretical model
proposed in this paper is a general framework that can
be extended to model other selfish behaviors such as rate
control by redefining the proper utility function.

Appendices

A. Proof of Lemma 1

Proof: We provide the sketch of the proof. From (3)
we have

1− pk
i =

∏
r∈N ,r 6=i

(1− τk
r )

It follows

(1− pk
i )(1− τk

i ) =
∏
r∈N

(1− τk
r ) = (1− pk

j )(1− τk
j ) (5)

noticing (2), we get

( 1− pk
i )

(
1− 2

1 +W k
i + pk

i W k
i

∑m−1
l=0 (2pk

i )l

)
=

(1− pk
j )

(
1− 2

1 +W k
j + pk

j W k
j

∑m−1
l=0 (2pk

j )l

)
(6)

Combining (5) and (6), we can prove that if W k
i > W k

j ,
then pk

i > pk
j by showing it is impossible that both W k

i >

W k
j and pk

i < pk
j hold. It then follows from (5) that τk

i <

τk
j .
We then consider the stage utility Us

i (W k) = ui(W k)T =
τk
i [(1− pk

i )g− e]
Tslot

T . We have if W k
i > W k

j , then pk
i > pk

j ,

τk
i < τk

j ⇒ Us
i (W k) < Us

j (W k)

B. Proof of Lemma 3

Proof: We impose
∂Ui(Γc)

∂τc
= 0. Noticing e� u, after

some mathematical operations, we obtain:

Q(τc) = (1− τc)nσ − [nτc + (1− τc)n]Tc − Tc = 0

Noticing Q′(τc) =−(n−1)(1−τc)n−1σ−Tcn+(n−1)(1−
τc)n−1Tc < −Tcn + Tc(n− 1) < 0 It follows that Q(τc) is
a monotonous decreasing function. On the other hand,
Q(0) = Tc > 0, Q(1) = −(n − 1)Tc < 0, so there exists
a unique 0 < τ∗c < 1 satisfying Q(τ∗c ) = 0. When τc <

τ∗c , both Q(τc) and
∂Ui(Γc)

∂τc
is positive, Ui(Γc) is thus

monotonously increasing; When τc > τ∗c , both Q(τc) and
∂Ui(Γc)

∂τc
is negative, Ui(Γc) is thus monotonously decreas-

ing. Therefore, τ∗c is the unique maximizer of Ui(Γc).

C. Proof of Lemma 4

Proof: We provide the sketch of the proof by proving
the first half of the lemma and the second half can be
proved in the same way. In the game where all players
play Wk, we have

1 − pk = (1− τk)n−1 (7)

τk =
2

1 +Wk + pkWk

∑m−1
r=0 (2pk)r

(8)

In the game where i plays Wi, any other player j plays
Wj = Wk, we have for player i

1 − pi = (1− τj)n−1 (9)

τi =
2

1 +Wi + piWi

∑m−1
r=0 (2pi)r

(10)

for other players j

1 − pj = (1− τi)(1− τj)n−2 (11)

τj =
2

1 +Wk + pjWk

∑m−1
r=0 (2pj)r

(12)

We now prove that Wi > Wk ⇒ τi < τk < τj . We show
Wi > Wk ⇒ τk > τi, otherwise if τk < τi, apply Lemma 1,
we have Wi > Wj = Wk ⇒ τi < τj , thus we have τk < τi <
τj . Noticing (7) and (11), we have pk < pi. Noticing (8)
and (10), it follows that Wi > Wk and pk < pi ⇒ τk > τi,
which contradicts with τk < τi. Thus Wi > Wk ⇒ τi < τk.
Similarly we can prove the right side of the inequation.

We then prove that Wi > Wj ⇒ Us
i (W k′) < Us

k(W k) <

Us
j (W k′). Noticing Tc ' Ts, g >> e and after some math-

ematical manipulations, we get

Us
i (W k′) =

τig
Tc

(1−τj)n−1 − (Tc − σ)(1− τi)

Us
k(W k) =

τkg
Tc

(1−τk)n−1 − (Tc − σ)(1− τk)

We have proven τi < τk < τj , so (1− τj) < (1− τk) < (1−
τi). Applying these results it is obvious that Us

i (W k′) <

Us
k(W k). Similarly we can prove Us

k(W k) < Us
j (W k′)
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