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Abstract: The authors consider a cognitive radio network overlaying on top of a legacy primary network in which a
secondary user is allowed to access primary channel by overhearing feedback signals over the primary channels. Each
channel is assumed to be a two state Makovian process. Aiming at maximising the expected accumulated discounted
network throughput, the considered sequential decision-making problem can be cast into a restless multi-armed bandit
(RMAB) problem which is well-known to be PSPACE-hard, and thus a natural alternative approach is to seek a simple
myopic policy. This study presents a theoretical study on the optimality of the proposed myopic policy for the special
RMAB problem by considering four different cases: negatively correlated homogeneous channels, heterogeneous
channels, positively correlated heterogeneous channels and negatively correlated heterogeneous channels. More
specifically, the authors establish the closed-form conditions to guarantee the optimality of the myopic policy for the
four cases, respectively, which, combined with the case of positively correlated homogeneous channels, constitute a
complete paradigm for the optimality of the myopic policy.
1 Introduction

Cognitive radio (CR) has been viewed as a promising approach
to achieve a more spectrally efficient communication where
secondary users (SUs) can opportunistically utilise the spectrum
originally allocated to primary users (PUs) if limiting the
interference to PUs under a tolerable level [1–8].

In this paper, we consider a CR communication system composed
of a set of PUs and an SU. Each PU, with one receiving and
transmitting antenna, occupies one of primary channels and is
assumed to transmit packets continuously [We adopt a worst-case
assumption that PUs transmit all the time which is commonly used
in analysing underlay CR systems. In other words, our analysis
does not rely on detection and exploitation of spectrum white
space, which is the case of overlay CR systems widely
investigated recently.]. The SU, equipped with one or multiple
receiving and transmitting antennas, seeks opportunities to transmit
data packets over one or a subset of the primary channels. To
make full use of instantaneous transmission opportunities, the SU
can learn the instantaneous channel state information (CSI) of the
primary channel(s) by overhearing the feedback signals over a
subset of primary channels, and then chooses appropriate power to
transmit data over these primary channels without causing serious
interference to PUs.

However, the number of channels overheard by the SU is usually
limited by the number of receiving antennas, and then a natural
optimisation problem for the SU is that given the past
observations, which channel(s) should be overheard to attain
information about the CR system to maximise the long-term utility
(e.g. expected throughput).

Each primary channel is assumed to follow an identically and
independently distributed (i.i.d.) two-state discrete-time Markov
process in which one state ‘good’ corresponds to a channel with
high signal to interference and noise ratio (SINR) while another
state ‘bad’ represents a low SINR channel because of fading or
high background noise.

Under this assumption, the considered channel overhearing
problem can be cast into the restless multi-armed bandit (RMAB)
problem in decision theory. However, the RMAB problem is
proved to be PSPACE-hard [9]. Hence, a natural alternative is to
seek a simple myopic policy maximising the short-term reward.
However, the optimality of a myopic policy is not always
guaranteed generally since the myopic policy cannot reflect the
tradeoff between ‘exploitation’ and ‘exploration’ in a
decision-making problem [10].

Therefore a few works on the performance of the myopic policy
have been carried out along two directions. The first research
direction is to design approximation algorithms and heuristic
policies, and then study how far the performance of the proposed
policy is to the optimum performance [11–13]. The other thrust
focuses on the optimality of the myopic policy in some specific
application scenarios, particularly in the context of OSA, that is,
[10, 14–19].

For the similar scenario considered in this paper, the authors of
[20] established the optimality of the myopic policy for the case of
probing one channel (k = 1) each time. In our previous work [21],
we established the optimality of myopic policy for the case of
probing N− 1 of N channels and analysed its performance by
domination theory, and then extended the optimality to probe
multiple channels for positively correlated homogeneous channels
(PCOC) [1]. Compared with the most relevant literature [1, 20, 21],
in this paper we derive the sufficient conditions to guarantee the
optimality of the myopic policy for four different cases: negatively
correlated homogeneous channels (NCOC), heterogeneous channels
(EC), positively correlated EC (PCEC) and negatively correlated
EC (NCEC). Specifically, for NCOC, the reverse structure of belief
vector preserves three critical exchange operations in branch and
bound process concerning the derivation of the optimality of
myopic policy. For heterogeneous cases (EC, PCEC, NCEC), the
structure property (i.e. ‘decomposability’) of value function plays a
critical role in deriving the bounds of some fixed policy. These
structure properties are the key point for the optimality. The main
contributions of this paper can be summarised as follows:

† We analyse the structure properties of belief vector and value
function, and utilise them to establish sufficient conditions to
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guarantee the optimality of myopic policy. The obtained optimality
results combined with that of [1] (corresponding to PCOC)
constitutes a complete diagram for the optimality of the myopic
policy.
† For a specific scenario, we compare the relevant optimality
results, which reflects the tradeoff between generic channel model
and sufficient conditions, that is, the sufficient conditions sacrifice
part of optimality to cover the generic channel model.
† From the viewpoint of the RMAB problem, the optimality
conditions derived in this paper can be degenerated to those
obtained in the literature [18, 22] by relaxing some constraints.

The rest of the paper is organised as follows: Section 3 introduces
pseudo value function and its structural properties. Section 4 studies
the optimality of the myopic channel probing policy. Finally, the
paper is concluded in Section 5.
2 Problem formulation

In this section, we describe the system model of the spectrum access
in underlay CR model, based on which we formulate the
RMAB-based channel probing problem and derive the myopic
channel probing policy.

2.1 System model

We consider a slotted multi-channel underlay CR communication
system composed of N primary channels (denoted by N ), each
evolving as an i.i.d. Markov chain of two states, ‘good’ (1) and
‘bad’ (0), corresponding to the situation with high (low,
respectively) SINR. The state transition matrix Mi of channel i
(i [ N ) is given as follows

M i =
p(i)11 1− p(i)11
p(i)01 1− p(i)01

[ ]

We assume that for any i, PTx i transmits data to PRx i over channel i
at each slot. At the end of each slot, PRx i sends an
acknowledgement (ACK) to the corresponding PTx i on channel i
if the packet is successfully decoded. The absence of an
acknowledgement (denoted as NACK) signifies that the ‘outage’
event happened on channel i at slot t. We define ‘outage’ as
data-packet decoding failure at PRx i, and denote the probability
of the outage event

Os(i) W Pr(decoding failure | the state of channelı is), s [ {1, 0}

where 0 ≤ O1(i) , O0(i) ≤ 1, ∀ i [ N .
An SU, equipped with k (1≤ k <N ) receiving and transmitting

antennas (denoted as STx and SRx), can transmit data packets on
k channels opportunistically as long as the interference that it
generates to PUs is limited. To exploit instantaneous transmission
opportunities, the SU probes k primary channels by overhearing
the primary feedback signals so as to learn the CSI at primary
receivers before deciding whether transmit data on the probed
channels.

Specifically, when probing a primary channel, the SU exploits
ACK/NACK packet to estimate the CSI of the primary channel.
Throughout our analysis we assume that the SU can perfectly
overhear the ACK/NACK packet on channel i once it decides to
probe channel i. This is a reasonable assumption as the ACK/
NACK packets are usually transmitted in a more robust way, that
is, at lower data rate. We leave the generic case of imperfect
overhearing for future investigation.

2.2 RMAB formulation

† State space: Let S(t)W [S1(t), …, SN(t)] be the CSI vector where
Si(t)∈ {0, 1} denote the ‘bad’, ‘good’ state of channel i at slot t.
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† Partially observable CSI: Owing to the constraint of energy and
time, the SU can only probe k channels each slot, and accordingly,
obtain partial CSI, that is, the CSI vector S(t) is only partially
observable to the SU.
† Action space: Let A(t) be the set of channels probed by the SU at
slot t where A(t) , N W {1, 2, . . . , N} and |A(t)| = k , N .
† Observation pace: Let K(t) W {Ks1

(t), . . . , Ksk
(t)} be the

observation set where Ksi
(t) [ {0, 1} denotes the observation

status NACK, ACK of the probed channel σi (si [ A(t)) in slot t.
† Information state: A sufficient statistics is a N -dimension belief
vector Ω(t)W [ω1(t), …, ωN(t)], where ωi(t) (i [ N ) is the
posterior probability that the state of channel i is good given all
the past observations and actions of the SU.
† Probability transmission: Given Ω(t) and A(t), the belief vector
Ω(t + 1) can be updated recursively through feedback observation
K(t) according to the following Bayes rule (1)

vi(t + 1) =
ti(fi(vi(t))), i [ A(t), Ki(t) = 1
ti(wi(vi(t))), i [ A(t), Ki(t) = 0
ti(vi(t)), i � A(t),

⎧⎨⎩ (1)

where, the operators fi(·),ji(·), ti(·), f
1
i (·) and f 0i (·) are defined as

follows

fi(x) W
(1− O1(i))x

f 1i (x)
= (1− O1(i))x

(1− O1(i))x+ (1− O0(i))(1− x)

wi(x) W
O1(i)x

f 0i (x)
= O1(i)x

O1(i)x+ O0(i)(1− x)

ti(x) W (p(i)11 − p(i)01)x+ pi01

fi(x)(ji(x)) represents the probability of successful decoding
(decoding failure) with Si(t) = 1 and that of successful decoding
(decoding failure), respectively; ti(x) is the Markovian evolving rule.

A channel probing policy π is composed of a serials of mappings
π = [π1, …, πT] where πt maps the belief vector Ω(t) to the action
A(t) at each slot t: that is, pt : V(t) 7! A(t), |A(t)| = k.

Therefore the SU’s optimisation problem P is to find the optimal
policy π* which maximises the expected accumulated discounted
reward over a finite time horizon

P : p∗ = argmax
p

Ep

∑T
t=1

bt−1R(pt(V(t)))|V(1)

[ ]
(2)

where (1) R(πt(Ω(t))) is the reward in slot t under the policy πt with
the initial belief vector Ω(1) [If no information on the initial system
state is available, each entry of Ω(1) can be set to the stationary
distribution vi(1) = p(i)01/(1+ p(i)01 − p(i)11), and (2) 0≤ β≤ 1 is the
discount factor characterising the feature that future reward is less
valuable than immediate reward.

For the ease of analysis, P can be rewritten as the dynamic
programming formulation DP

VT (V(T )) = max
A(T)

E[R(pt(V(T )))]

Vt(V(t)) = max
A(t)

E R(pt(V(t)))

[

+ b
∑

E#A(t)

∏
i[E

f 1i (vi(t))
∏j�E

j[A(t)

f 0j (vi(t))Vt+1(V(t + 1))

]

where (1) Vt(Ω(t)) is the value function corresponding to the
maximal expected reward from time slot t to T, and (2) Ω(t + 1)
follows the evolution (1) when the channels in the subset E are
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observed in ‘good’ state while the channels inA(t)\E are observed in
‘bad’ state.

2.3 Myopic policy

Theoretically, the optimal policy of P can be obtained by solving the
above dynamic programming DP. It is infeasible, however, because
of the impact of the current action on the future reward and the
unaccountable space of the belief vector, thus obtaining the
optimal policy directly from the above recursive equations is
computationally prohibitive. Hence, a natural alternative is to seek
a simple myopic policy maximising the immediate reward defined
as follows:

Definition 1: Let F(VA(t)) W E[R(pt(V(t)))] denote the expected
immediate reward obtained at slot t under the policy πt with
VA(t) W {vi(t): i [ A(t)}, then the myopic policy is to probe the
k channels that maximises F(ΩA(t)), that is, �A(t) = argmaxA(t)#N
F(VA(t)).

To make our analysis more generic, we focus on a class of reward
functions F(ΩA(t)), termed as regular functions defined in [18].
More specifically, the expected immediate reward function
F(ΩA(t)) is assumed to be symmetrical, monotonically
non-decreasing and decomposable [18]. Under this assumption, the
myopic policy is to choose the k channels with the largest belief
value. However, the myopic policy only reflects the ‘exploitation’
in the two conflicting factors: ‘exploitation’ and ‘exploration’, thus
it is not clear whether it would not be optimal or not. Hence, it is
of significant importance to justify the optimality of the myopic
policy, which is exactly the focus of the following sections.
3 Value function and its structure

In this section, we introduce the ‘pseudo value function’ [1] and then
give a number of auxiliary lemmas. For the ease of presentation, we
first state the notations and parameters employed in the following
analysis.

3.1 Notations

(1) v̂−i(t) W {v̂j(t):j [ A(t), j = i}, Ω−l(t)≜Ω(t)\{ωl(t)}.
(2) Dmax W max {F(1, v̂−i(t))− F(0, v̂−i(t)):v̂−i(t) [ [0, 1]k−1,
1 ≤ t ≤ T}.
(3) Dmin W min {F(1, v̂−i(t))− F(0, v̂−i(t)):v̂−i(t) [ [0, 1]k−1, 1 ≤
t ≤ T}.
(4) d W maxi[N |p(i)11 − p(i)01|.

Note ω(t) (Ω(t)) and ω(Ω) will be interchangeably used without
ambiguity.

Lemma 1: f 1i (v) is monotonically increasing in ω while f 0i (v)
monotonically decreasing in ω.

Proof: The lemma holds since f 1i (v) = (1− O1(i))v+ (1 −
O0(i))(1− v) and f 0i (v) = 1− f 1i (v). □

Lemma 2: The following properties of ti(ωi(t)) hold:

(1) If p(i)01 , p(i)11, ti(ωi(t)) is monotonically increasing in ωi(t) and
p(i)01 ≤ ti(vi(t)) ≤ p(i)11, ∀0≤ ωi(t)≤ 1.
AAVF

ŴT (V(T ); V̂(T )) = F(V̂�A(T ))

Ŵr(V(r); V̂(r)) = F(V̂�A(r))+ b
∑

E#

ŴA
t (V(t); V̂(t)) = F(V̂A(t)(t))+ b

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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(2) If p(i)01 . p(i)11, ti(ωi(t)) is monotonically decreasing in ωi(t) and
p(i)11 ≤ ti(vi(t)) ≤ p(i)01, ∀0≤ ωi(t)≤ 1.

Proof: Lemma 2 holds from ti(vi(t)) = (p(i)11 − p(i)01)vi(t)+ p(i)01. □
3.2 Pseudo value function

In this part, we introduce two pseudo value functions in the recursive
form. The objective of introducing AVF is to conveniently analyse
the performance of myopic policy, while that of introducing
adjugate auxiliary value function (AAVF) is to decompose belief
vector. Specifically, the optimal problem P depends on initial
belief vector and Bayes rule. Given Bayes rule (1), P depends on
the initial belief vector Ω(1) and further Ω(t) in the
decision-making process. However, the belief vector Ω(t)
influences both probing policy (i.e. pt: V(t) 7! A(t)) and the
reward value (i.e. AVF), which makes the analysis difficult
because of the tight coupling of policy and reward value. Thus,
the AAVF is elaborately designed to decompose the belief vector
into two parts of which one reflects probing policy and the other
the value, and then we can study the probing policy without
focusing on the reward value to some extent.

Definition 2: [Auxiliary value function (AVF) and AAVF] The AVF:
Wt(Ω(t)) and AAVF Ŵt(V(t); V̂(t)) (1≤ t≤ T, t + 1≤ r≤ T ) are
defined as follows

AVF

WT (V(T )) = F(V�A(T ))
Wr(V(r)) = F(V�A(r))+ b

∑
E#�A(r)

CE�A(r)Wr+1(VE(r + 1))

WA
t (V(t)) = F(VA(t)(t))+ b

∑
E#A(t)

CEA(t)Wt+1(VE(t + 1))︸���������������︷︷���������������︸
GA(V(t))

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(3)

(see (4))

where

(1) ĈEM W
∏

i[E f 1i (v̂i(t))
∏

j[M\E f 0j (v̂j(t)) denotes the expected

probability that the channels in E are observed in ‘good’ state
whereas those in M\E are ‘bad’;
(2) VE(t + 1) and VE(r + 1) are generated by kV(t), A(t), El and
kV(r), �A(r), El, respectively, according to (1) and then sorted by
belief value.
(3) V̂E(t + 1) and V̂E(r + 1) are generated by kV̂(t), A(t), El and
kV̂(r), �A(r), El, respectively, according to (1), and the order of
channel index keeps consistent with that of VE(t + 1) and
VE(r + 1), respectively.
(4) A(r) and A(t) of AAVF are the same with that of AVF.
(5) If V̂(t) = V(t), then AAVF degenerates into AVF.

3.3 Structure of value function

This part gives some critical structure properties of AVF and AAVF,
that is, ‘symmetry’ and ‘decomposability’, which were proved in our
previous work [1] and recaptured here for completeness.
�A(r)

ĈE�A(r)Ŵr+1(VE(r + 1); V̂E(r + 1))∑
E#A(t)

ĈEA(t)Ŵt+1(VE(t + 1); V̂E(t + 1))

(4)
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Lemma 3: Wt(Ω(t)) is symmetrical in ωi, ωj for any i, j [ A(t) or
i, j � A(t) for all t = 1, 2,…, T, that is,

Wt(v1, . . . , vi, . . . , vj, . . . , vN ) = Wt(v1, . . . , vj, . . . , vi, . . . , vN )

Lemma 4: ŴA
t (V; V̂(t)) is decomposable for all t = 1, 2,…, T, that is,

ŴA
t (V; V̂) = v̂lW

A
t (V; V̂1)+ (1− v̂l)W

A
t (V; V̂0), ∀l [ N

where, V̂ = (v̂1, . . . , v̂l , . . . , v̂N ), V̂0 = (v̂1, . . . , 0, . . . , v̂N ),
V̂1 = (v̂1, . . . , 1, . . . , v̂N ).

Lemma 4 can be applied one step further to obtain the following
corollary.

Corollary 1: For any belief vector Ω, it holds that ∀l, m [ N , t = 1,
2,…, T

ŴA
t (V; V̂0)− ŴA

t (V; V̂1)= (v̂l − v̂m)[W
A
t (V; V̂2)−WA

t (V; V̂3)]

where

V̂0 = (v̂1, . . . , v̂l , . . . , v̂m, . . . , v̂N )

V̂1 = (v̂1, . . . , v̂m, . . . , v̂l , . . . , v̂N )

V̂2 = (v̂1, . . . , 1, . . . , 0, . . . , v̂N )

V̂3 = (v̂1, . . . , 0, . . . , 1, . . . , v̂N )

Remark 1: Lemma 3 implies that the reward generated by AVF
remains the same against any channel permutation within the
probed channels and within the non-probed channels. That is,
given channel i, j [ A(t), probing channel i first and then channel
j will generate same reward with the case of probing channel j first
and then channel i. Further, given A(t), the same reward will be
attained no matter what order is adopted to probe these channels
in A(t).

Remark 2: Lemma 4 states that given the probing policy, the reward
attained from AAVF can be decomposed into two terms with
deterministic realisations 0 and 1 in any channel of the value
belief vector. Mathematically, the value function is ‘linear’ or
‘piecewise linear’, and accordingly, it can be written as the
combination of two value functions in two endpoints (0 and 1).
Table 1 Structure of Myopic Policy (Q(t) = (σ1, …, σN))

Obs. σ1 Positively correlated Negatively correlated

ACK Q(t + 1) = (σ1, σ2, …, σN) Q(t + 1) = (σN, …, σ2, σ1)
NACK Q(t + 1) = (σ2, …, σN, σ1) Q(t + 1) = (σ1, σN, …, σ2)
4 Analysis on optimality of myopic policy

In this section, we sequentially derive sufficient conditions to
guarantee the optimality of the myopic policy for four different
cases: NCOC, EC, PCEC and NCEC . Next, for a special
scenario, we conduct a comparative study on the obtained
optimality results, which clearly shows the tradeoff between
sufficient conditions and channel characteristics.

4.1 Negatively correlated homogeneous channels

In this part, we consider the case of negatively correlated
homogenous channels. That is, the following holds:

(1) ∀i, p(i)11 = p11, p
(i)
01 = p01, O1(i) =O1, O0(i) =O0 (homogeneous).

(2) p11 < p01 (negatively correlated).

For the ease of analysis, we assume

(3) ∀i, p11 ≤ v̂i ≤ p01.
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In [15], the authors shows the myopic policy is not optimal by a
counterexample, and since then research on the performance of
myopic policy is circumvented in the existing works involved in
the optimality of myopic policy under the context of RMAB.
However, in this paper, we prove that the myopic policy is optimal
only imposing a weak condition on the initial belief vector Ω(1),
that is, ∀i, p11 ≤ v̂i ≤ p01. In fact, the weak condition will be
automatically satisfied from the second slot since the belief value
would enter into [p11, p01] according to Lemma 2.

Through analysing the structure of myopic policy and belief
vector [21], we find the proof for positively correlated
homogenous model [1] can be slightly modified to fit into the
negatively correlated homogenous model. Hence, we first give the
following structure of belief vector, and then points out the nuance
in the proof of optimality of myopic policy.

Theorem 1 (Structure of myopic policy): If O1/O0≤ p11(1− p01)/
[p01(1− p11)], ‘we have the following channel order rules at the
end of each slot’.

(1) The initial channel ordering Q(1) is determined by the initial
belief vector

vs1
(1) ≥ · · · ≥ vsN

(1) ⇒ Q(1) = (s1, s2, . . . , sN ),

(2) The channels over which ACKs are observed will be moved to
the end of the queue, and the channels over which NACKs are
observed will stay at the head of the queue while reversing the
order of other channels.

Proof: Assume Q(t) = (σ1, …, σN) at slot t, we thus have
p01 ≥ vs1

(t) ≥ · · · ≥ vsN
(t) ≥ p11. If ACK is observed over

channel σ1, then vs1
(t + 1) = t(f(vs1

(t))) ≤ t(vs1
(t)) ≤ · · · ≤

t(vsN
(t)) by Lemma 2, and thus Q(t + 1) = (σN, …, σ1) according

to the descending order of ω. If NACK is observed over channel
σ1, then vs1

(t + 1) = t(w(vs1
(t))) ≥ t(p11) ≥ t(vsN

(t)) ≥ · · · ≥
t(vs2

(t)), and further Q(t + 1) = (σ1, σN, …, σ2). □

Remark 3: Assume Q(t) = (σ1, …, σN) at slot t where
vs1

(t) ≥ · · · ≥ vsN
(t). When ACK and NACK are observed over

channel σ1, respectively, the structure of Q(t + 1) is stated in the
following table. Meanwhile, Q(t + 1) for PCOC is also listed for
the purpose of comparison. As shown in Table 1, Q(t + 1) shows
the reverse order in two cases. It is the reverse order which
preserves three kinds of exchange operation in Lemma 5–7. Thus,
Lemma 5–7 still hold by exchanging p11 and p01.

Following the similar induction in [1], we have the following three
lemmas and theorem.

Lemma 5: Given that (1) F is regular, (2) O1/O0≤ p11(1− p01)/
p01(1− p11), (3) β≤ Δmin/[Δmax((1−O1/O0)(1− p11) + δO1/1− δ(1
−O1))], if v̂l ≥ v̂m, it holds that for 1≤ t≤ T

Wt(V̂0) ≥ Wt(V̂1)

where, V̂0 = (v̂1, . . . , v̂l , . . . , v̂m, . . . , v̂N ), V̂1 = (v̂1, . . . , v̂m,
. . . , v̂l , . . . , v̂N ).
IET Commun., 2015, Vol. 9, Iss. 7, pp. 1017–1025
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Lemma 6: Given that (1) F is regular, (2) O1/O0≤ p11(1− p01)/
p01(1− p11), (3) β≤ Δmin/[Δmax((1−O1/O0)(1− p11) + δO1/1− δ
(1−O1))], if v̂l ≥ v̂m, it holds that for 1≤ t≤ T

Ŵt(V̇;V̂0)− Ŵt(V̇;V̂1) ≤
1− p11
O0

Dmax

where, V̂0 = (v̂1, . . . , v̂N−1, v̂N ), V̂1 = (v̂N , v̂1, . . . , v̂N−1).

Lemma 7: Given that (1) F is regular, (2) O1/O0≤ p11(1− p01)/
p01(1− p11), (3) β≤ Δmin/[Δmax((1−O1/O0)(1− p11) + δO1/1− δ
(1−O1))], if v̂l ≥ v̂m, it holds that for 1≤ t≤ T

Ŵt(V̇;V̂0)− Ŵt(V̇;V̂1) ≤ dDmax
1− [bd(1− O1)]

T−t+1

1− bd(1− O1)

where, V̂0 = (v̂1, v̂2, . . . , v̂N−1, v̂N ), V̂1 = (v̂N , v̂2, . . . , v̂N−1,
v̂1)

Theorem 2: If p11≤ ωi(1)≤ p01 for 1≤ i≤N, the myopic policy is
optimal if (1) F(Ω) is regular; (2) O1/O0≤ p11(1− p01)/
p01(1− p11); (3) β≤ Δmin/[Δmax((1−O1/O0)(1− p11) + δO1/1− δ
(1−O1))].

Remark 4: Theorem 2 gives the sufficient conditions to justify the
optimality of the myopic policy, that is, probing those best
channels, for the NCOC. More importantly, this theorem counter
proves the intuition that the myopic policy is not optimal for
negatively correlated case.
4.2 Heterogeneous channels

In this part, we consider the case of the EC which implicitly includes
two cases: positively correlated channels, negatively correlated
channels.

We start by showing the following important lemma (Lemma 8)
and then establish the sufficient condition to guarantee the
optimality of the myopic policy. In Lemma 8, we consider two
belief vectors Ωal = (Ωa−l, ωl) and Ω′l = (Ω−l, ωl′) that differ only
in one element ωl≤ ωl′. Let A and A′ denote the largest k
elements in Ωl and Ω′l, respectively, [Without ambiguity, A(t) and
A would be used interchangeably. The tie, if there exists, is
resolved according to the increasing order of channel index],
Lemma 8 gives the lower bound and the upper bound on
WA′

t (V′
l)−WA

t (Vl).

Lemma 8: Given

(1) Ωl = (Ω−l, ωl), Ω′l = (Ω−l, ωl′), ωl≤ ωl′.
(2) Dmin ≥ Dmax

∑T−t
i=1 b

idi,

we have for 1≤ t≤ T

† if l [ A′and l [ A

(v′
l − vl) Dmin − Dmax

∑T−t

i=1

bidi

( )
≤ WA′

t (V′
l)

−WA
t (Vl) ≤ (v′

l − vl)Dmax 1+
∑T−t

i=1

bidi

( )
† if l � A′ and l � A,

WA′
t (V′

l)−WA
t (Vl)

∣∣∣ ∣∣∣ ≤ (v′
l − vl)Dmax

∑T−t

i=1
bidi
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† if l [ A′and l � A,

WA′
t (V′

l)−WA
t (Vl)

∣∣∣ ∣∣∣ ≤ (v′
l − vl)Dmax 1+ ∑T−t

i=1
bidi

( )

Proof: The proof is given in A. □

In the following lemma, we consider Al and Am differing in
one element, that is, Al , {l} = Am, {m}, l [ Al and m [ Am and
ωl > ωm and establish sufficient condition such that
WAl

t (V) . WAm
t (V).

Lemma 9: Given m [ Am, l [ Al , ωl > ωm and Al , {l} = Am, {m},
if Dmin ≥ 2Dmax

∑T−1
i=1 bidi, then WAl

t (V) . WAm
t (V).

Proof: Let V′ denote the set of channel belief values with ωl′ > ωm

and ωi′ > ωi for ∀i≠ l and i [ N , then WAl
t (V′) = WAm

t (V′). By
Lemma 8, we have

WAl
t (V)−WAm

t (V)

= [WAl
t (V)−WAl

t (V′)]− [WAm
t (V)−WAm

t (V′)]

≥ (v′
l − vl)(Dmin − Dmax

∑T−t

i=1

bidi)− (v′
l − vl)Dmax

∑T−t

i=1

bidi

× (v′
l − vl)(Dmin − 2Dmax

∑T−t

i=1

bidi) ≥ 0

□

Based on Lemma 9, we have the following theorem which states the
optimal condition of the myopic policy.

Theorem 3: The myopic policy is optimal if
∑T−1

i=1 bidi ≤
(Dmin/2Dmax), specifically, if T→∞, βδ/(1− βδ)≤ Δmin/(2Δmax).

Proof:When T 1/21, we prove the theorem by backward induction.
The theorem holds trivially for T. Assume that it holds for T− 1, …,
t + 1, that is, the optimal accessing policy is to sense the best channel
from time slot t + 1 to T. We now show that it holds for t. □

Suppose, by contradiction, that given the belief vector
V W {vi1

, . . . , viN
} and v1 , v2 , · · · , vN , the optimal policy

is to probe the best channels from time slot t + 1 to T and thus, at
slot t, to probe channels A(t) = {i1, . . . , ik} = A(t) =
{1, . . . , k}, given that the latter, A(t), includes the best k channels
in terms of belief value at slot t. There must exist im and il at slot t
such that m≤ k < l and vim

, vik
≤ vil

. It then follows from

Lemma 9 that W {i1,...,ik}
t (V) , W

{i1,...,im−1,il ,im+1,...,ik}
t (V), which

contradicts with the assumption that the latter is the optimal
policy. This contradiction completes our proof.

When T→∞, the proof follows straightforwardly by noticing that∑1
i=1 x

i = x/(1− x) for any x∈ (0, 1). □
4.3 Positively correlated heterogeneous channels

In this part, we consider the PCEC , that is, ∀i, p(i)11 . p(i)01. Following
the similar induction as Lemma 8, we have the following lemma.

Lemma 10: Given

(1) Ωl = (Ω−l, ωl), Ωl′ = (Ω−l, ωl′), ωl≤ ωl′;
(2) ∀i, p(i)11 . p(i)01,
we have for 1≤ t≤ T
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Table 2 Optimal conditions of myopic policy

Homogeneous heterogeneous

p(i)
11 . p(i)

01 ∀δ, 0≤ β≤ 1 βδ≤ 1/2

p(i)
11 , p(i)

01 ∀δ, 0≤ β≤ 1 bd ≤ ��
2

√ − 1

p(i)
11 = p(i)

01 βδ≤ 1/3
† if l [ A′ and l [ A

(v′
l − vl)Dmin ≤ WA′

t (V′
l)−WA

t (Vl)

≤ (v′
l − vl)Dmax 1+

∑T−t

i=1

bidi

( )

† if l � A′ and l � A

0 ≤ WA′
t (V′

l)−WA
t (Vl) ≤ (v′

l − vl)Dmax

∑T−t

i=1
bidi

† if l [ A′ and l � A

0 ≤ WA′
t (V′

l)−WA
t (Vl) ≤ (v′

l − vl)Dmax 1+ ∑T−t

i=1
bidi

( )

Based on Lemma 10, it is easy to obtain the following sufficient
conditions for the optimality of the myopic policy.

Theorem 4: The myopic policy is optimal if
∑T−1

i=1 bidi ≤
Dmin/Dmax, specifically, if T→∞, βδ/(1− βδ)≤ Δmin/Δmax.

Remark 5: The sufficient conditions for PCEC in Theorem 4 is looser
than those for EC in Theorem 3, which reflects the fact that the
channel model of the latter covers that of the former with loosing
part of optimality.
4.4 Negatively correlated heterogeneous channels

In this part, we consider the PCEC , that is, p(i)11 , p(i)01 for ∀i.
Following the similar induction as Lemma 8, we have the
following lemma.

Lemma 11: Given

(1) Ωl = (Ω−l, ωl), Ωl′ = (Ω−l, ωl′), ωl≤ ωl′;
(2) ∀i, p(i)11 , p(i)01;
(3) Dmin ≥ Dmax

∑T−t
i=1 b

idi for 1≤ t≤ T,

we have

† if l [ A′ and l [ A

(v′
l − vl) Dmin − Dmax

∑T−t

i=1

bidi

( )
≤ WA′

t (V′
l)−WA

t (Vl)

≤ (v′
l − vl)Dmax 1+

∑T−t

i=1

bidi
( )

† if l � A′ and l � A

−(v′
l − vl)Dmax

∑T−t

i=1

bidi ≤ WA′
t (V′

l)−WA
t (Vl)

≤ (v′
l − vl)Dmax −bd+

∑T−t

i=1

bidi
( )

† if l [ A′ and l � A
∣∣∣WA′

t (V′
l)−WA

t (Vl)
∣∣∣ ≤ (v′

l − vl)Dmax 1+ ∑T−t

i=1
bidi

( )
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Based on Lemma 11, it is easy to obtain the following sufficient
conditions for the optimality of the myopic policy.

Theorem 5: The myopic policy is optimal if 2
∑T−1

i=1 bidi − bd ≤
Dmin/Dmax, specifically, if T→∞, βδ(1 + βδ)/(1− βδ)≤ Δmin/Δmax.

Remark 6: The sufficient conditions for NCEC in Theorem 5 is
looser than those for EC in Theorem 3, which reflects the fact that
the channel model of the latter covers that of the former with
loosing part of optimality.
4.5 Discussion

To illustrate the application of the obtained result, we study a
concrete underlay CR system where the SU can transmit at rate r1
if the channel probed is observed in the good state and r0(r0≤ r1)
for the bad state. In this scenario, the utility function can be
formulated as

F(VA) =
∑
i[A

[r1 · vi + r0 · (1− vi)]

thus, Δmin = Δmax = r1− r0.
According to Theorem 2–5 and Theorem 1 of [1], we have the

sufficient conditions to guarantee the optimality of the myopic
policy, which are stated in the following Table 2.
5 Conclusion

We have investigated the optimality of the myopic policy for the
RMAB problem arisen in the field of underlay CR systems, and
obtained the sufficient conditions to guarantee the optimality of
the myopic policy for four different cases. The obtained results,
combined with the optimality results in [1], constitutes a complete
paradigm regarding how to optimally choose channels to access in
a underlay cognitive radio system. As future work, a natural
direction is to study whether the proposed sufficient conditions are
necessary. If not, we need to derive much better sufficient
conditions to guarantee the optimality of the myopic policy.
Another direction we are pursuing is to investigate the RMAB
problem with multiple players with potentially conflicts among
them and to study the structure and the optimality of the myopic
policy in that context.
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8 Appendix: Proof of Lemma 8

We prove the lemma by backward induction. For slot T, we have

(1) For l [ A′, l [ A, it holds that WA′
T (V′

l)−WA
T (Vl) = (r1 − r0)

(v′
l − vl);

(2) For l � A′, l � A, it holds that WA′
T (V′

l)−WA
T (Vl) = 0;

(3) For l [ A′, l � A, it exists at least one channel m such that ω′l≥
ωm≥ ωl. It then holds that 0 ≤ WA′

T (V′
l)−WA

T (Vl) ≤
Dmax(v

′
l − vl).

Therefore Lemma 8 holds for slot T.
GA′
(V′

l)− GA(Vl) =
∑

E#A(t), {l}

CEA, {l}

{
f 1l (vl)[Wt+

+ (f 0l (vl)− f 0l (v
′
l)) · [Wt+1

+ f 0l (v
′
l)[Wt+1(V−l , tl(wl(
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Assume that Lemma 8 holds for T− 1,…, t + 1, then we prove the
lemma for slot t.

We first prove the first case: l [ A′, l [ A. By rewriting Γ(Ω(t))
in (3) and developing ωl(t + 1) in Ω(t + 1), we have:

GA′
(V′

l) =
∑

E#A(t), {l}

CEA, {l}[f
1
l (v

′
l(t))Wt+1(V−l , tl(fl(v

′
l(t))))

+ f 0l (v
′
l(t))Wt+1(V−l , tl(wl(v

′
l(t))))] (5)
GA(Vl) =
∑

E#A(t), {l}

CEA, {l}[f
1
l (vl(t))Wt+1(V−l , tl(fl(vl(t))))

+ f 0l (vl(t))Wt+1(V−l , tl(wl(vl(t))))] (6)

Furthermore, we have (see (7))

where f 0l (vl) ≥ f 0l (v
′
l) from Lemma 1.

Next, we analyse the first term Wt+1(V−l , tl(fl(v
′
l)))−

Wt+1(V−l , tl(fl(vl))) of RHS of (7) through three cases

Case 1: if l [ A′, l [ A, according to the induction hypothesis, we
have

0 ≤ ∣∣Wt+1(V−l , tl(fl(v
′
l(t))))−Wt+1(V−l , tl(fl(vl(t))))

∣∣
≤ ∣∣tl(fl(v

′
l(t)))− tl(fl(vl(t)))

∣∣Dmax

∑T−t−1

i=0

bidi

Case 2: if l � A′, l � A, according to the induction hypothesis, we
have

0 ≤ ∣∣Wt+1(V−l , tl(fl(v
′
l)))−Wt+1(V−l , tl(fl(vl)))

∣∣
≤ ∣∣tl(fl(v

′
l))− tl(fl(vl))

∣∣Dmax

∑T−t−1

i=1

bidi

Case 3: if l [ A′, l � A, according to the induction hypothesis, we
have

0 ≤ ∣∣Wt+1(V−l , tl(fl(v
′
l)))−Wt+1(V−l , tl(fl(vl)))

∣∣
≤ ∣∣tl(fl(v

′
l))− tl(fl(vl))

∣∣Dmax

∑T−t−1

i=0

bidi

Combining Case 1–3, we obtain the bounds of the first term of (7)
as follows

0 ≤ ∣∣Wt+1(V−l , tl(fl(v
′
l)))−Wt+1(V−l , tl(fl(vl)))

∣∣
≤ ∣∣tl(fl(v

′
l))− tl(fl(vl))

∣∣Dmax

∑T−t−1

i=0

bidi
(8)

Further, we can obtain the bounds of the second and third terms of
1(V−l , tl(fl(v
′
l)))−Wt+1(V−l , tl(fl(vl)))]

(V−l , tl(fl(v
′
l)))−Wt+1(V−l , tl(wl(vl)))]

v′
l)))−Wt+1(V−l , tl(wl(vl)))]

}
(7)
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RHS of (7) by the similar induction as follows

0 ≤ ∣∣Wt+1(V−l , tl(fl(v
′
l)))−Wt+1(V−l , tl(wl(vl)))

∣∣
≤ ∣∣tl(fl(v

′
l))− tl(wl(vl))

∣∣Dmax

∑T−t−1

i=0

bidi (9)

0 ≤ ∣∣Wt+1(V−l , tl(wl(v
′
l)))−Wt+1(V−l , tl(wl(vl)))

∣∣
≤ ∣∣tl(wl(v

′
l))− tl(wl(vl))

∣∣Dmax

∑T−t−1

i=0

bidi (10)

Therefore combining (7)–(10) and
∣∣p(l)11 − p(l)01

∣∣ ≤ d, we have∣∣WA′
t (V′

l)−WA
t (Vl)

∣∣≤ ∣∣Dmax(v
′
l −vl)

∣∣+ ∣∣b(GA′
(V′

l)−GA(Vl))
∣∣

≤ Dmax(v
′
l −vl)+bDmax(v

′
l −vl)d

∑T−t−1

i=0

bidi

= (v′
l −vl)Dmax

∑T−t

i=0

bidi

and∣∣WA′
t (V′

l)−WA
t (Vl)

∣∣≥ ∣∣Dmin(v
′
l −vl)

∣∣− ∣∣b(GA′
(V′

l)−GA(Vl))
∣∣

≥ Dmin(v
′
l −vl)−bDmax(v

′
l −vl)d

∑T−t−1

i=0

bidi

= (v′
l −vl)

(
Dmin −Dmax

∑T−t

i=1

bidi
)

To the end, we complete the proof of the first part, l [ A′, l [ A, of
Lemma 8.

Secondly, we prove the second case l � A′, l � A. In this case,
A′(t) = A(t). Assuming k [ A(t), we have:

GA′
(V′

l) =
∑

E#A(t), {k}

CEA, {k}

[
f 1k (vk (t))Wt+1(V

′
−k , tk (fk (vk (t))))

+ f 0k (vk (t))Wt+1(V
′
−k , tk (wk (vk (t))))

]
(11)

GA(Vl) =
∑

E#A(t), {k}

CEA, {k}

[
f 1k (vk (t))Wt+1(V−k , tk (fk (vk (t))))

+ f 0k (vk (t))Wt+1(V−k , tk (wk (vk (t))))
]

(12)

Thus (see (13))

For the first term of RHS of (13), if channel l is never chosen for
Wt+1(Ω′−k, tk(fk(ωk))) and Wt + 1(Ω−k, tk(fk(ωk))) from the slot
t + 1 to the end of time horizon of interest T, that is to say,
l � A′(r) and l � A(r) for t + 1≤ r≤ T, it is easy to know
Wt+1(Ω′−k, tk(fk(ωk)))−Wt + 1(Ω−k, tk(fk(ωk))) = 0. Otherwise, it
exists t0 (t + 1≤ t0≤ T ) such that the following three cases hold.

Case 1: l � A′(r) and l � A(r) for t≤ r≤ t0− 1 while l [ A′(t0)
and l [ A(t0);
Case 2: l � A′(r) and l � A(r) for t≤ r≤ t0− 1 while l � A′(t0)
and l [ A(t0);
Case 3: l � A′(r) and l � A(r) for t≤ r≤ t0− 1 while l [ A′(t0)
and l � A(t0).
GA′
(V′

l)− GA(Vl) =
∑

E#A(t), {k}

CEA, {k}

[
f 1k (vk )[Wt+1

+ f 0k (vk )[Wt+1(V
′
−k , tk (wk (v
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For Case 1, according to the hypothesis (l [ A′ and l [ A), we
have

∣∣Wt0 (V
′
l(t

0))−Wt0 (Vl(t
0))

∣∣
≤ Dmax

∣∣v′
l(t

0)− vl(t
0)
∣∣∑T−t0

i=0

bidi

= Dmax

∣∣(p(l)11 − p(l)01)
t0−t(v′

l(t)− vl(t))
∣∣∑T−t0

i=0

bidi

Considering that |(p(l)11 − p(l)01)
t0−t| and

∑T−t0

i=0 bidi are decreasing
with t0 (t0≥ t + 1), thus,

∣∣Wt+1(V
′
l(t + 1))−Wt+1(Vl(t + 1))

∣∣
≤ (r1 − r0)

∣∣p(l)11 − p(l)01
∣∣(v′

l(t)− vl(t))
∑T−t−1

i=0

bidi

For Case 2–3, by the induction hypothesis (l [ A′, l � A or l [ A,
l � A′), we have the similar results with Case 1.

Combing the results of the three cases, we obtain

∣∣Wt+1(V
′
−k , tk (fk (vk )))−Wt+1(V−k , tk (fk (vk )))

∣∣
≤ Dmax

∣∣p(l)11 − p(l)01
∣∣(v′

l(t)− vl(t))
∑T−t−1

i=0

bidi

For the second term of RHS of (13), we can obtain the similar result.
Combing the bounds of the above two terms of RHS of (13), we

have

∣∣WA′
t (V′

l)−WA
t (Vl)

∣∣ = ∣∣b(GA′
(V′

l)− GA(Vl))
∣∣

≤ Dmax(v
′
l(t)− vl(t))

∑T−t

i=1

bidi

which completes the proof of Lemma 8 when l � A′ and l � A.
Finally, we prove the third case l [ A′(t) and l � A(t), then it

exists at least one channel, denoted as ωm, such that ω′l≥ ωm≥ ωl.
We have

WA′
t (V′

l(t))−WA
t (Vl(t))

=WA′
t (v1, . . . , v

′
l , . . . , vN )−WA

t (v1, . . . , vl , . . . , vN )

=WA′
t (v1, . . . , v

′
l , . . . , vN )−WA′

t (v1, . . . , vl = vm, . . . , vN )

+WA
t (v1, . . . , vl = vm, . . . , vN )−WA

t (v1, . . . , vl , . . . , vN )

(14)

According to the induction hypothesis (l [ A′ and l [ A), the first
(V′
−k , tk (fk (vk )))−Wt+1(V−k , tk (fk (vk )))]

k )))−Wt+1(V−k , tk (wk (vk )))]
]

(13)
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term of the RHS of (14) can be bounded as follows

0 ≤ (v′
l(t)− vm(t)) Dmin − Dmax

∑T−t

i=1

bidi

( )

≤ WA′
t (v1, . . . , v

′
l , . . . , vN )−WA′

t (v1, . . . , vl = vm, . . . , vN )

≤ (v′
l(t)− vm(t))Dmax

∑T−t

i=0

bidi

(15)

Meanwhile, the second term of the RHS of (14) is inducted by
hypothesis (l � A′ and l � A):

− (vm(t)− vl(t))Dmax

∑T−t

i=1

bidi

≤ WA
t (v1, . . . , vl = vm, . . . , vN )−WA

t (v1, . . . , vl , . . . , vN )

≤ (vm(t)− vl(t))Dmax

∑T−t

i=1

bidi

(16)
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Therefore we have, combining (14), (15) and (16)

(v′
l(t)− vm(t))Dmin − (v′

l(t)− vl(t))Dmax

∑T−t

i=1

bidi

≤ WA′
t (V′

l(t))−WA
t (Vl(t))

≤ (v′
l(t)− vl(t))Dmax

∑T−t

i=0

bidi − (vm(t)− vl(t))Dmax

∑T−t

i=1

bidi

further

∣∣WA′
t (V′

l(t))−WA
t (Vl(t))

∣∣ ≤ (v′
l(t)− vl(t))Dmax

∑T−t

i=0
bidi

Thus, we complete the proof of the third part, l [ A′(t) and
l � A(t), of Lemma 8.

To the end, Lemma 8 is concluded.
1025


