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Abstract: In this study, the authors consider the restless multi-armed bandit problem, which is one of the most well-studied
generalisations of the celebrated stochastic multi-armed bandit problem in decision theory. However, it is known to be PSPACE-
Hard to approximate to any non-trivial factor. Thus, the optimality is very difficult to obtain because of its high complexity. A natural
method is to obtain the greedy policy considering its stability and simplicity. However, the greedy policy will result in the optimality
loss for its intrinsic myopic behaviour generally. In this study, by analysing one class of so-called standard reward function, the
authors establish the closed-form condition about the discounted factor b such that the optimality of the greedy policy is
guaranteed under the discounted expected reward criterion, especially, the condition b ¼ 1 indicating the optimality of the
greedy policy under the average accumulative reward criterion. Thus, this kind of standard reward function can easily be used to
judge the optimality of the greedy policy without any complicated calculation. Some examples in cognitive radio networks are
presented to verify the effectiveness of the mathematical result in judging the optimality of the greedy policy.
1 Introduction

We consider the system consisting of n uncontrolled Markov
chains evolving independently in the discrete time. Each of
those chains is an independent identically distributed (iid) two-
state Markov process. The two states are denoted as ‘good’
state (state 1) and ‘bad’ state (state 0). The transition
probabilities are pij, i, j ¼ 0,1. In each time instance of the
system, a secondary user (SU) is allowed to select k out of the
n processes according to its strategy, and to observe their states
(assuming the precise observation), while those processes not
selected by the user will evolve according to their rules. The
user would obtain some reward determined by the combination
of those observed states of the k selected processes, that is
collecting no reward if those states of k processes are observed
‘bad’. The above selecting, observing and collecting process
repeats until the user does not access the system. Obviously,
this is a multi-armed bandit (MAB) problem [1] as well as
partially observed Markov decision process (POMDP) problem
which has been used and studied in the [2, 3]. Unfortunately,
obtaining optimal solutions to a general restless bandit process
is PSPACE-Hard [4], and analytical characterisations of the
performance of the optimal policy are often intractable. Hence
the greedy policy governing the channel selection is the
suitable choice because it only focuses on the maximisation of
the immediate reward ignoring its affect on the future reward.
However, the greedy policy is generally not optimal.

Recently, arise two main research directions addressing
the greedy policy of this kind of MAB problem. The first
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one is to seek the constant-factor approximation algorithm,
such as [5] where a 68-approximation developed via the
linear programming relaxation under the condition of
p11 . 0.5 . p01 for each arm, and a 2-approximation policy
for a class of monotone restless bandit problem [6]. The
relevant application in dynamic multichannel access is
given in [7], where the authors established the indexability
and obtained Whittle index in closed form for both
discounted and average reward criteria. In [8], the authors
developed efficient sampling policies – link sampling and
node sampling – based on the Whittle’s indices for
tracking the topology of dynamic networks under sampling
constraints, and proved its indexability under certain
conditions. In [9], an analysis for simultaneous sensing of
multiple primary user activity in cognitive radios was
presented from a signal-processing perspective. In [10],
downlink spatial multiplexing techniques were proposed to
enable multiple SUs to share spectrum simultaneously
without harmfully interfering the primary users.

Another research direction is to explore the optimal
condition of greedy policy corresponding to a concrete
application or scenario. Our work follows this line.
Although many literatures have studied this problem, the
immediate reward function in those works focuses only on
the linear combination of those observed states, that is in
[11], the optimality of the greedy policy was proved in
choosing k ¼ 1 of n channels in the case of positively
correlated channels, and then extended to choose k . 1
channels in [12]. In our previous work [13, 14], we have
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extended the work in [11] on another line to the scenario where
the immediate reward function is the simplest non-linear
combination of those observed states, and proved that the
greedy policy is generally not optimal, which is contrary to
the result of [12] where the immediate reward function is the
linear combination of the observed states. The contrary
conclusion makes it necessary to study the impact of
immediate reward function on the optimality of greedy
policy, which is one of the major incentives for this paper.

From the technical perspective, the optimality of greedy
policy needs user prefer to exploit rather than to explore. One
simplest approach to implement this mechanism is to adjust
the balance between exploitation and exploration by the
discounted factor b. In contrast, we notice the different
optimality resulting from the nuance of immediate reward
functions [12, 13], and then we focus only on a generic and
basic class of immediate reward function formulated by the
combination of variables of order 1, referred to as standard
reward function. Therefore our objective is to derive the
sufficient condition of the discounted factor such that the
greedy policy is guaranteed to be optimal for the so-called
standard reward function under the discounted accumulative
reward criterion. If the discounted factor b ¼ 1, the optimality
of greedy policy for the discounted accumulative reward can
be promoted to the optimality for the average expected reward
on the time horizon of interest. Therefore we can judge the
optimality of the greedy policy for the discounted
accumulative and average expected reward according to the
closed-form condition of b. To the best of our knowledge,
very few results had been reported from this perspective.

Compared with other existing work on the optimality of
greedy policy in MAB problem, our contribution is 3-fold:

† We analyse one special class of MAB problem where the
immediate reward function is so-called standard one, and
derive that the discounted accumulative reward function is
also a standard reward function. Furthermore, we establish the
optimality of greedy policy under the discounted accumulative
reward criterion when p11 . p01. The theoretical results
demonstrate that the greedy policy choosing the best 1 or
n 2 1 out of n channels is optimal when 0 , b ≤ 1. For the
case of choosing k (1 , k , n 2 1) channels, the greedy
policy is optimal only when the discounted factor satisfies a
simple closed-form condition.
† The major technique developed in this paper is largely
based on the analytic properties of standard reward
function, completely different from [11, 12] relying on the
coupling argument. Besides the significant and practical
application in cognitive radio networks, this technique
serves as the key criterion to judge the optimality of greedy
policy when the immediate reward function is the
combination of the standard functions in other scenarios.
† We analyse two practical models in cognitive radio
networks. The first model in cognitive radio networks
involves the sensing order problem where the SU selects k
(1 , k , n) of n channels in order to maximise the
probability of finding an idle channel. It is obvious that
the immediate reward function is the order 1 non-linear
combination of the availability probability of selected
channels. The result demonstrates that the greedy policy is
not optimal generally under the average expected reward,
which is coherent with [13]. The second model is that a
user chooses k(1 ≤ k , n) channels to access and receive a
reward on the channel in good state. The immediate reward
function is the linear combination of the availability
probability of those selected channels. Our derived result is
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consistent with those in [11, 12] where the myopic policy
choosing any number of channels is optimal.

The rest of the paper is organised as follows. Our model is
formulated in Section 2. Section 3 analyses standard reward
function. Section 4 gives the optimality theorem of the
myopic policy. Three applications are given in Section
5. Finally, our conclusions are summarised in Section 6.

2 Problem formulation

As outlined in the introduction, we consider a user trying
to access the system consisting of n independent and
statistically identical channels, each given by a two state
Markov chain. The set of n channels is denoted by N , each
indexed by i ¼ 1, 2, . . ., n, and the state of channel i denoted
by Si(t) ¼ (good), 0(bad). The system operates in discrete
time steps indexed by t (t ¼ 1, 2, . . ., T ), where T is the time
horizon of interest. Specifically, we assume that channels go
through state transition at the beginning of slot t and then at
time t the user makes the channel selection decision. Limited
by hardware or sensing cost, at time t the user is allowed to
choose k (1 ≤ k , n) of the n channels to sense, the chosen
channel set denoted by ak (t) , N , |ak(t)| = k.

Obviously, the user cannot observe the whole states
S(t) ¼ [0, 1]n of the underlying system (i.e. the states of n
channels). We know that a sufficient statistic of such a
system for optimal decision making, or the information state
of the system, is given by the conditional probability that
each channel is in state 1 given all past actions and
observations [2]. We denote this information state (also
called belief vector) by V(t) ¼ [v1(t), . . ., vn(t)] [ [0, 1]n,
where vi(t) is the conditional probability that channel i is in
state 1 at time t. Owing to the Markovian nature of the
channel model, the future information state is only a
function of the current information state and the current
action, that is, it is independent of past history given the
current information state and action. Given that
the information state at time t is V(t) W{vi(t), i [ N } and
the sensing policy ak(t) , N is taken, the belief vector at
time t + 1 can be updated using Bayes rule as shown in (1)

vi(t + 1) =
p11, i [ ak(t), Si(t) = 1
p01, i [ ak(t), Si(t) = 0
t(vi(t)), i � ak(t)

⎧⎨
⎩ (1)

where, t(vi(t)) ¼ vi(t)p11 + [1 2 vi(t)]p01, and p11 . p01 is
assumed in the rest of the paper.

The objective is to maximise the discounted accumulative
reward over a finite horizon given in the following problem

max
p

E
∑T

t=1

bt−1Rpt
(V(t))|V(1)

[ ]
(2)

where Rpt
(V(t)) is the reward collected with the initial belief

vector V(1) [If no information on the initial system state is
available, each entry of V(1) can be set to the stationary
distribution v0 ¼ ((p01)/(1 + p01 2 p11)).] when channels in
the set ak(t) ¼ pt(V(t)) are selected, pt specifies a mapping
from the current information state V(t) to a channel
selection action ak (t) = pt( V(t)) , N .

Let Vt(V) be the value function, which represent the
maximum expected discounted accumulative reward
obtained from t to T given the initial belief vector V(1). Let
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p01[x] and p11[x] denote the vector [p01, . . ., p01] and [p11,
. . ., p11] of length x. Thus, we arrive at the following
optimality equation

VT ( V(t)) = max
ak (t),N

E[R( V(t))] = max
ak (t),N

F( V(t))

Vt( V(t)) = max
ak (t),N

[F( V(t)) + bKt( V(t))]

Kt( V(t)) =
∑

e[P(ak (t))

∏
i[e

vi

∏
j[ak (t)\e

(1 − vj)Vt+1

(p11[|e|], t(vk+1(t)), . . . , t(vn(t)), p01[k − |e|])

(3)

where, P(ak(t)) represents the power set generated by the set
ak(t), the expected immediate reward F(V(t)) is F:V(t) � R,
and |e| is the cardinality of set e. On right side of (3), the
reward that can be collected from slot t consists of two
parts: the expected immediate reward F(V(t)) and the future
discounted accumulative reward bKt(V(t)) calculated by
summing over all possible realisations of the k selected
channels. In Kt(V(t)), the channel state probability vector
consists of three parts: a sequence of p11s indicating those
channels sensed to be in state 1 at time t; a sequence of
values t(vj(t)) for all j � ak(t); and a sequence of p01s
indicating those channels sensed to be in state 0 at time t.

Considering the computational complexity of the recursive
structure (3), we should seek other policies but the optimal
policy. One of the simplest policy is the greedy one in
which the objective is to maximise the expected immediate
reward F(V(t)) at each time step. Thus, the greedy policy is
given as follows

âk(t) = arg max
ak (t),N

F(V(t)) (4)

In the following sections, we will derive the sufficient
condition of b to guarantee the optimality of the greedy
policy. The key mathematical symbols used in this paper is
tabulated in Table 1.

3 Standard reward function

In this section, we will define a class of standard reward
function based on three basic and generic assumptions, and
then prove the value function Vt(V) is also standard under
the greedy policy.

Table 1 Index of mathematical symbols

b discounted factor

n total channel number

N set {1, 2, . . ., n}
k channel number chosen at each slot

Si(t) the state of channel i at slot t

S(t) state vector at slot t

vi(t) the probability of channel i in state 1 at slot t

V(t) belief vector at slot t

ak(t) sensing policy at slot t

âk (t) greedy policy at slot t

P(ak (t)) power set generated by the core ak(t)

F(V(t)) expected immediate reward at slot t

Kt(V(t)) expected accumulative reward

Vt(V(t)) value function
586
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3.1 Definition of standard reward function

For simplicity, we assume that ak(t) ¼ v1(t), . . ., vk(t), and
then use ak(t) ¼ 1, . . . , k and ak(t) ¼ v1(t), . . . , vk(t)
alternatively. Especially, we drop the time slot index of
vi(t), and abuse vi(t) and vi alternatively without
introducing ambiguity.

Three fundamental while natural assumptions about the
immediate reward function are listed as follows:

Assumption 1 (symmetry): The immediate reward function
F(V(t)) is symmetric about vi(t), vj(t) [ ak(t), that is

F(v1(t), . . . , vi(t), . . . , vj(t), . . . , vn(t))

= F(v1(t), . . . , vj(t), . . . , vi(t), . . . , vn(t)) (5)

Assumption 2 (affine): The immediate reward function
F(V(t)) is order 1 polynomial [F(V(t)) is affine in each
variable if all other variables hold constant] of vi(t),
1 ≤ i ≤ n, that is

F(v1(t), . . . , vi−1(t), vi(t), vi+1(t), . . . , vn(t))

= vi(t)F(v1(t), . . . , vi−1(t), 1, vi+1(t), . . . , vn(t))

+ (1 − vi(t))F(v1(t), . . . , vi−1(t), 0, vi+1(t), . . . , vn(t))

(6)

Assumption 3 (monotonicity): The immediate reward function
F(V(t)) increases monotonically with vi(t), 1 ≤ i ≤ n, that is

v′
i(t) ≥ vi(t) ⇒ F(v1(t), . . . , v′

i(t), . . . , vn(t))

≥ F(v1(t), . . . , vi(t), . . . , vn(t)) (7)

Note these assumptions are necessary and non-redundant.
Moreover, these three assumptions are used to define a
class of general functions, referred to as ‘standard’
immediate reward functions.

Definition 1: A reward function is standard one if it satisfies
the aforementioned three assumptions.

On the basis of the three assumptions, we can obtain the
following structure of the greedy policy for this class of
standard reward function.

Definition 2: We assume that v1(t) ≥ v2(t) ≥ . . . ≥ vn(t) at
slot t, then the greedy policy is to choose the first k best
channels, that is to say, âk(t) = {1, 2, . . . , k}.

In order to see the intrinsic structure of the standard
immediate reward function, we give three basic examples.

Example 1: Considering the scenario in [12] where the user
gets one unit of reward for each channel sensed good. In
this example, the expected immediate reward function is
F( V) =

∑k
i=1 vi. It can be easily verified that F(V)

satisfies the above three assumptions and thus is ‘standard’.

Example 2: Considering the scenario where the user gets one
unit of reward only if all the channels are sensed to be good.
Thus, the immediate reward function is formulated by
F( V) =

∏k
i=1 vi, which is ‘standard’ one.

Example 3: Consider the scenario in [13] where the user gets
one unit of reward if at least one channel is sensed good. In
IET Signal Process., 2012, Vol. 6, Iss. 6, pp. 584–593
doi: 10.1049/iet-spr.2011.0185



www.ietdl.org
this case, the expected immediate reward function is
F( V) = 1 −

∏k
i=1 (1 − vi), which is standard according to

the three assumptions.

3.2 Feature of accumulative reward function

In this part, the accumulative reward function Vt(V(t)) (also
called value function) is proved to be standard reward
function under the greedy policy, which consists of the
main part of the proof for the optimality of greedy policy in
the next section.

Lemma 1 (symmetry): Under the greedy policy from slot t + 1,
Vt(V(t)) is symmetric about vi(t), vj(t), 1 ≤ i, j ≤ k, that is

Vt(v1(t), . . . , vi(t), . . . , vj(t), . . . , vn(t))

= Vt(v1(t), . . . , vj(t), . . . , vi(t), . . . , vn(t))

Proof: The proof is given in Appendix 2. A

Lemma 2 (affine): Under the greedy policy from slot t + 1,
Vt(V(t)) is an affine function of vi(t), 1 ≤ i ≤ n when all
other vj(t), j = i, 1 ≤ j ≤ n hold constant.

Proof: The proof is given in Appendix 3. A

Lemma 3 (monotonicity): Under the greedy policy from
slot t + 1, Vt(V(t)) increases monotonically with vi(t),
1 ≤ i ≤ n, that is

v′
i(t) ≥ vi(t) ⇒ Vt(v1(t), . . . , v′

i(t), . . . , vn(t))

≥ Vt(v1(t), . . . , vi(t), . . . , vn(t))

Proof: The proof is given in Appendix 4. A

Lemma 4: Under the greedy policy from slot t + 1, Vt(V(t)) is
a standard reward function.

Proof: It is obvious that Vt(V(t)) is a standard reward function
according to Lemmas 1–3. A

In this section, we analyse the feature of the class of
standard reward function Vt(V(t)) under the greedy policy,
and the optimality of the greedy policy for this class of
function will be explored in the next section.

4 Optimality of greedy policy for standard
reward function

In this section, we first give the main theorem of optimality
for the class of standard reward function, which states the
sufficient condition of discounted factor for the optimality
of greedy policy. After introducing some useful lemmas, we
will give the complete proof of the theorem of optimality.

Let v2i denote the vector except the ith element vi, and
define

F ′
max W max

i[N , v−i[[0,1]n−1
{F(1, v−i) − F(0, v−i)}

F ′
min W min

i[N , v−i[[0,1]n−1
{F(1, v−i) − F(0, v−i)}

⎧⎪⎨
⎪⎩

It is easy to verify that F′
max ≥ F′

min ≥ 0 based on the three
basic assumptions.
IET Signal Process., 2012, Vol. 6, Iss. 6, pp. 584–593
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The main theorem of optimality is firstly stated as follows:

Theorem 1: The greedy policy is optimal for Vt(V(t)) when
p01 ≤ vi(1) ≤ p11, 1 ≤ i ≤ n if F(V(t)) is a standard reward
function and b satisfies the following condition

0 ≤ b ≤ F ′
min

F ′
max(1 − (1 − p11)n−k−1)

(8)

In order to prove the Theorem 1, we introduce some useful
lemmas firstly. Note Lemmas 5–7 hold under condition (8)
in the rest of the paper.

Lemma 5: For p11 ≥ vi ≥ vi+1 ≥ p01 (k + 1 ≤ i ≤ n 2 1),
under the greedy policy from slot t + 1, we have the
following inequality for t ¼ 1, 2, . . . , T if (8) holds

Vt(v1, . . . , vi, vi+1, . . . , vn)

− Vt(v1, . . . , vi+1, vi, . . . , vn) ≥ 0 (9)

Lemma 6: For 1 . v1(t) ≥ v2(t) ≥ . . . ≥ vn(t) . 0, under
the greedy policy from slot t + 1, we have the following
inequality for t ¼ 1, 2, . . . , T if (8) holds

Vt(v1, . . . , vn−1, vn) − Vt(vn, v1, . . . , vn−1) ≤ F ′
max (10)

Lemma 7: For p11 ≥ x ≥ y ≥ p01, under the greedy policy
from slot t + 1, we have the following inequality for t ¼ 1,
2, . . . , T if (8) holds

Vt(v1, . . . , vk−1, x, y, . . . , vn)

− Vt(v1, . . . , vk−1, y, x, . . . , vn) ≥ 0 (11)

Remark: We would like to point out the complicated
dependence in the proving process where Lemma 5 depends
on Lemmas 2, 6 and 7, Lemma 6 depends on Lemmas 6 and
7 and Lemma 7 depends on Lemmas 7 and 6. Therefore we
give the proof of Lemmas 5, 6 and 7 together by backward
induction over time horizon in Appendix 5.

After obtaining the Lemmas 5–7, we are ready to prove the
Theorem 1.

Proof: The basic approach is by induction on t. It is obvious
that the myopic policy is optimal at T. Now, assuming the
optimality of the myopic policy for t + 1, . . ., T 2 1, we
shall show the myopic policy is also optimal for t. Denote
i1, . . ., in as any one of permutations of N . To prove the
optimality of greedy policy in slot t, we need to prove

Vt(v1, . . . , vk , . . . , vn) ≥ Vt(vi1
, . . . , vik

, . . . ,vin
) (12)

The proving process is same as the bubble sort algorithm,
comparing each pair of adjacent items and swapping them
if they are in the wrong order according to Lemmas 1, 5
and 7 until no swaps are needed, which indicates that the
list is sorted to Vt(v1, . . ., vk, . . ., vn). The optimality of
greedy policy at slot t is guaranteed. Therefore the Theorem
1 is concluded. A

Corollary 1: The greedy policy is optimal if choosing 1 out of
n channels for 0 , b ≤ 1 if p11 . p01.
587
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Proof: When k ¼ 1, according to Lemmas 1–3, we have
F(V(t)) ¼ avi(t), a . 0, hence

F ′
min

F ′
max(1 − (1 − p11)n−k−1)

= 1

1 − (1 − p11)n−2 . 1 (13)

According to Theorem 1, we have the conclusion. A

Corollary 2: The greedy policy is optimal if choosing n 2 1
out of n channels for 0 , b ≤ 1.

Proof: In case of k ¼ n 2 1, we have

F ′
min

F ′
max(1 − (1 − p11)n−k−1)

[ ]
k=n−1

� 1 (14)

Hence, the greedy policy is optimal according to Theorem 1.A

5 Applications in cognitive radio network

To illustrate the application of the mathematical results derived
in the previous section, three typical scenarios [12, 13]
described by standard reward function are presented here,
which demonstrate that the different optimality is completely
from different forms of immediate reward function.

5.1 Application 1

An application is in a synchronously slotted cognitive radio
network where a SU can opportunistically access a set of n
i.i.d. channels partially occupied by primary users. The state
of each channel i in time slot t, denoted by Si(t), is modelled
by a discrete time two-state Markov chain. At the beginning
of each slot t, the SU selects a subset A(t) of channels to
sense. If at least one of the sensed channels is in the idle state
(i.e. unoccupied by any primary user), the SU transmits its
packet and collects one unit of reward. Otherwise, the
SU cannot transmit, thus obtaining no reward. The decision
procedure is repeated for each slot. The objective
is to maximise the average reward over T slots, that is to
say, the discounted factor b ¼ 1. Obviously, we have
the immediate reward function F( V(t)) =
1 −

∏
i[A(t) (1 − vi(t)). Therefore the greedy policy is to

choose the best k channels by (4). According to Theorem 1,
we have F′

max ¼ (1 2 p01)k21, F′
min ¼ (1 2 p11)k21 if

p01 ≤ vi(1) ≤ p11, 1 ≤ i ≤ n. Therefore the greedy policy,
choosing the best k out of n channels, is optimal if the
discounted factor b satisfies the following condition

0 ≤ b ≤ (1 − p11)k−1

(1 − p01)k−1(1 − (1 − p11)n−k−1)

Obviously, the upper bound cannot achieve 1 generally. Thus,
the greedy policy, in general, is not optimal for the average
reward over time horizon, which was proved in our
previous work [13]. In particular, the greedy policy,
choosing the best k ¼ 1 or n 2 1 out of n channels is
optimal for b ¼ 1 according to the Corollaries 1 and 2.

5.2 Application 2

Consider the problem of probing n independent Markov chains.
Each one has two states – good (1) and bad (0) – with transition
588

& The Institution of Engineering and Technology 2012
probabilities p11, p01 across chain. Assuming p11 . p01. A
player selects k chains to probe according to its preference
(policy) and obtain a reward for each probed chain in the
good state. We assume that the reward is affine function of
the probability of the selected channel in the good state, that
is, ui(t) ¼ avi(t), a . 0, then we have the immediate reward
function: F(V(t)) = a

∑k
i=1 vi(t). As F′

max ¼ F′
min ¼ a, thus,

0 ≤ b ≤ 1 , (1/(1 2 (1 2 p11)
n2k 2 1)). We have the

following lemma by Theorem 1:

Lemma 8: The greedy policy of choosing the first k best
channels is optimal for 0 , b ≤ 1.

Obviously, this result is consistent with [11, 12].

5.3 Application 3

Consider the scenario where a player detects n independent
Markov chains. Each one has two states – good (1) and bad
(0) – with transition probabilities p11, p01 (p11 . p01) across
chain. The player selects k chains to detect according to its
policy and obtain one unit of reward if all detected channels
are good; otherwise, no reward. We assume that the
probability of i channel in good state at time t is vi(t), then
we have the immediate reward function:
F(V(t)) = P

k
i=1vi(t). Therefore the greedy policy is to detect

the first k best channels, and F ′
max = pk−1

11 , F ′
min = pk−1

01 . We
have the following conclusion by Theorem 1

0 ≤ b ≤ pk−1
01

pk−1
11 (1 − (1 − p11)n−k−1)

So in case of 1 , k , n 2 1 the greedy policy is not optimal
generally for b ¼ 1, while choosing the best k ¼ 1 or
k ¼ n 2 1 out of n channels is optimal for 0 , b ≤ 1.

6 Conclusion

In this study, we have considered a class of POMDP problem
arisen in the fields of cognitive radio network, server
scheduling and downlink scheduling in cellular systems,
characterised by the so-called standard reward function. For
this class of POMDP, we establish the optimal condition of the
greedy policy focusing only on the maximisation of the
immediate reward. The technical approach analysing this
problem is purely mathematical, and thus is general for other
models involving the recursive backward induction on the
time horizon. The future direction is to investigate non-i.i.d
Markov chain model through the proposed method, and
another more challenging work is to extend standard reward
function by dropping at least one of the three basic assumptions.
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9 Appendices

9.1 Appendix 1. Proof of Lemma 9

Lemma 9: Assume ak(t) ¼ v1(t), . . .vk(t), Kt(V(t)) is
symmetric about vi(t), vj(t) for all 1 ≤ i, j ≤ k, that is

Kt(v1(t), . . . , vi(t), . . . , vj(t), . . . , vn(t))

= Kt(v1(t), . . . , vj(t), . . . , vi(t), . . . , vn(t))

Proof: For the conciseness of presentation, we introduce a
variable Km

t (V(t)) as follows

Km
t (V(t)) =

∑
e[P(ak (t))

|e|=m

∏
i[e

vi

∏
j[ak (t)\e

(1 − vj)Vt+1(p11[|e|],

t(vk+1), . . . , t(vn), p01[k − |e|]) (15)

As e is the subset of the power set P(ak (t)) generated by
the core ak(t), thus 0 ≤ |e| ≤ k, and furthermore,
IET Signal Process., 2012, Vol. 6, Iss. 6, pp. 584–593
doi: 10.1049/iet-spr.2011.0185
Kt(V(t)) =
∑k

m=0 Km
t (V(t)). Obviously, Vt+1(p11[|e|],

t(vk+1), . . ., t(vn), p01[k 2 |e|]) is unrelated with ak(t), so
we only need to prove the k + 1 coefficients are symmetric
about vi(t), vj(t) for all 1 ≤ i, j ≤ k, that is

Cm
t =

∑
e[P(ak (t))

|e|=m

∏
i[e

vi

∏
j[ak (t)\e

(1 − vj), 0 ≤ m ≤ k

is symmetric about vi(t), vj(t). On the basis of the feature of
power set P(ak (t)), it is simple to obtain that Cm

t (0 ≤ m ≤ k)
is symmetric about any two vi(t), vj(t) [ ak(t). Therefore
Kt(V(t)) is symmetric about vi(t), vj(t) [ ak(t). A

9.2 Appendix 2. Proof of Lemma 1

1. According to assumption 1, for 1 ≤ i = j ≤ k in time slot
T, as VT(V(T )) ¼ F(V(T )), then it is easy to verify that
VT(V(T )) is symmetric.
2. Assume VT21(V(t)), . . . , Vt+2(V(t)), Vt+1(V(t)) are
symmetric, then at slot t we have Vt(V(t)) ¼ F(V(t)) +
bKt(V(t)). On the basis of Assumption 1, F(V(t)) is
symmetric. According to Lemma 9 (Appendix 1), Kt(V(t))
is also symmetric. Hence, Vt(V(t)) is symmetric.

9.3 Appendix 3. Proof of Lemma 2

1. According to Assumption 2, in time slot T, F(V(T )) is affine
function of vi(T ), 1 ≤ i ≤ n. Hence, VT(V(T )) ¼ F(V(T )) is
also affine function of vi(T ).
2. Assume VT21(V(T 2 1)),. . .,Vt+2(V(t + 2)), Vt+1(V(t + 1))
are affine functions, we prove it also holds for slot t. Two
cases should be considered as follows:

Case 1: Channel vi � ak(t) ¼ {v1, . . ., vk}, we have

Vt(V(t)) = F(V(t)) + b
∑

e[P(ak (t))

∏
p[e

vp

∏
q[ak (t)\e

(1 − vq)

× Vt+1(p11[|e|], . . . , t(vi), . . . , t(vn), p01[k − |e|])

By the induction hypothesis, Vt+1(V(t + 1)) is the affine
function of t(vi), and meanwhile, t(vi) is an affine
transform of vi, thus Vt+1(V(t + 1)) is the affine function of
vi. Considering F(V(t)) is unrelated with vi, we have
Vt(V(t)) is the affine function of vi.

Case 2: Channel vi [ ak(t), let ak21(t) ¼ ak(t) 2 {vi}, we
have (see equation at the bottom of the page)

By Assumption 2, F(v1, . . ., vi, . . ., vk) is the affine
function of vi. Obviously, the second term of the right
hand of the above formulation is also the affine function of
vi. Therefore Vt(V(t)) is the affine function of vi.
Vt(V(t)) = F(V(t)) + b
∑

e[P(ak (t))

∏
p[e

vp

∏
q[ak (t)\e

(1 − vq)Vt+1(p11[|e|], t(vk+1), . . . , t(vn), p01[k − |e|])

= F(v1, . . . , vi, . . . , vk) + b
∑k−1

m=0

∑
|e|=me[P(ak−1(t))

∏
p[e

vp

∏
q[ak−1(t)\e

(1 − vq){viVt+1(p11[|e|], p11, t(vk+1), . . . , t(vn), p01[k − |e|])

+(1 − vi)Vt+1(p11[|e|], t(vk+1), . . . , t(vn), p01, p01[k − |e|])}
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Combining the two cases, we have Vt(V(t)) is the affine
function of vi. Lemma 2 is concluded.

9.4 Appendix 4. Proof of Lemma 3

1. The lemma holds trivially for slot T considering
VT(V(T )) ¼ F(V(T )), which is the increasing function with
vi.
2. Assume VT21(V(T 2 1)), . . . ,Vt+2(V(t + 2)), Vt+1(V(t + 1))
increase monotonically, we prove it is true for slot t by two
different cases.

Case 1: Channel vi � ak(t), we have

Vt(V(t)) = F(V(t)) + b
∑

e[P(ak (t))

∏
p[e

vp

∏
q[ak (t)\e

(1 − vq)

× Vt+1(p11[|e|], . . . , t(vi), . . . , t(vn), p01[k − |e|])

Obviously, t(vi) increases with vi when p11 . p01, and
Vt+1(V(t + 1)) increases with t(vi) according to the
induction hypothesis, thus Vt+1(V(t + 1)) also increases
with vi. As F(V(t)) is unrelated with vi, we have Vt(V(t))
is the increasing function of vi.
Case 2: Channel vi [ ak(t), let ak21(t) ¼ ak(t) 2 {vi}, we
have (see equation at the bottom of the page)

where, the first term, F(v1, . . ., vi, . . ., vk), of the right
hand of the above formulation increases monotonically
with vi according to Assumption 3, and the second term
is also the increasing function of vi because (see equation
590
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at the bottom of the page)

where, p11 ≥ t(vk+1) ≥ . . . ≥ t(vn) ≥ p01 according to the
increasing monotonicity of t(vi) in vi when p11 . p01, and
thus, each term in bracket is larger than or equals zero
according to the induction hypothesis.

Therefore we have Vt(V(t)) increases monotonically with
vi through the two cases and complete the proof.

9.5 Appendix 5. Proof of Lemmas 5–7

Proof: The proving process is based on backward induction in
three steps as follows:

Step 1: In slot T, these lemmas hold trivially noticing
VT(V(T ) ¼ F(V(T ))).

For Lemma 5

VT (v1, . . . , vi, vi+1, . . . , vn)−VT (v1, . . . , vi+1, vi, . . . , vn)

= F(v1, . . . , vk )−F(v1, . . . , vk) = 0

For Lemma 6

VT (v1, . . . , vn−1, vn)−VT (vn, v1, . . . , vn−1)

= F(v1, . . . , vk−1, vk)−F(vn, v1, . . . , vk−1)

= (vk −vn)(F(v1, . . . , vk−1, 1)−F(v1, . . . , vk−1, 0))

≤ F ′
max

where, the second equality is due to Lemmas 1 and 2.
Vt(V(t)) = F(V(t)) + b
∑

e[P(ak (t))

∏
p[e

vp

∏
q[ak (t)\e

(1 − vq)Vt+1(p11[|e|], t(vk+1), . . . , t(vn), p01[k − |e|])

= F(v1, . . . , vi, . . . , vk ) + b
∑k−1

m=0

∑
|e|=me[P(ak−1(t))

∏
p[e

vp

∏
q[ak−1(t)\e

(1 − vq)

× {viVt+1(p11[m], p11, t(vk+1), . . . , t(vn), p01[k − m])

+(1 − vi)Vt+1(p11[m], t(vk+1), . . . , t(vn), p01, p01[k − m])}

= F(v1, . . . , vi, . . . , vk ) +
∑k−1

m=0

∑
|e|=me[P(ak−1(t))

∏
p[e

vp

∏
q[ak−1(t)\e

(1 − vq)

× {vi[Vt+1(p11[m], p11, t(vk+1), . . . , t(vn), p01[k − m])

− Vt+1(p11[m], t(vk+1), . . . , t(vn), p01, p01[k − m])]

+Vt+1(p11[m], t(vk+1), . . . , t(vn), p01, p01[k − m])}

≥ 0

Vt+1(p11[m], p11, t(vk+1), t(vk+2), . . . , t(vn−1), t(vn), p01[k − m])

− Vt+1(p11[m], t(vk+1), t(vk+2), . . . , t(vn−1), t(vn), p01, p01[k − m])

= [Vt+1(p11[m], p11, t(vk+1), t(vk+2), . . . , t(vn−1), t(vn), p01[k − m])

− Vt+1(p11[m], t(vk+1), t(vk+1), t(vk+2), . . . , t(vn−1), t(vn), p01[k − m])]

+ [Vt+1(p11[m], t(vk+1), t(vk+1), t(vk+2), . . . , t(vn−1), t(vn), p01[k − m])

− Vt+1(p11[m], t(vk+1), t(vk+2), t(vk+2), . . . , t(vn−1), t(vn), p01[k − m])]

+ · · · + [Vt+1(p11[m], t(vk+1), t(vk+2), . . . , t(vn−1), t(vn), t(vn), p01[k − m])

− Vt+1(p11[m], t(vk+1), t(vk+2), . . . , t(vn−1), t(vn), p01, p01[k − m])]

≥ 0
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For Lemma 7

VT (v1, . . . , vk−1, x, y, . . . , vn)−VT (v1, . . . , vk−1, y, x, . . . , vn)

= F(v1, . . . , vk−1, x)−F(v1, . . . , vk−1, y)

= (x− y)(F(v1, . . . , vk−1, 1)−F(v1, . . . , vk−1, 0))

≥ (x− y)F ′
min ≥ 0

Step 2: Assume at T 2 1, . . ., t + 1, Lemmas 5 (Induction
Hypothesis 1, IH1), 6 (Induction Hypothesis 2, IH2), and 7
(Induction Hypothesis 3, IH3) hold, we thus prove these
lemmas also hold at slot t.
Step 3: At slot t,

For Lemma 5 (see equation at the bottom of the page)

where, ak(t) ¼ v1, . . .,vk, the first equality is due to Lemma
IET Signal Process., 2012, Vol. 6, Iss. 6, pp. 584–593
doi: 10.1049/iet-spr.2011.0185
2, the inequality is due to IH1 if |e| + i 2 k 2 1 ≥ k, IH3 if
|e| + i 2 k 2 1 ¼ k 2 1, and Lemma 1 if |e| + i 2 k 2 1
, k 2 1.

For Lemma 6, we have the following decomposition
according to Lemma 2 (see (16))

Therefore we analyse the above formulation through four
cases as follows:
Case 1: For the first term of the right hand of (16), we denote
ak−1(t) = {v1, v2, ..., vk−1}, and thus have
where, the first inequality is due to Lemma 3. (see equation at
the bottom of the page)
Case 2: For the second term of the right hand of (16), we
denote ak21(t) ¼ {v1, v2, . . ., vk21}, and have (see
equation at the bottom of the page)
Case 3: For the third term of the right hand of (16), we denote
ak21(t) ¼ {v1, v2, . . ., vk21}, and have (see equation at the
bottom of the page)
Vt(v1, . . . , vk , . . . , vi, vi+1, . . . , vn) − Vt(v1, . . . , vk , . . . , vi+1, vi, . . . , vn)

= (vi − vi+1)(Vt(v1, . . . , vi−1, 1, 0, vi+2, . . . , vn) − Vt(v1, . . . , vi−1, 0, 1, vi+2, . . . , vn))

= (vi − vi+1)b
∑

e[P(ak (t))

∏
i[e

vi

∏
j[ak (t)\e

(1 − vj)

× {Vt+1(p11[|e|], t(vk+1), . . . , t(vi−1), p11, p01, t(vi+2), . . . , t(vn), p01[k − |e|])
−Vt+1(p11[|e|], t(vk+1), . . . , t(vi−1), p01, p11, t(vi+2), . . . , t(vn), p01[k − |e|])}
≥ 0

Vt(v1, . . . , vk−1, vk , . . . , vn−1, vn) − Vt(vn, v1, . . . , vk−1, vk , . . . , vn−1)

= vkvn[Vt((v1, . . . , vk−1, 1, vk+1, . . . , vn−1, 1) − Vt(1, v1, . . . , vk−1, 1, vk+1, . . . , vn−1)]

+ vk(1 − vn)[Vt((v1, . . . , vk−1, 1, vk+1, . . . , vn−1, 0) − Vt(0, v1, . . . , vk−1, 1, vk+1, . . . , vn−1)]

+ (1 − vk)vn[Vt((v1, . . . , vk−1, 0, vk+1, . . . , vn−1, 1) − Vt(1, v1, . . . , vk−1, 0, vk+1, . . . , vn−1)]

+ (1 − vk)(1 − vn)[Vt((v1, . . . , vk−1, 0, vk+1, . . . , vn−1, 0) − Vt(0, v1, . . . , vk−1, 0, vk+1, . . . , vn−1)]) (16)

Vt(v1, v2, . . . , vk−1, 1, vk+1, . . . , vn−1, 1) − Vt(1, v1, v2, . . . , vk−1, 1, vk+1, . . . , vn−1)

= F(v1, v2, . . . , vk−1, 1) − F(1, v1, v2, . . . , vk−1) + b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], p11, t(vk+1), . . . , t(vn−1), t(vn), p01[k − 1 − |e|])
− Vt+1(p11[|e|], p11, t(vk), t(vk+1), . . . , t(vn−1), p01[k − 1 − |e|])}

= b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], p11, t(vk+1), . . . , t(vn−1), p11, p01[k − 1 − |e|])
− Vt+1(p11[|e|], p11, p11, t(vk+1), . . . , t(vn−1), p01[k − 1 − |e|])}

≤ 0 ≤ F ′
max

Vt(v1, v2, . . . , vk−1, 1, vk+1, . . . , vn−1, 0) − Vt(0, v1, v2, . . . , vk−1, 1, vk+1, · · · , vn−1)

= F(v1, v2, . . . , vk−1, 1) − F(0, v1, v2, . . . , vk−1) + b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], p11, t(vk+1), . . . , t(vn−1), p01, p01[k − 1 − |e|])
−Vt+1(p11[|e|], p11, t(vk+1), . . . , t(vn−1), p01, p01[k − 1 − |e|])}
= F(v1, v2, . . . , vk−1, 1) − F(0, v1, v2, . . . , vk−1) ≤ F ′

max
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where, the first inequality is due to IH3 when |e| + 1 ¼ k, the
second one due to IH2, and the second equality due to Lemma
1 when |e| + 1 , k, noticing 0 ≤ |e| ≤ k 2 1.
Case 4: For the forth term of the right hand of (16), we denote
ak21(t) ¼ {v1, v2, . . ., vk21}, and have (see equation at the
bottom of the page)

where, the first inequality is due to IH2 and the third equality
is due to Lemma 1.
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Combing the results of four cases and (16), we have

Vt(v1, v2, . . . , vk−1, vk , . . . , vn−1, vn)

− Vt(vn, v1, v2, . . . , vk−1, vk , . . . , vn−1)

≤ vkvn0 + vk (1 − vn)F ′
max + (1 − vk)vnbF ′

max

+ (1 − vk)(1 − vn)bF ′
max ≤ F ′

max

To this end, we complete the proof of Lemma 6.
Vt(v1, v2, . . . , vk−1, 0, vk+1, . . . , vn−1, 1) − Vt(1, v1, v2, . . . , vk−1, 0, vk+1, . . . , vn−1)

= F(v1, v2, . . . , vk−1, 0) − F(1, v1, v2, . . . , vk−1) + b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], t(vk+1), . . . , t(vn−1), p11, p01, , p01[k − 1 − |e|])
−Vt+1(p11[|e|], p11, p01, t(vk+1), . . . , t(vn−1), p01[k − 1 − |e|])}

≤ −F ′
max + b

∑
e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)×

{Vt+1(p11[|e|], t(vk+1), . . . , t(vn−1), p11, p01, , p01[k − 1 − |e|])
−Vt+1(p11[|e|], p01, p11, t(vk+1), . . . , t(vn−1), p01[k − 1 − |e|])}

= −F ′
max + b

∑
e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

{Vt+1(p11[|e|], t(vk+1), . . . , t(vn−1), p11, p01, , p01[k − 1 − |e|])
−Vt+1(p01, p11[|e|], p11, t(vk+1), · · · , t(vn−1), p01[k − 1 − |e|])}

≤ −F ′
max + b

∑
e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

{Vt+1(p11[|e|], t(vk+1), · · · , t(vn−1), p11, p01, , p01[k − 1 − |e|])
+F ′

max − Vt+1(p11[|e|], p11, t(vk+1), · · · , t(vn−1), p01, p01[k − 1 − |e|])}
≤ −F ′

max + bF ′
max ≤ (b− 1)F ′

max ≤ F ′
max

Vt(v1, v2, . . . , vk−1, 0, vk+1, . . . , vn−1, 0) − Vt(0, v1, v2, . . . , vk−1, 0, vk+1, . . . , vn−1)

= F(v1, v2, . . . , vk−1, 0) − F(0, v1, v2, . . . , vk−1) + b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], t(vk+1), . . . , t(vn−1), p01, p01, p01[k − 1 − |e|])
−Vt+1(p11[|e|], p01, t(vk+1), . . . , t(vn−1), p01, p01[k − 1 − |e|])}

= b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], t(vk+1), . . . , t(vn−1), p01, p01, p01[k − 1 − |e|])
× Vt+1(p11[|e|], p01, t(vk+1), . . . , t(vn−1), p01, p01[k − 1 − |e|])}

= b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], t(vk+1), . . . , t(vn−2), t(vn−1), p01, p01, p01[k − 1 − |e|])
−Vt+1(p01, p11[|e|], t(vk+1), . . . , t(vn−1), p01, p01[k − 1 − |e|])}

≤ b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

× {Vt+1(p11[|e|], t(vk+1), t(vk+2), . . . , t(vn−2), t(vn−1), p01, p01, p01[k − 1 − |e|])
+F ′

max − Vt+1(p11[|e|], t(vk+1), . . . , t(vn−1), p01, p01, p01[k − 1 − |e|])}
≤ bF ′

max
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For Lemma 7 (see equation at the bottom of the page)

where, the third inequality is from condition (8) and the first
inequality is due to the following inequality,

DV =Vt+1(p11[|e|],p11,p01,t(vk+2), ...,t(vn),p01[k−1−|e|])
−Vt+1(p11[|e|],p11,t(vk+2), ...,t(vn),p01,p01[k−1−|e|])

≥−(1−
∏n

j=k+2

(1−vj))F ′
max (17)
Vt(v1, . . . , vk−1, x, y, . . . , vn) − Vt(v1, . . . , v

= (x − y)(Vt(v1, . . . , vk−1, 1, 0, . . . , vn) − V

= (x − y){(F(v1, . . . , vk−1, 1) − (v1, . . . , v

× [Vt+1(p11[|e|], p11, p01, t(vk+2), . . . , t(v

− Vt+1(p11[|e|], p11, t(vk+2), . . . , t(vn), p0

≥ (x − y) (F(v1, . . . , vk−1, 1) − F(v1, . . . ,

{

≥ (x − y) F ′
min − b 1 −

∏n

j=k+2

(1 − vj)

( )
F ′

max

{

= (x − y) 1 −
∏n

j=k+2

(1 − vj)

( )
F ′

max

F ′
max(1 −

⎡
⎢⎢⎢⎣

≥ 0
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Note, if t(vk+2(t)) ¼ ... ¼ t(vn(t)) ¼ p01, then DV ¼ 0,
which corresponds to the event that vk+2(t) ¼
... ¼ vn(t) ¼ 0 at slot t. Obviously, this event happens with
the probability

∏n
j=k+2 (1−vj). Thus with the probability

1−
∏n

j=k+2 (1−vj), there exists at least i (k + 2 ≤ i ≤ n)
such that t(vi) . p01 and furthermore, DV = 0. According
to IH2 and IH4, we have DV ≥ 2 F′

max with probability
1−

∏n
j=k+2 (1−vj), which is (17).

Therefore we finish the whole proving process of Lemmas
5–7.
k−1, y, x, . . . , vn)

t(v1, . . . , vk−1, 0, 1, . . . , vn))

k−1, 0)) + b
∑

e[P(ak−1(t))

∏
i[e

vi

∏
j[ak−1(t)\e

(1 − vj)

n), p01[k − 1 − |e|])
1, p01[k − 1 − |e|])]}

vk−1, 0)) − b (1 −
∏n

j=k+2

(1 − vj))F ′
max

}

}

F ′
min∏n

j=k+2
(1 − vj))

− b

⎤
⎥⎥⎥⎦
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