
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

209

Manuscript received June 5, 2006.
Manuscript revised June 25, 2006.

SWAN: A Secured Watchdog for Ad hoc Networks

Xiaoyun Xue†, Jean Leneutre†, Lin Chen† and Jalel Ben-Othman††

†Département INFRES - CNRS LTCI-UMR 5141, 46 rue Barrault, 75634 Paris Cedex 13 France

††Laboratoire Prism - CNRS UMR - 8144, Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis,
78035 Versailles France

Summary
Due to its nature, ad hoc networks are much more vulnerable to
various attacks than traditional wired networks. Many solutions
have been proposed in recent researches for the security of ad
hoc networks. The watchdog mechanism, based on a node
supervising all its local neighbors, is one of the basic security
mechanisms used by these solutions. It is able to detect both
malicious attacks and selfish behaviors without significant
overhead. However, it has a high storage requirement, and itself
needs to be secured against spoofing attacks which may badly
affect the reputation systems depending on it. In this paper, we
propose a secured and efficient supervision mechanism based on
the watchdog technique called SWAN. In order to avoid spoofing
attacks, we combine the techniques SUCV (Statistically Unique
and Cryptographically Verifiable) and TESLA (Timed Efficient
Stream Loss-Tolerant Authentication) to provide a lightweight
broadcast message authentication to watchdog. Moreover, we
also propose an efficient storage method to reduce the storage
overhead required by watchdog. Our analysis and simulations
show that our approach is both lightweight and robust.
Key words:
Ad hoc networks, watchdog, broadcast message authentication,
reputation system

1. Introduction

Mobile ad hoc networks are temporal and local area
networks with no infrastructure, no a-priori organization
but battery-based weak capacity nodes. The existing ad
hoc security solutions, such as [1], [3], [4], [6], can be
classified into three main categories: key management,
secure routing and cooperation enforcement. The key
management guarantees the identification and copes with
all problems concerning keys; the secure routing uses the
established keys to ensure the authentication, the
confidentiality and the integrity in both the topology
discovery and the data forwarding routing phases; and the
cooperation enforcement fights selfish behaviors and
encourages the cooperation between nodes.
 Among all proposed solutions, the watchdog technique
[6] is often used for the detection of selfish nodes and
malicious attackers, and the results of those observations
can feed some reputation systems, with which
misbehaving nodes should be isolated and/or punished.

CORE (a COllaborative REputation mechanism to enforce
node cooperation) [9], CONFIDANT (Cooperation Of
Nodes - Fairness In Dynamic Ad-hoc NeTworks) [10],
TRP (Trust-based Routing Protocol) [11], etc..., are ad hoc
routing protocols which adopt this kind of security system.
 Watchdog uses the promiscuous mode which permits
nodes to accept messages not sent to them. Compared to
the other security techniques, the watchdog introduces
neither additional traffic nor significant computation
overhead, but it has a high level storage requirement for
storing temporarily messages, and it needs to be secured
against spoofing attacks since the latter can cause mistakes
in reputation systems.
 In this study, we propose a secured watchdog with an
efficient supervision mechanism. First, in order to avoid
spoofing attacks that may badly affect the reputation, we
combine the techniques SUCV [12] and TESLA [13] to
provide a lightweight Broadcast Message Authentication
(BMA) to watchdog. A SUCV address ties naturally a
Private Key (PK) and a node IDentifier (ID) together, thus
no certificate server is needed to establish a PKI.
Furthermore, by using IPv6, it is proved that a SUCV
address is statistically unique, thus unspoofable. As for us,
we use Hash chains to replace private keys in SUCV to
achieve the authentication and the key management in
SWAN. Therefore neither key pre-distribution nor central
key server is needed by our scheme.
 On the other hand, if we take a look at the majority of
the secure proactive routing protocols [1], [14], [15], we
can find that they use either Hash chain or TESLA to
authenticate their routing messages/fields. Moreover, the
scheme μTESLA proposed in [16] is an efficient BMA
solution for sensor networks (also adaptable to ad hoc
networks). We also use a TESLA-based authentication in
watchdog since it is appropriate to treat a large number of
messages.
 We propose in addition an efficient storage scheme to
reduce the storage requirement of watchdog, this without
loss in the supervision capability. Instead of storing a
whole message [6] or only the packet’s identity and a hash
on payload [9], we temporarily buffer packet's variable
parts, a timestamp and a digest on packet's fixed parts.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

210

 The organization of the rest of the paper is as follows: In
section 2, we show the related works, and we specify our
proposition in detail in section 3. In section 4, we make
some discussions. We show how SWAN can be applied to
an existing secure ad hoc routing protocol and some
simulation results in section 5. Finally, we conclude the
paper with section 6.

2. Related work

In this section, we mainly discuss the authentication
mechanisms designed for the watchdogs that are used by
existing reputation-based security protocols.
 In CONFIDANT, a PKI similar to PGP is self-organized
thus asymmetric cryptography can ensure the
authentication of the routing control messages and
ALARMs. Data packets are implicitly supposed to be sent
on routes that are discovered and chosen for the purpose.
However, this may not always be true, because in a mobile
network a malicious node can pretend to be another node
by spoofing the identity of the latter and then doing attacks.
Therefore the attacks committed by the malicious node can
decrease the reputation of the node spoofed. In
CONFIDANT, no further mechanism is designed to
address this issue.
 In CORE, it is supposed that all the identities are
unspoofable and unforgeable. Later, the authors have
proposed a key management and message authentication
scheme called IDHC. This scheme relies on an offline Key
Distribution Center (KDC) server to provide an ID-based
master ticket to each node. Afterwards each node should
generate a series of authentication tickets based on its
master ticket. The authentication tickets are used in a way
similar to μTESLA, where each ticket is used during one
time interval and the authentication is delayed to the next
time interval. However, IDHC has a drawback in terms of
computation overhead, since the generation of one
authentication ticket is comparable to a RSA encryption,
and the verification of a ticket is equivalent to a RSA
signature verification.
 Usual methods for BMA that we found in the literature
are Hash chain [14], TESLA [15], μTESLA [16], etc...
Among them, TESLA uses asymmetric keys to sign the
first elements of Hash chains, and μTESLA uses
symmetric keys to authenticate its Hash chains in sensor
networks thanks to some pre-established trusts. Compared
to them, the most important advantage of SWAN would be
that it does not require a PKI or shared keys to authenticate
the first elements of Hash chains. Furthermore, SWAN is
carefully designed to be adaptive to reputation-based ad
hoc secure routing protocols.

3. Our proposition

3.1 Assumptions

Neither additional module, nor a-priori key distribution or
key server is required by the scheme, and nodes are not
required to execute any asymmetric cryptography.
Nevertheless, nodes should be able to compute hash
according to a certain collision-resistant hash algorithm.
Moreover, we suppose that the promiscuous mode is
available to all nodes in the network, and IPv6 is in use.
 To ensure a maximum correctness of watchdog, it is
further assumed that all nodes in the network have a same
transmission range and they all use an omni-directional
antenna (so that all links could be bidirectional).
CSMA/CA RTS-CTS may be used as the media access
control protocol to reduce the “hidden terminal problem”
[6].
 Regarding the storage, nodes are expected to store at
least one hash chain and to have a watchdog buffer in
which unverified messages could be temporarily stored
until the disclosure of their verification keys.
 Since the source routing can facilitate the monitoring,
we consider it as our underline routing algorithm. This
choice is the same as in most of the existing
reputation-based solutions, such as CONFIDANT and
CORE. Thus adopting SWAN to them is supposed to be
easy.
 The following parameters are initialized and published
in the network before SWAN is used:
(i) The lifetime of network Tmax We assume that our ad

hoc networks are temporal and local networks, and we
are able to estimate the upper bound of the network
lifetime Tmax.

(ii) The time interval duration Tti The network lifetime is
split into time intervals of uniform duration Tti.

(iii) The Network start time T0 It serves as a reference, to
which all nodes synchronize their schedule of
changing and disclosing keys.

 The above parameters are not secrets and can be easily
published in the network. Moreover, if a network is
isolated, its IPv6 prefix may be chosen by itself. Then the
parameters can be integrated into the IPv6 prefix:

IPv6 prefix = < (32-bit) T0, (16-bit) Tmax, (16-bit) Tti >

Finally, we assume a loose synchronization which
guarantees an upper bound on the maximum
synchronization error. In practice, the synchronization
mechanism can be TSF (Time Synchronization Function)
[18] or the solution proposed in [19] which better ensures
the multi-hop synchronization in ad hoc networks.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

211

3.2 SWAN scheme

3.2.1 Node initiation

The initiation of each node I should be done according to
the following steps:
(i) calculation of the length of the Hash chain n=

[Tmax⁄Tti]+1 ([x⁄y] denotes y integer divides x).
(ii) generation of a Hash chain of n elements based on a

random seed si: h(si), h2(s i), ..., hn(s i).
(iii) setting of the temporary address of the node

ADi = <IPv6 prefix, hash-64(hn(si))>

where the last hash output length may be reduced to
63 or 62 or still less according to the length of the
reserved bits in the IPv6 header.

 The network time is then divided into n intervals τ1, ...,
τn (only the last interval is incomplete). Any Hash chain
element hn-k+1(si) (1≤k≤n) will be used for the
authentication of all messages sent or forwarded by node i
during the time interval τk.

3.2.2 Message sending

Let Mfix be the fixed IP header fields (address of the
initiator, address of the target, the packet identifier, etc.)
and payload (if any) of a message M, and let Mvar be the
mutable fields of M (TTL, hop_count, etc.). In time
interval τk, M sent by node i will be <M, hi

n-k+1(h(Mfix),
Mvar)>, where hi

n-k+1(A) indicates a HMAC output using
the key hn-k+1(si) applied to a message A. Without loss of
generality, M can either be a control packet or a data
packet.

3.2.3 Message supervision1

Suppose that, in time interval τk, node Ii sends a packet M
to node Ii+1 and the latter should resend/forward it to node
Ii+2. Then, the first message sent by Ii will be <M,
hi

n-k+1(h(Mfix), Mvar)>. Ii keeps the packet’s identity, h(Mfix),
and all mutable fields in its watchdog buffer.
 Upon receiving the first message, Ii+1 performs
necessary modifications, and the modified packet M′ is
then sent to the node Ii+2: <M', hi+1

n-j+1(h(M'fix), M'var)>,
where τj is the current time interval according to node i+1.
 The packet M′ sent by Ii+1 will be observed by Ii. Ii
identifies the packet thanks to its identity, checks M′

1 Here we describe a supervision example using the mode
supervision on route, with which only nodes involved in traffics
observe what happens on routes. Actually SWAN can also
support the mode supervision in neighborhood, where any node
that is neighbor of both Ii and Ii+1 can perform the supervision.

mutable fields to see whether all modifications done by
Ii+1 respect well the routing protocol (whether a TTL is
decreased by one, etc...), and finally it checks if h(Mfix) =
h(M′fix) for the integrity of the fixed fields of M.
 If all above verifications are successful, so is the
supervision. Ii can then increase its reputation for node Ii+1.
Otherwise, a suspicious activity of node Ii+1 is discovered
and we have multiple choices:
(i) Ii can wait for the authentication phase to try to

eventually identify Ii+1 as a malicious node. This
measure can prevent false negatives if nodes spoof
when attacking.

(ii) Ii can directly decrease the reputation of node Ii+1
without further verification. This measure can prevent
false positives even though nodes spoof when
attacking.

(iii) Ii can directly delete the entry from the watchdog
buffer and leaves the reputation for Ii+1 unchanged.
This measure does not decrease reputations but only
increases them when there are successful
supervisions.

 With the first choice, Ii stores hi+1
n-j+1(h(M′ fix),M′var) for

future authentication.

3.2.4 Key disclosure and authentication

At each time interval j+1, any node i checks if it has sent
any message during the previous time interval. If so, it
discloses its key hn-j+1(si) by broadcasting a Key
Disclosure message (KD) to its one-hop neighbors after
the maximum synchronization error <KD, hn-j+1(si)>.
 Note that if there is any neighbor discovery process (that
is the case of the most of the proactive and hybrid ad hoc
routing protocols and also of some secure ad hoc routing
protocols), by setting Tti equals to the neighbor discovery
interval, keys can be disclosed within neighbor discovery
packets. This can reduce the message overhead.
 Upon receiving a KD message, a receiver verifies at first
whether the corresponding key is already validated. If so,
it rejects the message. Otherwise, it verifies whether ADi =
<IPv6 prefix, hash-64(hj-1(hn-j+1(si)))>.If the check fails,
the key is rejected, and the node will still verify the other
KD messages declaring the same key. Otherwise, the key
is authenticated and stored, and the previous key
discovered by node i is replaced.

3.2.5 Message authentication

Once a key hn-j+1(s i+1) is authenticated by node i, i checks
in its watchdog buffer whether there is any message M′
sent by node i+1 unauthenticated. If so, the validity of
hi+1

n-j+1(h(M′ fix), M′var) is further checked.
 If both the supervision and the authentication are
successful, a good behavior is registered in favor of node
i+1. Otherwise, if only the authentication succeeds, a bad

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

212

behavior will be attributed to node i+1. As a consequence,
to have a good reputation, nodes have to behave correctly
in both routing and key disclosing.
 If the authentication fails, it is possible that M′ is not
sent by the node it claimed to be (spoofing attack), but we
are not able to identify the attacker. Thus, to avoid false
negatives, the result of the supervision may not be taken
into account by the reputation system.
 Note that with SWAN we mainly detect malicious
behaviors. A selfish forwarding node can not be detected,
since no (less) message is sent by it. To resolve the
problem, we suggest to combine a solid neighbor lookup
protocol with SWAN. Therefore a neighbor node which
does not forward message can be considered selfish.
 A whole SWAN process is shown in figure 1.

check h(fix)

i+1

n−k+1
KD, AD , h (S)i+1 i+1

n−k+1
KD, AD , h (S)

Supervisor Sender or Receiver
node Ii forwarder Ii+1 Ii+2

Supervision
phase

M, h (h(Mfix), Mvar)
n−k+1

i

Authentication
phase

Time interval k

Time interval k+1

n−k+1
M’, h (h(M’fix), M’var)i+1

M’, h (h(M’fix), M’var)
n−k+1

i+1

evaluate reputation

Authenticate the key,
check packets,

identify M’,
check M’var,

i+1

Fig. 1 A SWAN example

3.3 Capacity requirement analysis

3.3.1 Computation requirements

Table 1: Hashes required by SWAN

Operation Number of
hashes

Total hashed bits

Initiate a node n + 2 64 + 128 * (n + 1)
Send a packet 2 128 + packet_length

Supervise a packet 1 ≤ packet_length
Authenticate a key j 128 * j

Authenticate a packet 1 128 + packet_var_length

Thanks to the temporary nature of ad hoc networks, in
SWAN no asymmetric cryptography is required even in
the node initiation phase. The only cryptographic
operation, hashing, is a well-known lightweight
cryptographic operation (The velocity of 160-bit SHA-1
one-way hash function is 75MB/s on a 33MHz 486SX).

 Suppose a 128-bit hash is used to generate the Hash
chains and the seed length is also 128 bits, we can refer to
table 1 to know the number of hashes and the total hashed
bits required by each watchdog operation (note that in a
real environment, the total hashed bits depends on the hash
implementation).
 Furthermore, by using 128 bits to store a before
revealed key hn-j+m(si) (2≤m≤j), it is possible to decrease
the number of hashes required by the authentication of the
key hn-j+1(si) to m-1, by checking whether hn-j+m(si) =
hm-1(hn-j+1(si)).

3.3.2 Storage requirements

We can refer to table 2 to know the number of bits to be
stored by SWAN for each operation (under the same
hypothesis as in the previous subsection):

Table 2: Memory required by SWAN
Operation Length of total information

to be stored (bits)
Hash Chain 128 * ([Tmax⁄Tti] + 1)

Authenticate and
Supervise one packet

length(Timestamp + 2 * 128
+packet_identity)

To further reduce the memory space needed to store a
n-element hash chain from O(n) to O(log(n)), the method
proposed in [20] can be used. It selectively stores a
logarithmic number of elements of a Hash chain, and the
elements stored are modified over time, in such a way that
we can easily find any hash value through several hashing
operations.

3.3.3 Supplement overhead

In SWAN the only additional message is the key
disclosure message. During the lifetime of a MANET,
each node sends at most [Tmax⁄Tti] + 1 KD messages to its
one-hop neighbors. Each KD message has less than 150
bits as length (IP header not included). And every
traditional message has an additional overhead of 128 bits.

3.4 Security analysis

3.4.1 Reputation system security

We suppose that a benign node will always perform
correct routing operations with its true identity and the
correct authentication keys. Therefore, its reputations will
be increased by the benign nodes observing it. Moreover,
since SWAN guarantees that there is no spoofing attack,
attackers are not able to decrease the reputations of benign
nodes by spoofing their identities. Thus, we can ensure
that at least the first-hand reputations for benign nodes will
be correct.
 We distinguish two cases of misbehaving nodes:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

213

(i) If an attacker uses his true identity and his correct keys
to attack, benign nodes can identify the attacker and
decrease his reputation. Thus, there will be neither
false negative nor false positive. However, in order to
keep at least his bootstrapping reputation, an attacker
would prefer to belong to the next category.

(ii) If an attacker does not use his true identity when
attacking, or he uses wrong keys to make his attack
messages unable to be authenticated, observing nodes
will not be able to identify the attacker. Thus, the
reputation of the attacker may not be decreased.
However, since reputations of benign nodes do
increase, a malicious node will still have its reputation
inferior to those of the benign nodes.

 Furthermore, since such a malicious node will have its
reputation unchanged, we can consider that, if a node has
existed in the network for a long period but still has its
reputation unmodified, it is less trustworthy than a node
having its reputation evaluated to a higher level or a new
node.
 Another solution is to periodically decrease all the
reputations. Like this, even we can not correctly
authenticate the attackers, attackers can not keep their
bootstrapping reputations, and nodes must proactively
participate into routing to have/maintain good reputations.
 Considerations for the reputations of selfish nodes It is
obvious that selfish nodes can not be directly detected by
SWAN, because no (less) message will be routed by them.
 Nevertheless, we distinguish selfish routing nodes from
selfish forwarding nodes. Selfish routing nodes do not
participate into the routing discovery and data forwarding,
while selfish forwarding nodes only refuse to forward data
packets. For the selfish forwarding nodes, even without
authentication, we will be able to decrease their
reputations because they refuse to forward data packets. As
for the selfish routing nodes, they can at most keep their
bootstrapping reputation values, thus they can not be
trustworthy.
 As conclusion, we believe that a reputation system using
SWAN can produce relatively correct reputations between
nodes.

3.4.2 Statistically unique address

Since ad hoc networks are usually local area networks with
a limited number of nodes (for example, DSR requires that
the MANET dimension is less than 16), we believe that
SWAN addresses are, like SUCV addresses, statistically
unique if its hash algorithm is strong collision resistant
(with a n-bit hash output, we need on average 2n/2 inputs to
encounter an hash output collision).
 Suppose that there are N nodes in a MANET, and the
hash algorithm in use is a perfect p-bit hash algorithm.
Then, the address collision probability in SWAN will be
(let A = 2p, A >> N, N > 1):

The collision probability increases with N and decreases
with A. Since A >> N, the probability is small.

3.4.3 Unspoofable address and authentication

To successfully spoof an IP address, the following
methods can be tried by attackers:
(i) Dictionary attack Also called ``brute-force attack''. An

attacker can construct a database, also called a
dictionary, which contains all possible pairs of <seed,
hn(seed)>. Thus, once a hn(s i) is revealed, he can look
up the corresponding si in the dictionary. However, the
attack is difficult to realize since it is equivalent to
break the one-way hash.

(ii) Replay It is somewhat true that without an accurate
time information in packets, the replay attacks are
possible. Nevertheless, we believe that replay in
SWAN can not greatly affect the reputations of nodes.
This is because, first, we do not take into
consideration messages replayed in the same time
interval of their first sending; second, messages
replayed in a later time interval can not be
successfully authenticated.

(iii) Finding a future key based on revealed ones Even
though hash values will be revealed one by one by
their owners, spoofing attacks can still be prevented
because the hash operation is a one-way operation.
The corresponding hash property is called ``weak
collision resistance'', which means that given x, it is
difficult to find a y that satisfies h(y) = h(x). This
attack is also equivalent to break the one-way hash.

3.4.4 Integrity

Since both mutable and fixed fields are protected by
HMAC, the integrity of all the messages is ensured.

3.4.5 About bogus address

Due to the lack of countermeasure, in SWAN a malicious
node can create a lot of bogus addresses in addition to its
legitimate address. This attack permits attackers to bypass
the reputation system by constantly appearing as a new
node. Unfortunately, we can hardly prevent bogus
addresses in absence of an online or off-line server.
 Nevertheless, to complicate the generation of bogus
addresses, we can use a binding of IP and MAC addresses.
Since IP and MAC addresses are both unique and public,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

214

nodes can not solely modify their IP addresses without
changing their MAC addresses at the same time.
Furthermore, to get each valid identity, an attacker should
redo n+1 hash operations, this also greatly complicates his
task. Finally, since each of its addresses is only used
temporarily, a node using bogus addresses can hardly get a
high reputation thus it could not become highly
trustworthy, let alone it uses these identities to attack.
 Otherwise, we can also use the countermeasures against
Sybil attacks presented in [5] to detect bogus addresses in
SWAN.

3.5 Address renewal

Although we supposed that we can estimate the maximum
network lifetime in a most pessimistic way, sometimes a
MANET can exist longer than expected, or nodes could be
too weak to support long hash chains, or the lifetime of the
network is too long to be supported by one hash chain. In
all these cases, node addresses must be renewed, but old
reputations must not be lost. In this subsection, we propose
two mechanisms that seamlessly link a new Hash chain to
the old one without introducing additional messages.

3.5.1 Approach using overlapping Hash chain

0

......Chain 3

Chain 2

Chain 1

Chain 0 Chain 4

C0 C1 C2 C3 C4

TimeT

Fig. 2 Address renew using overlapping Hash chains

This solution consists of using two overlapping Hash
chains, as shown in figure 2. During the node initiation
phase, each node i picks two random seeds si

0, s i
1 and

generates two Hash chains: one of n elements based on si
0,

the other of 2n elements based on si
1. Node i then sets its

temporary address in cycle 0 (in each cycle a node will use
a different address): ADi

0 = < IPv6 prefix,
Hash-64(hn(si

0))> and computes its address in cycle 1:
ADi

1=<IPv6 prefix, Hash-64(h2n(s i
1)) >.

 Then, in cycle m, at time interval τk, the format of a
packet M sent by a node i will be the following:

<M, hm+1,i
2n-k+1(hm,i

n-k+1(h(Mfix), Mvar))>

where hm+1,i
2n-k+1(A) denotes an HMAC applied to message

A using the key hi
2n-k+1(s i

m+1), and h m,i
n-k+1(A) denotes an

HMAC applied to message A using the key hi
n-k+1(s i

m).
 The message supervision is the same as that described in
section 3.2.3 except that Ii stores
hm+1,i+1

2n-j+1(hm,i+1
n-j+1(h(M′fix),M′var)) instead of

hi+1
n-j+1(h(M′ fix),M′var).

 The key disclosure and authentication in cycle m at
time interval j+1 is as follows: node i publishes both
hi

n-j+1(s i
m) and h i

2n-j+1(s i
m+1) in its KD message < KD,

ADi
m, ADi

m+1, hi
n-j+1(si

m), hi
2n-j+1(si

m+1) >. Then for the
authentication of the keys, it is checked that ADi

m = <
IPv6 prefix, Hash-64(hn+j-1(hn-j+1(si

m))) >, and ADi
m+1 = <

IPv6 prefix, Hash-64(hj-1(h2n-j+1(si
m+1))) >.

 To authenticate messages, two HMAC operations have
to be performed on < h(M′fix),M′var > using the disclosed
key pair hn-j+1(s i

m) and h i
2n-j+1(s i

m+1). If the result is equal
to the stored hm+1,i+1

2n-j+1(h m,i+1
n-j+1(h(M′ fix),M′var)), the

authentication is successful.
 At time interval n of cycle m, to renew its Hash chain,
node i should pick a new random seed si

m+2, generates a
Hash chain of 2n elements based on si

m+2, and then sets its
temporary address in cycle m+2 to ADi

m+2 = < IPv6 prefix,
Hash-64(h2n(si

m+2)) >.
 This approach seamlessly links two Hash chains, and
there is no additional overhead on the payload. However,
compared to the original SWAN, each node has to store
two Hash chains of 2n elements instead of one Hash chain
of n elements (except in the first cycle in which nodes
store one chain of n elements and one chain of 2n
elements). In addition, one more HMAC should be
computed when sending or authenticating a message.

3.5.2 Approach using Hash tree

.......AD1 AD2 ADm ADm+1AD0

R0 R1 Rm........

Fig. 3 Address renew using overlapping Hash tree

In this approach, a Hash tree is established as shown in
figure 3. The leaves of the hash tree are Hash chains used
in different cycles.
 During the node initiation phase, each node i picks two
random seeds si

0, s i
1 and generates two Hash chains of n

elements. Then, it sets its temporary address in cycle 0:
ADi

0 =< IPv6 prefix, Hash-64(hn(si
0)) > and its address in

cycle 1: ADi
1 =< IPv6 prefix, Hash-64(hn(si

1)) >. The root
of the Hash tree in cycle 0 is Ri

0 = Hash-64(ADi
0,ADi

1).
 In the kth interval of cycle m, the format of a packet M
sent by a node i is: <M, Ri

m, hi
n-k+1(h(Mfix), Mvar, Ri

m) >,
where Ri

m is the root of the Hash tree in cycle m, h i
n-k+1(A)

denotes an HMAC applied to message A using the key
hi

n-k+1(s i
m).

 The message supervision process is the same as that
described in section 3.2.3, since Ri

m is regarded as a fixed
field. The message authentication in cycle 0 is also the
same as that described in section 3.2.5.
 In cycle m (m ≥ 1), a Key Disclosure message will be <
KD, ADi

m, ADi
m-1, Ri

m-1, hi
n-j+1(si

m)>. To authenticate the
key, three verifications are necessary:
(i) ADi

m =< IPv6 prefix, Hash-64(hj-1(hn-j+1(s i
m))) >.

(ii) Ri
m-1 is the same as the root published in cycle m-1.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

215

(iii) Ri
m-1 = Hash-64(ADi

m-1,ADi
m).

 In time interval n of cycle m, node i picks a new random
seed si

m+2. It renews its Hash chain, generates a Hash chain
of n elements based on si

m+2, and sets its temporary
address in cycle m+2 to ADi

m+2 =< IPv6 prefix,
Hash-64(hn(si

m+2)) >. The new root of the Hash tree in
cycle m+1 will be Ri

m+1 = Hash-64(ADi
m+1, ADi

m+2).
 Compared with the approach in section 3.5.1, this
approach achieves its objective by adding more message
overhead. But it has less calculation overhead.

4 Discussion

Choice of hash algorithm The longer is the hash output
length, the heavier is SWAN but the better is its security.
We estimate that a 64-bit or longer hash algorithm is
sufficient to reach the security requirements of SWAN.
 However, recent progress in the cryptanalysis on MD5
and SHA-1 [21], [22] leads us to expect stronger hash
algorithms.
 Synchronization The synchronization is a common
requirement in many solutions securing ad hoc networks.
SWAN also needs a loose synchronization. An ideal
synchronization mechanism for MANETs should be
distributed and does not depend on a specialized hardware.
One point worth mentioning is that the synchronization
mechanism itself should be secured in order to provide
secured “real” time.
 New coming node and leaving node Leaving nodes do
not take away any secret of network but only their
personal secrets, so they leave without influencing the
network security. Furthermore, a node out can return back
to the network with a resynchronization, which will decide
the number of keys to be skipped.
 A new coming node should synchronize itself to the
network by adopting the IPv6 prefix. It can use the value
of T0, Tti and the current time Tc to calculate the number of
the current time interval, then use the value of Tti and Tmax
to compute its hash chain and identity.
 Network dimension In order to have a weak address
collision possibility, we suppose that SWAN is applied to
the MANETs having a reasonable dimension.
Unfortunately, SWAN will not be adaptable to very large
MANETs as described in [23].
 Duplicate address problem We discussed that SWAN
addresses are statistically unique. But if ever we need to be
certain of their uniqueness, the Neighbor Discovery
Protocol (NDP) for IPv6 [2] can be used to resolve the
duplicate address problem.
 Immediate authentication If we need immediate
authentication of routing control messages, the protocol
ARIADNE [4] can be used. When sending a RREQ, the
sender estimates the arrival time of the request to the
destination node, and the intermediate nodes will use the
hash values corresponding to that time to compute the

HMAC outputs. Then, when the RREP message is being
sending back, the intermediate nodes can be authenticated
with their keys disclosed.
 Influence of mobility In order to increase the
authentication rate, KD messages can be sent to more
nodes, such as 2 or 3 hop neighbors, if there is a strong
mobility. This may also increase the reputation evolution
velocity.
 Participation to another network An address is valid
only for the period of the current network. To participate to
another network, nodes should be reinitiated.
 Address renewal We insist that Hash chain renewal
should rarely occur in SWAN. It is better to use one Hash
chain in the whole network lifetime than dividing the
entire network lifetime into some cycles and use one hash
chain per cycle. This is because the address renewal
introduces not only additional overhead and complexity,
but also an important inconvenience due to the variation of
IP addresses. Even though neighbor nodes can know the
new IP addresses of each other, remote nodes are not easy
to be informed.
 Nodes do not change their identities within a cycle, so
the problem appears only when a cycle finishes and the
next one starts. We suppose that each cycle will be
uniform and reasonably long.
 When a proactive routing protocol is in use, there is
periodic routing information exchanged within the whole
network. Thus, the new addresses can be exchanged within
the routing messages before the end of each cycle.
 When a reactive routing protocol is in use, a source
node can modify its RREQ message by adding its next
address into it. Then, any node, once being a source node,
can inform all the other nodes about its next address.
 Even the next address of a destination node is unknown,
a RREQ can still be sent to the old IP address (with a flag
telling that it is an old address). Since the RREQ is
broadcasted, the message will be received by the
destination. Then, when a RREP is sent back, the new
address can be joined.
 Normally, intermediate nodes have necessary
knowledge about their upstream and downstream nodes,
because they are neighbors. This would be enough for the
supervision. Moreover, new address information can also
be accumulated in a RREQ (like in DSR we accumulate
node identities) when the end of a cycle approaches. This
will make all the new addresses on a route known to the
whole route.
 If there is an active data flow but the end of a cycle is
reached, an additional message can be sent along and back
the route to collect the new addresses on the route.
 Finally, NDP [2] can also be modified to inform the
variation of the addresses. That is, each node can send out
a new address in Neighbor Solicitation message a little
before the end of each cycle. If there is no new Neighbor
Solicitation message during a timeout from the same node

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

216

(that means the address is not duplicated), other nodes can
use the new address to replace the older address of the
node in the next cycle. Note that nodes should also adjust
their message sending times to avoid collision.
 After all, we see that the address renewal process is
quite complicate to manage, so it must only be used when
it is strictly necessary.
 SWAN applicability SWAN can operate with the source
routing algorithm where a packet to be forwarded is
perfectly predictable.
 With the other routing algorithms, the receiving node of
a packet forwarded may be decided (on-the-fly) by an
intermediate node. Thus, a future packet is not entirely
predictable, and the watchdog is not able to check all the
fields of a packet. However, the rest the packets can still
be supervised. Since SWAN is a generic security
mechanism for watchdog independent of underline
routing protocol, we believe that it can also be applied to
other routing algorithms.

5. SWAN application and simulation

In this section we show a concrete example of the SWAN
application and its simulation results. For the propose we
have chosen our secure routing protocol TRP [11].

5.1 TRP overview

The Trust-based Routing Protocol (TRP) is a DSR-based
secure ad hoc routing protocol. It combines the knowledge
of misbehaving nodes with topology information, to help
source nodes to choose the most reliable routes for their
data sending.
 In TRP, each node maintains a first-hand reputation for
every other node it has encountered as neighbor. This
reputation is computed based on the observed behaviors of
the other node. During the discovery of a route, an
intermediate node can inform the source node S of its
first-hand reputations on its upstream and downstream
nodes, by integrating them into the control messages
(RREQ and RREP) of DSR. Thus S may receive a lot of
routes and a series of reputations for each route. Then,
based on the received reputations and its first-hand
reputations, S can calculate an overall reputation for each
route. Only a route obtained an acceptable overall
reputation can be trusted and used to delivery data traffics.
 TRP assumes a pair-wise key KS, D between the initiator
and the target of a RREQ message. It uses a SRP-like
(Secure Routing Protocol) [3] routing scheme and
accumulates trust information during the propagation of
RREQ. Trust information will be sent back to the initiator
in a RREP message protected by a HMAC. The blackmail
attacks are prevented thanks to our reputation exchange
method.

 Consider the following path S, I1, ..., Ii, ..., In, D, the
reputation value CIi, Ii-1 (the reputation of the node Ii on the
precedent node Ii-1) will be added to a RREQ when the
latter passes by Ii. For example, a RREQ that the
destination node D returns would be:

D -> S: RREP, S, D, Qseq, Qid, ADI1, ..., ADI_n,
CI2, I1..., CD, In, MACK S,D(whole_message)

More details can be found in [11].

5.2 TRP with SWAN

We discuss now how can SWAN provide the broadcast
message authentication to TRP. In TRP, the fixed fields in
RREQ and RREP are already protected by a MAC code.
However, since only end nodes are able to verify the
original MAC, a new MAC is required to provide
authentication and integrity check to intermediate nodes
during the supervision.
 Suppose that at time interval τk, a node Ii rebroadcasts a
RREQ which will be received by node Ii+1: Ii ->*: <RREQ,
S, D, Qseq, Qid, ADI1, ..., ADIi, CI2,I1, ..., CIi,Ii-1,
MACKS,D(RREQ, S, D, Qseq, Qid), h Ii n-k+1(h(Mfix))>, where
Mfix = <RREQ, S, D, Qseq, Qid, ADI1, ..., ADIi, CI2, I1, ..., CIi,

Ii-1, MACKS,D(RREQ, S, D, Qseq, Qid)>. Ii stores <
RREQ,S,Qid > as packet’s identity, h(Mfix,Mvar) as the hash,
and <ADI1,...,ADIi, CI2,I1,...,CIi,Ii-1 > as the variable fields.
 Upon receiving the packet, Ii+1 should add to it its
identity and its trust value on Ii before rebroadcasting it:

Ii+1 ->*: RREQ, S, D, Qseq, Qid, ADI1, ..., ADIi, ADIi+1,
CI2,I1, ..., CIi,Ii-1, CIi+1, Ii, MACKS,D(RREQ, S, D, Qseq, Qid),

h Ii+1
n-j+1(h(Mfix), ADi+1, CIi+1, Ii)

where M'fix=<RREQ,S,D,Qseq,Qid, MACKS,D(RREQ, S, D,
Qseq, Qid)> and M'var= <ADI_1, ..., ADIi, ADi+1, CI2,I1,...,
CIi+1,Ii>.
 Ii observes the message and identifies the message. It
further checks Ii+1 and CIi+1,Ii to see whether they are
respectively a valid IP address and a valid trust value.
Finally, it checks h(Mfix). For the future authentication, it
stores ADIi+1,CIi+1,Ii and j.
 During the next time interval, upon receiving the key
hn-j+1(s Ii+1), Ii checks the validity of hn-j+1(sIi+1) by
computing j (or less) hashes: ADi+1=<IPv6 prefix,
hash-64(hj-1(hn-j+1(sIi+1)))>. If success, Ii checks in addition
whether hIi+1

n-j+1(h(M′fix),M′var) is valid.
 The other types of messages, such as data, RREP and
REER, do not change their contents during their
forwarding. Therefore, for such a message M, Mfix equals
to M and Mvar equals to null. Their authentication can
follow exactly the same process as described in
section 3.2.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

217

5.3 Simulation

We first implemented TRP under NS-2 [7], then SWAN is
implemented on TRP (we call it TRPS later on). It calls the
crypto library of OpenSSL [8] to realize the necessary
cryptography operations. MD5 is chosen as our test hash
algorithm.
 The network that we simulated contains 25 nodes. The
simulation time is 1,000 seconds, Tti is set to 4 seconds and
T0 is set to 0 (thus each Hash chain contains 251 hash
values). The simulation area is a 700m*700m square. We
use the way point mobility model with 5s as pose time and
20m/sec as the node maximum speed. Concerning the
traffic, we consider the FTP application with at maximum
22 random CBR connections. Each connection sends 2
packets per second, and each packet has a 512bit overload.
 It is defined in our simulations that each watchdog
buffer contains no more than 40 entries. When a new
packet is to be buffered, the oldest packet in the buffer
could be dropped if the buffer is already full. Each
watchdog entry is in the following format: <t, uid,
ADsender-64, h(Mfix), hkeyed(h(Mfix), Mvar), supervised,
authenticated, M'var > where supervised and authenticated
are two flags marking the states of the entry, t is the
timestamp which registers the time when the entry is
buffered. We do not save the prefix of the IP addresses.
 At first, some performance simulations are carried out
without attacker. We compared the total storage overhead
of watchdog in TRP and in TRPS. The simulation results
are shown in figure 4.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

M
em

or
y

co
ns

om
m

ed
 b

y
w

at
ch

do
g

(K
)

Time (seconds)

TRP
TRPS

Fig. 4 Watchdog storage overhead in TRP and TRPS

 We have also measured the end-to-end delay and the
routing overhead of TRPS. We found that its average
end-to-end delay is not varied compared to TRP, since
nothing in SWAN can influence the traffic delay. As for
the routing overhead, the additional KD messages
represent about 19% of the total number of network
packets. But since the tested traffic has a low rate of
2pkts/s, we believe that this percentage will drop with a
higher data rate.
 Then, our simulations were done in presence of 20%
malicious attackers. Each attacker observes whether there
is any data flow passing through its neighborhood. If so,
he tries to spoof the addresses of its neighbors and send
wrong packets. We show in Figure 5 that with TRPS, this

attack can be avoided thus reputations of benign nodes will
not be badly affected.

. 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000

A
ve

ra
ge

 r
ep

ut
at

io
n

of
 b

en
ig

n
no

de
s

Time (seconds)

TRP
TRPS

Fig. 5 Average reputation of benign nodes in TRP and TRPS

6. Conclusion

In this work, we proposed a secure watchdog for ad hoc
networks named SWAN. It combines SUCV and TESLA
to develop a watchdog with a lightweight broadcast
message authentication mechanism. It can detect the
spoofing attacks that may badly affect the reputation
systems, and can reduce the storage overhead required by
watchdog. It is also able to treat a large number of
messages through a simple mechanism and be independent
of any central server. Our analysis and simulations showed
that SWAN is both lightweight and robust.
 In the future, we plan to carry out some further
simulations in presence of a random number of malicious
attackers. We will also try to apply SWAN to other routing
protocols besides DSR, more particularly to proactive
protocols since they can offer the possibility to get rid of
the overhead caused by key disclosure messages. Finally,
we believe that the synchronization is also worth a deeper
study, and formal security proves should be achieved.

References
[1] Yih-Chun Hu, David B. Johnson and Adrian Perrig, “SEAD:

Secure Efficient Distance Vector Routing in Mobile
Wireless Ad~Hoc Networks”, In Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA '02), USA, June, 2002.

[2] T. Narten, E. Nordmark and W. Simpson, “Neighbor
Discovery for IP Version 6 (IPv6)”, RFC 2461, December,
1998.

[3] Panagiotis Papadimitratos and Zygmunt J. Haas, “Secure
Routing for Mobile Ad hoc Networks"," in Proceedings of
the SCS Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2002), San
Antonio, TX, January, 2002.

[4] Y. Hu and A. Perrig and D. Johnson, "Ariadne: A secure
on-demand routing protocol for ad hoc networks", in
Proceeding of The 8th ACM International Conference of
Mobile Computing and Networking (ACM MobiCom
2002)", Atlanta, Georgia, USA, September, 2002.

[5] James Newsome, Elaine Shi and Dawn Song and Adrian
Perrig, "The sybil attack in sensor networks: analysis &
defenses", in Proceedings of the third international
symposium on Information processing in sensor networks,
Berkeley, California, USA, April, 2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

218

[6] Sergio Marti, T. J. Giuli, Kevin Lai and Mary Baker,
"Mitigating routing misbehavior in mobile ad hoc
networks", Mobile Computing and Networking (Mobicom
2000), pp.255-265, Boston, USA, 2000.

[7] The VINT project, “NS Notes and Documentation", UC
Berkeley, LBL, USC/ISI, and Xerox PARC, May, 1998,
work in progress.

[8] Mark J. Cox, Ralf S. Engelschall, Stephen Henson, Ben
Laurie and al. The OpenSSL Project.

 [9] Pietro Michiardi, "Cooperation enforcement and network
security mechanisms for mobile ad hoc networks", PhD
Thesis of ENST Eurécom, December, 2004.

[10] Sonja Buchegger and Jean-Yves Le Boudec, "Nodes bearing
grudges: Towards routing security, fairness, and robustness
in mobile ad hoc networks", in 10th Euromicro Workshop
on Parallel, Distributed and Network-based Processing
(Euromicro-PDP 2002), pp.403-410, Canary Islands, Spain,
January, 2002.

[11] Xiaoyun Xue, Jean Leneutre and Jalel BenOthman, "A
Trust-based Routing Prtocol for ad hoc networks", in
Proceeding of Mobile and Wireless Communications
Networks, pp.251-262, October, 2004.

[12] Gabriel Montenegro and Claude Castelluccia, "Statistically
Unique and Cryptographically Verifiable (SUCV)
Identifiers and Addresses", in Proceedings of the 9th
Annual Network and Distributed System Security
Symposium (NDSS 2002), USA, February, 2002.

[13] Adrian Perrig, Ran Canetti and J.D.Tygar and Dawn Song,
"Efficient Authentication and Signing of Multicast Streams
over Lossy Channels", in IEEE Symposium on Security
and Privacy, pp 56-73, Oakland, CA, May, 2000.

[14] Ralf Hauser, Tony Przygienda and Gene Tsudik, "Lowering
security overhead in link state routing", Computer
Networks (Amsterdam, Netherlands), Vol.31(8),
pp.885--894, 1999.

[15] Steven Cheung, "An Efficient Message Authentication
Scheme for Link State Routing", in Annual Computer
Security Applications Conference (ACSAC 1997),
pp.90-98, San Diego, CA, USA, December, 1997.

[16] Adrian Perrig, Robert Szewczyk, Victor Wen, David E.
Culler and J. D. Tygar, “SPINS: security protocols for
sensor netowrks", in Proceedings of the 7th annual
international conference on Mobile computing and
networking (ACM MOBICOM 2001), pp.189-199, Rome,
Italy, 2001.

[17] David B. Johnson, David A. Maltz and Yih-Chun Hu, “The
Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR)”, INTERNET-DRAFT
draft-ietf-manet-dsr-10.txt, July, 2004, work in progress.

[18] LAN/MAN Standards Committee of the IEEE Computer
Society, “Port-Based Network Access Control (802.1x
Standard)", October, 2001.

[19] Carlos H. Rentel and Thomas Kunz, "Network
Synchronization in Wireless Ad Hoc Networks", Technical
Report SCE-04-08, Carleton University, Computer
Engineering, July, 2004.

[20] Markus Jakobsson, Fractal hash sequence representation and
traversal", in Proceeding of International Symposium on
Information Theory (ISIT `02), pp.437-444, 2002.

[21] Xiaoyun Wang and Hongbo Yu, "How to Break MD5 and

Other Hash Functions", Eurocrypt, pp.19-35, 2005.
[22] Marc Stevens, "Fast Collision Attack on MD5", IACR ePrint

archive Report 2006/104, 17 March 2006.
[23] K. Weniger and M. Zitterbart, "IPv6 Autoconfiguration in

Large Scale Mobile Ad-Hoc Networks", in Proceedings of
European Wireless 2002, Florence, Italy, February, 2002.

Xiaoyun Xue is currently a PhD
candidate in Department of
Computer Science and Networking
at ENST (French National School of
Telecommunications), CNRS
LTCI-UMR 5141 laboratory. She
received her M.S. degree from
University of Versailles in 2001 and
her B.E. degree in Computer
Science from Wuhan University of
China in 1998. Her main research

interest is the security issues in MANET.

Jean Leneutre is an associate
professor at the department of
Computer Science and networks at
ENST (French National School of
Telecommunications), CNRS
LTCI-UMR 5141 laboratory. He
received his PhD in Computer
Science from ENST in 1998. His
main research interests include
security models and mechanisms
for mobile ad hoc networks.

Lin Chen is currently a PhD
candidate in Department of
Computer Science and Networking
at ENST (French National School
of Telecommunications), CNRS
LTCI-UMR 5141 laboratory. He
received his Engineering degree
from ENST Paris in 2005 and his
B.E. degree in
Telecommunications from
Southeast University of China in

2002. He also holds a M.S. degree in Networking from Pierre et
Marie Curie University of Paris. His research interest is the
security issues in MANET.

Jalel Ben-Othman is an
associate professor at the
department of Computer Science
at University of Versailles, PRiSM
laboratory. He received his PhD in
Computer Science from University
of Versailles, France in 1998. He
received the M.S. degree in

Computer Science in 1995 from the University of Versailles,
France. His main research interests include radio resource
management, security and performance evaluation for wireless
and mobile networks.

