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Summary 
Due to its nature, ad hoc networks are much more vulnerable to 
various attacks than traditional wired networks. Many solutions 
have been proposed in recent researches for the security of ad 
hoc networks. The watchdog mechanism, based on a node 
supervising all its local neighbors, is one of the basic security 
mechanisms used by these solutions. It is able to detect both 
malicious attacks and selfish behaviors without significant 
overhead. However, it has a high storage requirement, and itself 
needs to be secured against spoofing attacks which may badly 
affect the reputation systems depending on it. In this paper, we 
propose a secured and efficient supervision mechanism based on 
the watchdog technique called SWAN. In order to avoid spoofing 
attacks, we combine the techniques SUCV (Statistically Unique 
and Cryptographically Verifiable) and TESLA (Timed Efficient 
Stream Loss-Tolerant Authentication) to provide a lightweight 
broadcast message authentication to watchdog. Moreover, we 
also propose an efficient storage method to reduce the storage 
overhead required by watchdog. Our analysis and simulations 
show that our approach is both lightweight and robust. 
Key words: 
Ad hoc networks, watchdog, broadcast message authentication, 
reputation system 

1. Introduction 

Mobile ad hoc networks are temporal and local area 
networks with no infrastructure, no a-priori organization 
but battery-based weak capacity nodes. The existing ad 
hoc security solutions, such as [1], [3], [4], [6], can be 
classified into three main categories: key management, 
secure routing and cooperation enforcement. The key 
management guarantees the identification and copes with 
all problems concerning keys; the secure routing uses the 
established keys to ensure the authentication, the 
confidentiality and the integrity in both the topology 
discovery and the data forwarding routing phases; and the 
cooperation enforcement fights selfish behaviors and 
encourages the cooperation between nodes.  
  Among all proposed solutions, the watchdog technique 
[6] is often used for the detection of selfish nodes and 
malicious attackers, and the results of those observations 
can feed some reputation systems, with which 
misbehaving nodes should be isolated and/or punished. 

CORE (a COllaborative REputation mechanism to enforce 
node cooperation) [9], CONFIDANT (Cooperation Of 
Nodes - Fairness In Dynamic Ad-hoc NeTworks) [10], 
TRP (Trust-based Routing Protocol) [11], etc..., are ad hoc 
routing protocols which adopt this kind of security system. 
  Watchdog uses the promiscuous mode which permits 
nodes to accept messages not sent to them. Compared to 
the other security techniques, the watchdog introduces 
neither additional traffic nor significant computation 
overhead, but it has a high level storage requirement for 
storing temporarily messages, and it needs to be secured 
against spoofing attacks since the latter can cause mistakes 
in reputation systems. 
  In this study, we propose a secured watchdog with an 
efficient supervision mechanism. First, in order to avoid 
spoofing attacks that may badly affect the reputation, we 
combine the techniques SUCV [12] and TESLA [13] to 
provide a lightweight Broadcast Message Authentication 
(BMA) to watchdog. A SUCV address ties naturally a 
Private Key (PK) and a node IDentifier (ID) together, thus 
no certificate server is needed to establish a PKI.  
Furthermore, by using IPv6, it is proved that a SUCV 
address is statistically unique, thus unspoofable. As for us, 
we use Hash chains to replace private keys in SUCV to 
achieve the authentication and the key management in 
SWAN. Therefore neither key pre-distribution nor central 
key server is needed by our scheme.  
  On the other hand, if we take a look at the majority of 
the secure proactive routing protocols [1], [14], [15], we 
can find that they use either Hash chain or TESLA to 
authenticate their routing messages/fields. Moreover, the 
scheme μTESLA proposed in [16] is an efficient BMA 
solution for sensor networks (also adaptable to ad hoc 
networks). We also use a TESLA-based authentication in 
watchdog since it is appropriate to treat a large number of 
messages. 
  We propose in addition an efficient storage scheme to 
reduce the storage requirement of watchdog, this without 
loss in the supervision capability. Instead of storing a 
whole message [6] or only the packet’s identity and a hash 
on payload [9], we temporarily buffer packet's variable 
parts, a timestamp and a digest on packet's fixed parts. 
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  The organization of the rest of the paper is as follows: In 
section 2, we show the related works, and we specify our 
proposition in detail in section 3. In section 4, we make 
some discussions. We show how SWAN can be applied to 
an existing secure ad hoc routing protocol and some 
simulation results in section 5. Finally, we conclude the 
paper with section 6. 
 
2. Related work 
 
In this section, we mainly discuss the authentication 
mechanisms designed for the watchdogs that are used by 
existing reputation-based security protocols. 
  In CONFIDANT, a PKI similar to PGP is self-organized 
thus asymmetric cryptography can ensure the 
authentication of the routing control messages and 
ALARMs. Data packets are implicitly supposed to be sent 
on routes that are discovered and chosen for the purpose. 
However, this may not always be true, because in a mobile 
network a malicious node can pretend to be another node 
by spoofing the identity of the latter and then doing attacks. 
Therefore the attacks committed by the malicious node can 
decrease the reputation of the node spoofed. In 
CONFIDANT, no further mechanism is designed to 
address this issue. 
  In CORE, it is supposed that all the identities are 
unspoofable and unforgeable. Later, the authors have 
proposed a key management and message authentication 
scheme called IDHC. This scheme relies on an offline Key 
Distribution Center (KDC) server to provide an ID-based 
master ticket to each node. Afterwards each node should 
generate a series of authentication tickets based on its 
master ticket. The authentication tickets are used in a way 
similar to μTESLA, where each ticket is used during one 
time interval and the authentication is delayed to the next 
time interval. However, IDHC has a drawback in terms of 
computation overhead, since the generation of one 
authentication ticket is comparable to a RSA encryption, 
and the verification of a ticket is equivalent to a RSA 
signature verification. 
  Usual methods for BMA that we found in the literature 
are Hash chain [14], TESLA [15], μTESLA [16], etc... 
Among them, TESLA uses asymmetric keys to sign the 
first elements of Hash chains, and μTESLA uses 
symmetric keys to authenticate its Hash chains in sensor 
networks thanks to some pre-established trusts. Compared 
to them, the most important advantage of SWAN would be 
that it does not require a PKI or shared keys to authenticate 
the first elements of Hash chains. Furthermore, SWAN is 
carefully designed to be adaptive to reputation-based ad 
hoc secure routing protocols. 
 
 
 

3. Our proposition 

3.1 Assumptions 

Neither additional module, nor a-priori key distribution or 
key server is required by the scheme, and nodes are not 
required to execute any asymmetric cryptography. 
Nevertheless, nodes should be able to compute hash 
according to a certain collision-resistant hash algorithm. 
Moreover, we suppose that the promiscuous mode is 
available to all nodes in the network, and IPv6 is in use. 
  To ensure a maximum correctness of watchdog, it is 
further assumed that all nodes in the network have a same 
transmission range and they all use an omni-directional 
antenna (so that all links could be bidirectional). 
CSMA/CA RTS-CTS may be used as the media access 
control protocol to reduce the “hidden terminal problem” 
[6]. 
  Regarding the storage, nodes are expected to store at 
least one hash chain and to have a watchdog buffer in 
which unverified messages could be temporarily stored 
until the disclosure of their verification keys. 
  Since the source routing can facilitate the monitoring, 
we consider it as our underline routing algorithm. This 
choice is the same as in most of the existing 
reputation-based solutions, such as CONFIDANT and 
CORE. Thus adopting SWAN to them is supposed to be 
easy.  
  The following parameters are initialized and published 
in the network before SWAN is used: 
(i) The lifetime of network Tmax We assume that our ad 

hoc networks are temporal and local networks, and we 
are able to estimate the upper bound of the network 
lifetime Tmax. 

(ii) The time interval duration Tti The network lifetime is 
split into time intervals of uniform duration Tti. 

(iii) The Network start time T0 It serves as a reference, to 
which all nodes synchronize their schedule of 
changing and disclosing keys. 

  The above parameters are not secrets and can be easily 
published in the network. Moreover, if a network is 
isolated, its IPv6 prefix may be chosen by itself. Then the 
parameters can be integrated into the IPv6 prefix: 
 

IPv6 prefix = < (32-bit) T0, (16-bit) Tmax, (16-bit) Tti > 
 
Finally, we assume a loose synchronization which 
guarantees an upper bound on the maximum 
synchronization error. In practice, the synchronization 
mechanism can be TSF (Time Synchronization Function) 
[18] or the solution proposed in [19] which better ensures 
the multi-hop synchronization in ad hoc networks. 
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3.2 SWAN scheme 
 
3.2.1 Node initiation 
 
The initiation of each node I should be done according to 
the following steps: 
(i) calculation of the length of the Hash chain n= 

[Tmax⁄Tti]+1 ([x⁄y] denotes y integer divides x). 
(ii) generation of a Hash chain of n elements based on a 

random seed si: h(si), h2(s i), ..., hn(s i). 
(iii) setting of the temporary address of the node 

 
ADi = <IPv6 prefix, hash-64(hn(si))> 

 
where the last hash output length may be reduced to 
63 or 62 or still less according to the length of the 
reserved bits in the IPv6 header. 

  The network time is then divided into n intervals τ1, ..., 
τn (only the last interval is incomplete). Any Hash chain 
element hn-k+1(si) (1≤k≤n) will be used for the 
authentication of all messages sent or forwarded by node i 
during the time interval τk. 
 
3.2.2 Message sending 
 
Let Mfix be the fixed IP header fields (address of the 
initiator, address of the target, the packet identifier, etc.) 
and payload (if any) of a message M, and let Mvar be the 
mutable fields of M (TTL, hop_count, etc.). In time 
interval τk, M sent by node i will be <M,  hi

n-k+1(h(Mfix), 
Mvar)>, where hi

n-k+1(A) indicates a HMAC output using 
the key hn-k+1(si) applied to a message A. Without loss of 
generality, M can either be a control packet or a data 
packet. 
 
3.2.3 Message supervision1 
 
Suppose that, in time interval τk, node Ii sends a packet M 
to node Ii+1 and the latter should resend/forward it to node 
Ii+2. Then, the first message sent by Ii will be <M,  
hi

n-k+1(h(Mfix), Mvar)>. Ii keeps the packet’s identity, h(Mfix), 
and all mutable fields in its watchdog buffer. 
  Upon receiving the first message, Ii+1 performs 
necessary modifications, and the modified packet M′ is 
then sent to the node Ii+2: <M', hi+1

n-j+1(h(M'fix), M'var)>, 
where τj is the current time interval according to node i+1.  
  The packet M′ sent by Ii+1 will be observed by Ii. Ii 
identifies the packet thanks to its identity, checks M′ 

                                                        
1  Here we describe a supervision example using the mode 
supervision on route, with which only nodes involved in traffics 
observe what happens on routes. Actually SWAN can also 
support the mode supervision in neighborhood, where any node 
that is neighbor of both Ii and Ii+1 can perform the supervision. 
 

mutable fields to see whether all modifications done by 
Ii+1 respect well the routing protocol (whether a TTL is 
decreased by one, etc...), and finally it checks if h(Mfix) = 
h(M′fix) for the integrity of the fixed fields of M. 
  If all above verifications are successful, so is the 
supervision. Ii can then increase its reputation for node Ii+1. 
Otherwise, a suspicious activity of node Ii+1 is discovered 
and we have multiple choices:  
(i) Ii can wait for the authentication phase to try to 

eventually identify Ii+1 as a malicious node. This 
measure can prevent false negatives if nodes spoof 
when attacking.  

(ii) Ii can directly decrease the reputation of node Ii+1 
without further verification. This measure can prevent 
false positives even though nodes spoof when 
attacking.  

(iii) Ii can directly delete the entry from the watchdog 
buffer and leaves the reputation for Ii+1 unchanged. 
This measure does not decrease reputations but only 
increases them when there are successful 
supervisions.  

  With the first choice, Ii stores hi+1
n-j+1(h(M′ fix),M′var) for 

future authentication.  
 
3.2.4 Key disclosure and authentication 
 
At each time interval j+1, any node i checks if it has sent 
any message during the previous time interval. If so, it 
discloses its key hn-j+1(si) by broadcasting a Key 
Disclosure message (KD) to its one-hop neighbors after 
the maximum synchronization error <KD, hn-j+1(si)>. 
  Note that if there is any neighbor discovery process (that 
is the case of the most of the proactive and hybrid ad hoc 
routing protocols and also of some secure ad hoc routing 
protocols), by setting Tti equals to the neighbor discovery 
interval, keys can be disclosed within neighbor discovery 
packets. This can reduce the message overhead.  
  Upon receiving a KD message, a receiver verifies at first 
whether the corresponding key is already validated. If so, 
it rejects the message. Otherwise, it verifies whether ADi = 
<IPv6 prefix, hash-64(hj-1(hn-j+1(si)))>.If the check fails, 
the key is rejected, and the node will still verify the other 
KD messages declaring the same key. Otherwise, the key 
is authenticated and stored, and the previous key 
discovered by node i is replaced. 
 
3.2.5 Message authentication 
 
Once a key hn-j+1(s i+1) is authenticated by node i, i checks 
in its watchdog buffer whether there is any message M′ 
sent by node i+1 unauthenticated. If so, the validity of 
hi+1

n-j+1(h(M′ fix), M′var) is further checked.  
  If both the supervision and the authentication are 
successful, a good behavior is registered in favor of node 
i+1. Otherwise, if only the authentication succeeds, a bad 
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behavior will be attributed to node i+1. As a consequence, 
to have a good reputation, nodes have to behave correctly 
in both routing and key disclosing.  
  If the authentication fails, it is possible that M′ is not 
sent by the node it claimed to be (spoofing attack), but we 
are not able to identify the attacker. Thus, to avoid false 
negatives, the result of the supervision may not be taken 
into account by the reputation system. 
  Note that with SWAN we mainly detect malicious 
behaviors. A selfish forwarding node can not be detected, 
since no (less) message is sent by it. To resolve the 
problem, we suggest to combine a solid neighbor lookup 
protocol with SWAN. Therefore a neighbor node which 
does not forward message can be considered selfish.  
  A whole SWAN process is shown in figure 1. 
 

check h(fix)

i+1

n−k+1
KD, AD   , h   (S     )i+1 i+1

n−k+1
KD, AD   , h   (S     )

Supervisor Sender or Receiver
node Ii forwarder Ii+1 Ii+2

Supervision
phase

M, h    (h(Mfix), Mvar)
n−k+1

i

Authentication
phase

Time interval k

Time interval k+1

n−k+1
M’, h    (h(M’fix), M’var)i+1

M’, h    (h(M’fix), M’var)
n−k+1

i+1

evaluate reputation

Authenticate the key, 
check packets, 

identify M’, 
check M’var, 

i+1

 
Fig. 1 A SWAN example 

 
3.3 Capacity requirement analysis 
 
3.3.1 Computation requirements 
 

Table 1: Hashes required by SWAN  

Operation  Number of 
hashes 

Total hashed bits  

Initiate a node  n + 2 64 + 128 * (n + 1)  
Send a packet  2  128 + packet_length 

Supervise a packet  1  ≤ packet_length  
Authenticate a key  j  128 * j  

Authenticate a packet 1  128 + packet_var_length
 
Thanks to the temporary nature of ad hoc networks, in 
SWAN no asymmetric cryptography is required even in 
the node initiation phase. The only cryptographic 
operation, hashing, is a well-known lightweight 
cryptographic operation (The velocity of 160-bit SHA-1 
one-way hash function is 75MB/s on a 33MHz 486SX). 

  Suppose a 128-bit hash is used to generate the Hash 
chains and the seed length is also 128 bits, we can refer to 
table 1 to know the number of hashes and the total hashed 
bits required by each watchdog operation (note that in a 
real environment, the total hashed bits depends on the hash 
implementation). 
  Furthermore, by using 128 bits to store a before 
revealed key hn-j+m(si) (2≤m≤j), it is possible to decrease 
the number of hashes required by the authentication of the 
key hn-j+1(si) to m-1, by checking whether hn-j+m(si) = 
hm-1(hn-j+1(si)). 
 
3.3.2 Storage requirements 
 
We can refer to table 2 to know the number of bits to be 
stored by SWAN for each operation (under the same 
hypothesis as in the previous subsection): 
 

Table 2: Memory required by SWAN 
Operation Length of total information 

to be stored (bits) 
Hash Chain 128 * ([Tmax⁄Tti] + 1) 

Authenticate and 
Supervise one packet

length(Timestamp + 2 * 128 
+packet_identity) 

 
To further reduce the memory space needed to store a 
n-element hash chain from O(n) to O(log(n)), the method 
proposed in [20] can be used. It selectively stores a 
logarithmic number of elements of a Hash chain, and the 
elements stored are modified over time, in such a way that 
we can easily find any hash value through several hashing 
operations. 
  
3.3.3 Supplement overhead 
 
In SWAN the only additional message is the key 
disclosure message. During the lifetime of a MANET, 
each node sends at most [Tmax⁄Tti] + 1 KD messages to its 
one-hop neighbors. Each KD message has less than 150 
bits as length (IP header not included). And every 
traditional message has an additional overhead of 128 bits.  
 
3.4 Security analysis 
 
3.4.1 Reputation system security 

 
We suppose that a benign node will always perform 
correct routing operations with its true identity and the 
correct authentication keys. Therefore, its reputations will 
be increased by the benign nodes observing it. Moreover, 
since SWAN guarantees that there is no spoofing attack, 
attackers are not able to decrease the reputations of benign 
nodes by spoofing their identities. Thus, we can ensure 
that at least the first-hand reputations for benign nodes will 
be correct. 
  We distinguish two cases of misbehaving nodes: 
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(i) If an attacker uses his true identity and his correct keys 
to attack, benign nodes can identify the attacker and 
decrease his reputation. Thus, there will be neither 
false negative nor false positive. However, in order to 
keep at least his bootstrapping reputation, an attacker 
would prefer to belong to the next category. 

(ii) If an attacker does not use his true identity when 
attacking, or he uses wrong keys to make his attack 
messages unable to be authenticated, observing nodes 
will not be able to identify the attacker. Thus, the 
reputation of the attacker may not be decreased. 
However, since reputations of benign nodes do 
increase, a malicious node will still have its reputation 
inferior to those of the benign nodes. 

  Furthermore, since such a malicious node will have its 
reputation unchanged, we can consider that, if a node has 
existed in the network for a long period but still has its 
reputation unmodified, it is less trustworthy than a node 
having its reputation evaluated to a higher level or a new 
node. 
  Another solution is to periodically decrease all the 
reputations. Like this, even we can not correctly 
authenticate the attackers, attackers can not keep their 
bootstrapping reputations, and nodes must proactively 
participate into routing to have/maintain good reputations. 
  Considerations for the reputations of selfish nodes It is 
obvious that selfish nodes can not be directly detected by 
SWAN, because no (less) message will be routed by them. 
  Nevertheless, we distinguish selfish routing nodes from 
selfish forwarding nodes. Selfish routing nodes do not 
participate into the routing discovery and data forwarding, 
while selfish forwarding nodes only refuse to forward data 
packets. For the selfish forwarding nodes, even without 
authentication, we will be able to decrease their 
reputations because they refuse to forward data packets. As 
for the selfish routing nodes, they can at most keep their 
bootstrapping reputation values, thus they can not be 
trustworthy. 
  As conclusion, we believe that a reputation system using 
SWAN can produce relatively correct reputations between 
nodes. 
 
3.4.2 Statistically unique address 
 
Since ad hoc networks are usually local area networks with 
a limited number of nodes (for example, DSR requires that 
the MANET dimension is less than 16), we believe that 
SWAN addresses are, like SUCV addresses, statistically 
unique if its hash algorithm is strong collision resistant 
(with a n-bit hash output, we need on average 2n/2 inputs to 
encounter an hash output collision). 
  Suppose that there are N nodes in a MANET, and the 
hash algorithm in use is a perfect p-bit hash algorithm. 
Then, the address collision probability in SWAN will be 
(let A = 2p, A >> N, N > 1):  

 

 

 

 
The collision probability increases with N and decreases 
with A. Since A >> N, the probability is small. 
 
3.4.3 Unspoofable address and authentication 
 
To successfully spoof an IP address, the following 
methods can be tried by attackers: 
(i) Dictionary attack Also called ``brute-force attack''. An 

attacker can construct a database, also called a 
dictionary, which contains all possible pairs of <seed, 
hn(seed)>. Thus, once a hn(s i) is revealed, he can look 
up the corresponding si in the dictionary. However, the 
attack is difficult to realize since it is equivalent to 
break the one-way hash. 

(ii) Replay It is somewhat true that without an accurate 
time information in packets, the replay attacks are 
possible. Nevertheless, we believe that replay in 
SWAN can not greatly affect the reputations of nodes. 
This is because, first, we do not take into 
consideration messages replayed in the same time 
interval of their first sending; second, messages 
replayed in a later time interval can not be 
successfully authenticated. 

(iii) Finding a future key based on revealed ones Even 
though hash values will be revealed one by one by 
their owners, spoofing attacks can still be prevented 
because the hash operation is a one-way operation. 
The corresponding hash property is called ``weak 
collision resistance'', which means that given x, it is 
difficult to find a y that satisfies h(y) = h(x). This 
attack is also equivalent to break the one-way hash. 

 
3.4.4 Integrity 
 
Since both mutable and fixed fields are protected by 
HMAC, the integrity of all the messages is ensured. 
 
3.4.5 About bogus address 
 
Due to the lack of countermeasure, in SWAN a malicious 
node can create a lot of bogus addresses in addition to its 
legitimate address. This attack permits attackers to bypass 
the reputation system by constantly appearing as a new 
node. Unfortunately, we can hardly prevent bogus 
addresses in absence of an online or off-line server. 
  Nevertheless, to complicate the generation of bogus 
addresses, we can use a binding of IP and MAC addresses. 
Since IP and MAC addresses are both unique and public, 
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nodes can not solely modify their IP addresses without 
changing their MAC addresses at the same time. 
Furthermore, to get each valid identity, an attacker should 
redo n+1 hash operations, this also greatly complicates his 
task. Finally, since each of its addresses is only used 
temporarily, a node using bogus addresses can hardly get a 
high reputation thus it could not become highly 
trustworthy, let alone it uses these identities to attack. 
  Otherwise, we can also use the countermeasures against 
Sybil attacks presented in [5] to detect bogus addresses in 
SWAN. 
 
3.5 Address renewal 
 
Although we supposed that we can estimate the maximum 
network lifetime in a most pessimistic way, sometimes a 
MANET can exist longer than expected, or nodes could be 
too weak to support long hash chains, or the lifetime of the 
network is too long to be supported by one hash chain. In 
all these cases, node addresses must be renewed, but old 
reputations must not be lost. In this subsection, we propose 
two mechanisms that seamlessly link a new Hash chain to 
the old one without introducing additional messages. 
 
3.5.1 Approach using overlapping Hash chain 
 

0

......Chain 3

Chain 2

Chain 1

Chain 0 Chain 4

C0 C1 C2 C3 C4 ......

TimeT

 
 

Fig. 2 Address renew using overlapping Hash chains 
 
This solution consists of using two overlapping Hash 
chains, as shown in figure 2. During the node initiation 
phase, each node i picks two random seeds si

0, s i
1 and 

generates two Hash chains: one of n elements based on si
0, 

the other of 2n elements based on si
1. Node i then sets its  

temporary address in cycle 0 (in each cycle a node will use 
a different address): ADi

0 = < IPv6 prefix, 
Hash-64(hn(si

0))> and computes its address in cycle 1: 
ADi

1=<IPv6 prefix, Hash-64(h2n(s i
1)) >.  

  Then, in cycle m, at time interval τk, the format of a 
packet M sent by a node i will be the following:  
 

<M, hm+1,i
2n-k+1(hm,i

n-k+1(h(Mfix), Mvar))> 
 

where hm+1,i
2n-k+1(A) denotes an HMAC applied to message 

A using the key hi
2n-k+1(s i

m+1), and h m,i
n-k+1(A) denotes an 

HMAC applied to message A using the key hi
n-k+1(s i

m).  
  The message supervision is the same as that described in 
section 3.2.3 except that Ii stores 
hm+1,i+1

2n-j+1(hm,i+1
n-j+1(h(M′fix),M′var)) instead of 

hi+1
n-j+1(h(M′ fix),M′var).  

  The key disclosure and authentication in cycle m at 
time interval j+1 is as follows: node i publishes both 
hi

n-j+1(s i
m) and h i

2n-j+1(s i
m+1) in its KD message < KD, 

ADi
m, ADi

m+1, hi
n-j+1(si

m), hi
2n-j+1(si

m+1) >. Then for the 
authentication of the keys, it is checked that ADi

m = < 
IPv6 prefix, Hash-64(hn+j-1(hn-j+1(si

m))) >, and ADi
m+1 = < 

IPv6 prefix, Hash-64(hj-1(h2n-j+1(si
m+1))) >. 

  To authenticate messages, two HMAC operations have 
to be performed on < h(M′fix),M′var > using the disclosed 
key pair hn-j+1(s i

m) and h i
2n-j+1(s i

m+1). If the result is equal 
to the stored hm+1,i+1

2n-j+1(h m,i+1
n-j+1(h(M′ fix),M′var)), the 

authentication is successful.  
  At time interval n of cycle m, to renew its Hash chain, 
node i should pick a new random seed si

m+2, generates a 
Hash chain of 2n elements based on si

m+2, and then sets its 
temporary address in cycle m+2 to ADi

m+2 = < IPv6 prefix, 
Hash-64(h2n(si

m+2)) >. 
  This approach seamlessly links two Hash chains, and 
there is no additional overhead on the payload. However, 
compared to the original SWAN, each node has to store 
two Hash chains of 2n elements instead of one Hash chain 
of n elements (except in the first cycle in which nodes 
store one chain of n elements and one chain of 2n 
elements). In addition, one more HMAC should be 
computed when sending or authenticating a message.  
 
3.5.2 Approach using Hash tree 
 

.......AD1 AD2 ADm ADm+1AD0       

R0 R1 Rm........

 
 

Fig. 3 Address renew using overlapping Hash tree 
 
In this approach, a Hash tree is established as shown in 
figure 3. The leaves of the hash tree are Hash chains used 
in different cycles. 
  During the node initiation phase, each node i picks two 
random seeds si

0, s i
1 and generates two Hash chains of n 

elements. Then, it sets its temporary address in cycle 0: 
ADi

0 =< IPv6 prefix, Hash-64(hn(si
0)) > and its address in 

cycle 1: ADi
1 =< IPv6 prefix, Hash-64(hn(si

1)) >. The root 
of the Hash tree in cycle 0 is Ri

0 = Hash-64(ADi
0,ADi

1).  
  In the kth interval of cycle m, the format of a packet M 
sent by a node i is: <M, Ri

m, hi
n-k+1(h(Mfix), Mvar, Ri

m) >, 
where Ri

m is the root of the Hash tree in cycle m, h i
n-k+1(A) 

denotes an HMAC applied to message A using the key 
hi

n-k+1(s i
m). 

  The message supervision process is the same as that 
described in section 3.2.3, since Ri

m is regarded as a fixed 
field. The message authentication in cycle 0 is also the 
same as that described in section 3.2.5.  
  In cycle m (m ≥ 1), a Key Disclosure message will be < 
KD, ADi

m, ADi
m-1, Ri

m-1, hi
n-j+1(si

m)>. To authenticate the 
key, three verifications are necessary:  
(i)   ADi

m =< IPv6 prefix, Hash-64(hj-1(hn-j+1(s i
m))) >.  

(ii)  Ri
m-1 is the same as the root published in cycle m-1.  
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(iii)  Ri
m-1 = Hash-64(ADi

m-1,ADi
m).  

  In time interval n of cycle m, node i picks a new random 
seed si

m+2. It renews its Hash chain, generates a Hash chain 
of n elements based on si

m+2, and sets its temporary 
address in cycle m+2 to ADi

m+2 =< IPv6 prefix, 
Hash-64(hn(si

m+2)) >. The new root of the Hash tree in 
cycle m+1 will be Ri

m+1 = Hash-64(ADi
m+1, ADi

m+2). 
  Compared with the approach in section 3.5.1, this 
approach achieves its objective by adding more message 
overhead. But it has less calculation overhead. 
 
4 Discussion 
 
Choice of hash algorithm The longer is the hash output 
length, the heavier is SWAN but the better is its security. 
We estimate that a 64-bit or longer hash algorithm is 
sufficient to reach the security requirements of SWAN. 
  However, recent progress in the cryptanalysis on MD5 
and SHA-1 [21], [22] leads us to expect stronger hash 
algorithms. 
  Synchronization The synchronization is a common 
requirement in many solutions securing ad hoc networks. 
SWAN also needs a loose synchronization. An ideal 
synchronization mechanism for MANETs should be 
distributed and does not depend on a specialized hardware. 
One point worth mentioning is that the synchronization 
mechanism itself should be secured in order to provide 
secured “real” time. 
  New coming node and leaving node Leaving nodes do 
not take away any secret of network but only their 
personal secrets, so they leave without influencing the 
network security. Furthermore, a node out can return back 
to the network with a resynchronization, which will decide 
the number of keys to be skipped. 
  A new coming node should synchronize itself to the 
network by adopting the IPv6 prefix. It can use the value 
of T0, Tti and the current time Tc to calculate the number of 
the current time interval, then use the value of Tti and Tmax 
to compute its hash chain and identity. 
  Network dimension In order to have a weak address 
collision possibility, we suppose that SWAN is applied to 
the MANETs having a reasonable dimension. 
Unfortunately, SWAN will not be adaptable to very large 
MANETs as described in [23]. 
  Duplicate address problem We discussed that SWAN 
addresses are statistically unique. But if ever we need to be 
certain of their uniqueness, the Neighbor Discovery 
Protocol (NDP) for IPv6 [2] can be used to resolve the 
duplicate address problem. 
  Immediate authentication If we need immediate 
authentication of routing control messages, the protocol 
ARIADNE [4] can be used. When sending a RREQ, the 
sender estimates the arrival time of the request to the 
destination node, and the intermediate nodes will use the 
hash values corresponding to that time to compute the 

HMAC outputs. Then, when the RREP message is being 
sending back, the intermediate nodes can be authenticated 
with their keys disclosed. 
  Influence of mobility In order to increase the 
authentication rate, KD messages can be sent to more 
nodes, such as 2 or 3 hop neighbors, if there is a strong 
mobility. This may also increase the reputation evolution 
velocity. 
  Participation to another network An address is valid 
only for the period of the current network. To participate to 
another network, nodes should be reinitiated. 
  Address renewal We insist that Hash chain renewal 
should rarely occur in SWAN. It is better to use one Hash 
chain in the whole network lifetime than dividing the 
entire network lifetime into some cycles and use one hash 
chain per cycle. This is because the address renewal 
introduces not only additional overhead and complexity, 
but also an important inconvenience due to the variation of 
IP addresses. Even though neighbor nodes can know the 
new IP addresses of each other, remote nodes are not easy 
to be informed. 
  Nodes do not change their identities within a cycle, so 
the problem appears only when a cycle finishes and the 
next one starts. We suppose that each cycle will be 
uniform and reasonably long.  
  When a proactive routing protocol is in use, there is 
periodic routing information exchanged within the whole 
network. Thus, the new addresses can be exchanged within 
the routing messages before the end of each cycle. 
  When a reactive routing protocol is in use, a source 
node can modify its RREQ message by adding its next 
address into it. Then, any node, once being a source node, 
can inform all the other nodes about its next address. 
  Even the next address of a destination node is unknown, 
a RREQ can still be sent to the old IP address (with a flag 
telling that it is an old address). Since the RREQ is 
broadcasted, the message will be received by the 
destination. Then, when a RREP is sent back, the new 
address can be joined. 
  Normally, intermediate nodes have necessary 
knowledge about their upstream and downstream nodes, 
because they are neighbors. This would be enough for the 
supervision. Moreover, new address information can also 
be accumulated in a RREQ (like in DSR we accumulate 
node identities) when the end of a cycle approaches. This 
will make all the new addresses on a route known to the 
whole route. 
  If there is an active data flow but the end of a cycle is 
reached, an additional message can be sent along and back 
the route to collect the new addresses on the route. 
  Finally, NDP [2] can also be modified to inform the 
variation of the addresses. That is, each node can send out 
a new address in Neighbor Solicitation message a little 
before the end of each cycle. If there is no new Neighbor 
Solicitation message during a timeout from the same node 
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(that means the address is not duplicated), other nodes can 
use the new address to replace the older address of the 
node in the next cycle. Note that nodes should also adjust 
their message sending times to avoid collision. 
  After all, we see that the address renewal process is 
quite complicate to manage, so it must only be used when 
it is strictly necessary. 
  SWAN applicability SWAN can operate with the source 
routing algorithm where a packet to be forwarded is 
perfectly predictable. 
  With the other routing algorithms, the receiving node of 
a packet forwarded may be decided (on-the-fly) by an 
intermediate node. Thus, a future packet is not entirely 
predictable, and the watchdog is not able to check all the 
fields of a packet. However, the rest the packets can still 
be supervised. Since SWAN is a generic security 
mechanism for watchdog independent of  underline 
routing protocol, we believe that it can also be applied to 
other routing algorithms. 
 
5. SWAN application and simulation 
 
In this section we show a concrete example of the SWAN 
application and its simulation results. For the propose we 
have chosen our secure routing protocol TRP [11]. 
 
5.1 TRP overview 
 
The Trust-based Routing Protocol (TRP) is a DSR-based 
secure ad hoc routing protocol. It combines the knowledge 
of misbehaving nodes with topology information, to help 
source nodes to choose the most reliable routes for their 
data sending.  
  In TRP, each node maintains a first-hand reputation for 
every other node it has encountered as neighbor. This 
reputation is computed based on the observed behaviors of 
the other node. During the discovery of a route, an 
intermediate node can inform the source node S of its 
first-hand reputations on its upstream and downstream 
nodes, by integrating them into the control messages 
(RREQ and RREP) of DSR. Thus S may receive a lot of 
routes and a series of reputations for each route. Then, 
based on the received reputations and its first-hand 
reputations, S can calculate an overall reputation for each 
route. Only a route obtained an acceptable overall 
reputation can be trusted and used to delivery data traffics. 
  TRP assumes a pair-wise key KS, D between the initiator 
and the target of a RREQ message. It uses a SRP-like 
(Secure Routing Protocol) [3] routing scheme and 
accumulates trust information during the propagation of 
RREQ. Trust information will be sent back to the initiator 
in a RREP message protected by a HMAC. The blackmail 
attacks are prevented thanks to our reputation exchange 
method. 

  Consider the following path S, I1, ..., Ii, ..., In, D, the 
reputation value CIi, Ii-1 (the reputation of the node Ii on the 
precedent node Ii-1) will be added to a RREQ when the 
latter passes by Ii. For example, a RREQ that the 
destination node D returns would be: 
 

D -> S: RREP, S, D, Qseq, Qid, ADI1, ..., ADI_n,  
CI2, I1..., CD, In, MACK S,D(whole_message) 

 
More details can be found in [11]. 
 
5.2 TRP with SWAN 
 
We discuss now how can SWAN provide the broadcast 
message authentication to TRP. In TRP, the fixed fields in 
RREQ and RREP are already protected by a MAC code. 
However, since only end nodes are able to verify the 
original MAC, a new MAC is required to provide 
authentication and integrity check to intermediate nodes 
during the supervision.  
  Suppose that at time interval τk, a node Ii rebroadcasts a 
RREQ which will be received by node Ii+1: Ii ->*: <RREQ, 
S, D, Qseq, Qid, ADI1, ..., ADIi, CI2,I1, ..., CIi,Ii-1, 
MACKS,D(RREQ, S, D, Qseq, Qid), h Ii n-k+1(h(Mfix))>, where 
Mfix = <RREQ, S, D, Qseq, Qid, ADI1, ..., ADIi, CI2, I1, ..., CIi, 

Ii-1, MACKS,D(RREQ, S, D, Qseq, Qid)>. Ii stores < 
RREQ,S,Qid > as packet’s identity, h(Mfix,Mvar) as the hash, 
and <ADI1,...,ADIi, CI2,I1,...,CIi,Ii-1 > as the variable fields.  
  Upon receiving the packet, Ii+1 should add to it its 
identity and its trust value on Ii before rebroadcasting it:  
 

Ii+1 ->*: RREQ, S, D, Qseq, Qid, ADI1, ..., ADIi, ADIi+1, 
CI2,I1, ..., CIi,Ii-1, CIi+1, Ii, MACKS,D(RREQ, S, D, Qseq, Qid), 

h Ii+1
n-j+1(h(Mfix), ADi+1, CIi+1, Ii) 

 
where M'fix=<RREQ,S,D,Qseq,Qid, MACKS,D( RREQ, S, D, 
Qseq, Qid)> and M'var= <ADI_1, ..., ADIi, ADi+1, CI2,I1,..., 
CIi+1,Ii>. 
  Ii observes the message and identifies the message. It 
further checks Ii+1 and CIi+1,Ii to see whether they are 
respectively a valid IP address and a valid trust value. 
Finally, it checks h(Mfix). For the future authentication, it 
stores ADIi+1,CIi+1,Ii and j.  
  During the next time interval, upon receiving the key 
hn-j+1(s Ii+1), Ii checks the validity of hn-j+1(sIi+1) by 
computing j (or less) hashes: ADi+1=<IPv6 prefix, 
hash-64(hj-1(hn-j+1(sIi+1)))>. If success, Ii checks in addition 
whether hIi+1

n-j+1(h(M′fix),M′var) is valid.  
  The other types of messages, such as data, RREP and 
REER, do not change their contents during their 
forwarding. Therefore, for such a message M, Mfix equals 
to M and Mvar equals to null. Their authentication can 
follow exactly the same process as described in 
section 3.2. 
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5.3 Simulation 
 
We first implemented TRP under NS-2 [7], then SWAN is 
implemented on TRP (we call it TRPS later on). It calls the 
crypto library of OpenSSL [8] to realize the necessary 
cryptography operations. MD5 is chosen as our test hash 
algorithm. 
  The network that we simulated contains 25 nodes. The 
simulation time is 1,000 seconds, Tti is set to 4 seconds and 
T0 is set to 0 (thus each Hash chain contains 251 hash 
values). The simulation area is a 700m*700m square. We 
use the way point mobility model with 5s as pose time and 
20m/sec as the node maximum speed. Concerning the 
traffic, we consider the FTP application with at maximum 
22 random CBR connections. Each connection sends 2 
packets per second, and each packet has a 512bit overload. 
  It is defined in our simulations that each watchdog 
buffer contains no more than 40 entries. When a new 
packet is to be buffered, the oldest packet in the buffer 
could be dropped if the buffer is already full. Each 
watchdog entry is in the following format: <t, uid, 
ADsender-64, h(Mfix), hkeyed(h(Mfix), Mvar), supervised, 
authenticated, M'var > where supervised and authenticated 
are two flags marking the states of the entry, t is the 
timestamp which registers the time when the entry is 
buffered. We do not save the prefix of the IP addresses. 
  At first, some performance simulations are carried out 
without attacker. We compared the total storage overhead 
of watchdog in TRP and in TRPS. The simulation results 
are shown in figure 4.   
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Fig. 4 Watchdog storage overhead in TRP and TRPS 

 
  We have also measured the end-to-end delay and the 
routing overhead of TRPS. We found that its average 
end-to-end delay is not varied compared to TRP, since 
nothing in SWAN can influence the traffic delay. As for 
the routing overhead, the additional KD messages 
represent about 19% of the total number of network 
packets. But since the tested traffic has a low rate of 
2pkts/s, we believe that this percentage will drop with a 
higher data rate. 
  Then, our simulations were done in presence of 20% 
malicious attackers. Each attacker observes whether there 
is any data flow passing through its neighborhood. If so, 
he tries to spoof the addresses of its neighbors and send 
wrong packets. We show in Figure 5 that with TRPS, this 

attack can be avoided thus reputations of benign nodes will 
not be badly affected. 

.  0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  200  400  600  800  1000

A
ve

ra
ge

 r
ep

ut
at

io
n 

of
 b

en
ig

n 
no

de
s

Time (seconds)

TRP
TRPS

 
 

Fig. 5 Average reputation of benign nodes in TRP and TRPS 
 
6. Conclusion 
 
In this work, we proposed a secure watchdog for ad hoc 
networks named SWAN. It combines SUCV and TESLA 
to develop a watchdog with a lightweight broadcast 
message authentication mechanism. It can detect the 
spoofing attacks that may badly affect the reputation 
systems, and can reduce the storage overhead required by 
watchdog. It is also able to treat a large number of 
messages through a simple mechanism and be independent 
of any central server. Our analysis and simulations showed 
that SWAN is both lightweight and robust. 
  In the future, we plan to carry out some further 
simulations in presence of a random number of malicious 
attackers. We will also try to apply SWAN to other routing 
protocols besides DSR, more particularly to proactive 
protocols since they can offer the possibility to get rid of 
the overhead caused by key disclosure messages. Finally, 
we believe that the synchronization is also worth a deeper 
study, and formal security proves should be achieved.   
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