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Abstract—Truthful auctions make bidders reveal their true
valuations for goods to maximize their utilities. Currently, almost
all spectrum auction designs are required to be truthful. However,
disclosure of one’s true value causes numerous security vulnera-
bilities. Secure spectrum auctions are thus called for to address
such information leakage. Previous secure auctions either did not
achieve enough security, or were very slow due to heavy compu-
tation and communication overhead. In this paper, inspired by
the idea of secret sharing, we design an information-theoretically
secure framework (ITSEC) for truthful spectrum auctions. As
a distinguished feature, ITSEC not only achieves information-
theoretic security for spectrum auction protocols in the sense
of cryptography, but also greatly reduces both computation and
communication overhead by ensuring security without using any
encryption/description algorithm. To our knowledge, ITSEC is
the first information-theoretically secure framework for truthful
spectrum auctions in the presence of semi-honest adversaries.
We also design and implement circuits for both single-sided
and double spectrum auctions under the ITSEC framework.
Extensive experimental results demonstrate that ITSEC achieves
comparable performance in terms of computation with respect
to spectrum auction mechanisms without any security measure,
and incurs only limited communication overhead.

I. INTRODUCTION

It is nowadays widely acknowledged that radio spectrum

has become a precious resource, and the problem of spectrum

scarcity is far more pressing than ever. Currently, the main

causes of spectrum scarcity are two-fold: the increasing de-

mand and the under-utilization. On one hand, more and more

wireless devices and services are starving for new spectrum

to use, making the available unlicensed spectrum a scarce

resource. On the other hand, large bulks of licensed spectrum

are inefficiently utilized by their current owners. To address the

spectrum scarcity, a widely deployed solution is the spectrum

redistribution which provides incentives to licensed users to

trade their unused spectrum with unlicensed users. Recently,

open markets for spectrum redistribution, such as Spectrum

Bridge [21], have begun to provide services for buying, selling,

and leasing idle spectrum channels.

Spectrum auction is a fair and efficient mechanism for

spectrum redistribution. As an important research strand, truth-

ful spectrum auction design has attracted extensive studies,

resulting a number of truthful spectrum auction solutions

making bidders reveal their true spectrum valuations. However,

revealing one’s true value opens the door for many security

vulnerabilities. An easily mountable attack is the frauds of

the insincere auctioneer [28], in which a dishonest auctioneer

falsifies the auction result to get more revenue based on its

knowledge on the true valuation of bidders. More sophisticat-

edly, the dishonest auctioneer may create a bid-rigging with

a bidder [28] by colluding with him to falsify the auction

result, and shares the extra revenue with him. Thirdly, a

malicious auctioneer can further exploit bid information for

future auctions, as historical data can be used to evaluate the

willingness to pay [15]. In such context, protecting the privacy

of bidders’ bid information becomes a pressing concern in the

design of attack-resilient truthful spectrum auctions.

There exist a number of privacy preserving auction mech-

anisms for traditional goods (c.f. [15][18][16][17]). However,

radio spectrum has its unique feature compared to traditional

goods as it can be reused in both spatial and time domains.

Consequently, direct application of traditional privacy preserv-

ing auction mechanisms to spectrum auctions cannot support

spectrum reuse, leading to significant performance degrada-

tion. Recently, a handful of solutions for privacy preserving

spectrum auctions have also been proposed [28][29][3]. How-

ever, they either fell short of providing adequate security, or

suffered severe performance overhead. We would like to put

the emphasis on cryptographical security, where a protocol

is said to be secure if no participating party can learn any

information beyond the output of the protocol. Using this

formal security criteria, the approaches in [28][29] indeed

reveal certain information that cannot be inferred from the

output [3]. The scheme in [3], on the other hand, is secure,

but suffers heavy computation and communication overhead.

Furthermore, it only achieves computational security against

probabilistic polynomial time (PPT) adversaries.

Motivated by the above arguments, this paper proposes

ITSEC, an information-theoretically secure framework for

truthful spectrum auctions, which ensures the privacy of

bidders’ bid information against any adversary with arbitrary

computation power. Moreover, ITSEC brings almost no extra

computation overhead to the underlining spectrum auction

and incurs only limited communication overhead. The auction

framework of ITSEC is shown in Fig. 1. ITSEC introduces two

separate entities, a seller agent and a buyer agent, to cooperate

with the auctioneer to securely run the auction. Note that none

of the three parties need to be a trusted party, but any two of
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Fig. 1. Spectrum Auction Framework for ITSEC

them are assumed not to collude. As a distinguished feature,

ITSEC reveals nothing about the bids to any adversary with

unbounded computation power, except for the auction result.

The main contributions are articulated as follows.

• Cryptographically secure spectrum auction design: We

design information-theoretically secure framework IT-

SEC for truthful spectrum auctions based on secret shar-

ing without using any cryptographical components such

as encryption and decryption. We formally prove that

ITSEC is cryptographically secure.

• Circuit-level implementation of ITSEC: We design cir-

cuits for both single-sided and double spectrum auc-

tion mechanisms implementing ITSEC, and optimize the

circuits using “XOR-free” property to further improve

performance.

• Experimental evaluation of ITSEC: We implement both

single-sided and double auction mechanisms using the

designed circuits under ITSEC framework, and carry

out extensive experiments to evaluate their performance.

Our results demonstrate that ITSEC achieves comparable

performance in terms of computation with respect to

spectrum auction mechanisms without any security mea-

sure, and incurs only limited communication overhead.

The remainder of this paper is organized as follows. Sec-

tion II briefly reviews related work. Section III provides

technical preliminaries. We present ITSEC framework, and

formally prove its information-theoretic security in Section

IV. In Section V, we design circuits for both single-sided

and double spectrum auction mechanisms. In Section VI,

we implement the designed circuits under ITSEC framework,

and evaluate the performance in terms of computation and

communication overhead. Finally, the paper is concluded in

Section VII.

II. RELATED WORK

Truthful spectrum auctions. There have been extensive

studies on truthful spectrum auctions in recent literature

[11][12][23][24][22][25][26][27]. However, most of them are

focused on system modeling and mechanism design, leaving

the security issue unaddressed. Specifically, Zhou et al. [11]

proposed a single-sided truthful spectrum auction mechanism

VERITAS supporting diverse bidding formats. The same au-

thors [12] also proposed the first truthful double spectrum

auction framework TRUST with spatial spectrum reuse. Xu et

al. [23][24] designed an efficient online spectrum allocation in

multi-channel wireless networks. Al-Ayyoub and Gupta [22]

brought forward a polynomial-time truthful spectrum auction

mechanism with revenue guarantee. Feng et al. [25] took into

account spectrum heterogeneity in truthful double spectrum

auctions. Lin et al. [26] proposed TASG, a three-stage auction

framework for Spectrum Group-buying to enable group-buying

behaviors among secondary users. Yang et al. [27] designed

a framework for spectrum double auctions called PROMISE

by jointly considering spectrum reusability, truthfulness, and

profit maximization. All these studies did not consider the

security aspect in the auctions and are hence vulnerable to

various malicious attacks enumerated in Introduction.

Secure auctions with traditional goods. There is also a

large body of work on privacy preserving auction design in

the past decade. Specifically, Brandt and Sandholm [19] inves-

tigated unconditional full privacy in sealed-bid auctions. The

authors of [15][18][16][17] applied a variety of cryptography

techniques to achieve security in various auction schemes.

Unfortunately, when directly applied to spectrum auctions,

these privacy preserving schemes for traditional auctions either

require exponential complexity to be implemented, or cannot

support spectrum reuse.

Secure spectrum auctions. Recently, the authors of [28]

and [29] proposed privacy preserving schemes for truthful

spectrum auctions, but they fell short in providing crypto-

graphical security [3]. The author of [3] proposed a provably

secure solution PS-TRUST for double spectrum auctions,

and achieved security against semi-honest adversaries. How-

ever, PS-TRUST only achieved computational security against

probabilistic polynomial time (PPT) adversaries, and incurred

heavy computation and communication overhead.

III. TECHNICAL PRELIMINARIES

In this section, we introduce technical preliminaries for the

design of ITSEC framework.

A. Secret Sharing

Secret sharing was proposed in 1979 independently by

Adi Shamir [4] and Bob Blakley [5], respectively. It is a

fundamental cryptographic primitive providing an elegant way

of dispersing a secret s into several pieces of data called

shares.

Definition 1 ((t, n)-threshold secret sharing scheme). In a

secret sharing scheme, a secret s is dispersed into n shares

in the way that any k shares with k ≤ t give no information

on s (called t-privacy), whereas any k shares with k ≥ t+ 1
uniquely disclose s (called (t+1)-reconstruction), where t, n

are integers with 0 ≤ t < n.

In (t, n)-threshold secret sharing scheme, the adversary

obtains nothing on the secret if he obtains at most t shares.

One of the widely used (t, n)-threshold secret sharing schemes

is Shamir’s scheme, summarised in the following definition.

Definition 2 (Shamir’s (t, n)-threshold scheme). Let p be a

prime larger than n. Let t, n be integers with 0 ≤ t < n. Let



3

α1, α2, ..., αn ∈ Fp be pairwise distinct and non-zero. Note

that t, n, q, α1, α2, ..., αn are public data. Denote by s ∈
Fp the secret. Shamir’s scheme selects a polynomial f(x) ∈
Fp[X ] uniformly at random, conditioned on deg(f) ≤ t and

f(0) = s. The n shares in the secret s are then given as

follows: si = f(αi) ∈ Fp, for 1 ≤ i ≤ n.

It is proved that Shamir’s scheme satisfies t-privacy and

(t+ 1)-reconstruction with t+ 1 ≤ n.

B. Statistical Indistinguishability

This subsection introduces statistical indistinguishability. To

streamline the presentation, we first introduce the family of

random variables and negligible function [6].

Definition 3 (Family of random variables). A family of random

variables is a function X mapped from non-negative integers

to random variables. That is, for each κ ∈ N, X(κ) is a

random variable. A family of random variables can be denoted

by X = {X(κ)}κ∈N.

Definition 4 (Negligible function). We say that a function

σ : N → [0, 1] is negligible in κ if for all c ∈ N there exists

κc ∈ N such that σ(κ) ≤ κ−c for all κ ≥ κc.

We now introduce statistical indistinguishability.

Definition 5 (Statistical indistinguishability). We say that two

families of random variables X0 and X1 are statistically

indistinguishable if distinguishing function σ(X0(κ), X1(κ))
1

is negligible in κ, denoted as X0
stat
≡ X1.Particularly, we

say that X0 and X1 are perfectly indistinguishable if distin-

guishing function σ(X0(κ), X1(κ)) = 0 for all κ, denoted as

X0
perf
≡ X1.

An important engineering implication of the above defini-

tion is that two families of random variables statistically or

perfectly indistinguishable from each other cannot be distin-

guished with arbitrary computation power because they lead

to the same output with essentially the same probability.

C. Information-theoretic Security Formulation

In cryptography, the standard security formulation for pro-

tocols is known as ideal/real simulation paradigm [13] [14],

as shown in Fig. 2. This security formulation assumes the

existence of an “ideal world”, in which there is an external

trusted (and incorruptible) party willing to help the parties

carry out their computation. Functionality calling in the “ideal

world” is defined such that the parties simply send their inputs

to the trusted party, who computes the desired functionality

and passes each party its prescribed output.

However, in practice, there is no external trusted party, and

protocol execution requires that the parties have to run the

protocol among themselves without any help. This standard

security formulation says that a protocol is secure if its

protocol execution in the real world is indistinguishable from

1σ(X0(κ), X1(κ))
def
= maxA |Pr[A(X0(κ)) = 0] − Pr[A(X1(κ)) =

0]|, where A is any algorithm outputing a bit c ∈ {0, 1}.

its functionality calling in the “ideal world”. In our context,

we say that a protocol is information-theoretically secure

if its protocol execution in the real world is statistically

indistinguishable from its functionality calling in the “ideal

world” for any adversary. That is, no adversary with arbitrary

computation power can do more harm in its protocol execution

than in its functionality calling.

Real World Ideal World

Fig. 2. The Security Formulation of Ideal/Real Simulation Paradigm [3]

IV. ITSEC FRAMEWORK

In this section, we propose an information-theoretically

secure framework ITSEC for truthful spectrum auctions.

A. Spectrum Auction Framework

In spectrum auctions, there are usually an auctioneer, one

or more sellers and a number of buyers. In our framework,

we designate three parties, namely the auctioneer, the seller

agent, and the buyer agent, to cooperatively run the spectrum

auctions. Note that none of the three parties need to be a

trusted party, but we do require that any two of them do

not collude, and have an authenticated secure communication

channel. The three parties are formally defined as follows:

• Auctioneer (AE): AE is an intermediary party trusted by

both seller and buyer agents and not collude with any one

of them.

• Seller Agent (SA): SA is a party representing all sellers.

• Buyer Agent (BA): BA is a party representing all buyers.

Note that in the spectrum auction framework, the reason

why we need three parties to compute the auction is due to the

theoretical results from secure multi-party computation (SMC)

area [14], which state that at least three parties are needed

to achieve information-theoretical security. In practice, similar

auction framework has been applied to trade sugar beet quotas

in Denmark [20].

In our spectrum auctions, we divide the computations into

two categories: bid-independent and bid-dependent computa-

tions. Bid-independent computations do not reveal bid infor-

mation and can be performed by AE alone. Bid-dependent

computations, on the other hand, should be performed co-

operatively among the three parties to achieve information-

theoretic security.

Specifically, to perform bid-dependent computations, all

bidders (sellers and buyers for double spectrum auctions, buy-

ers for single-sided spectrum auctions) disperse their bids into

three shares, and send one share to each of them. The parties

then cooperatively perform bid-dependent computations. At

the end, each party holds one share of the output of the spec-

trum auction. The three parties then cooperate to reconstruct
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the auction results. The spectrum auction framework in ITSEC

is shown in Fig. 1 and presented in detail in the following

subsection.

B. Secure Tri-party Computation Scheme

In order to perform bid-dependent computations securely,

we need to secure the tri-party computation (S3C). A natural

idea is to use a general scheme of secure multi-party compu-

tation (SMC) such as Protocol CEPS from [6] by setting the

number of parties to be three. However, direct application of

Protocol CEPS incurs heavy computation and communication

overhead, as analysed as follows:

• In terms of computation, from [6], we can see that

Protocol CEPS uses Shamir’s secret sharing scheme, and

takes as input an arithmetic circuit. To compute a boolean

circuit (any feasible function, and thus all bid-dependent

computations, can be represented by a polynomial-size

boolean circuit), we need to simulate the operations of

boolean values, such as XOR and AND gates, with

operations in field, such as add and multiplication.

• In terms of communication, in Protocol CEPS, each party

needs to send and receive messages from all other parties,

so the communication topology is a complete graph,

meaning significant protocol overhead.

In our solution ITSEC, we design an easily implementable

and more efficient S3C scheme in terms of both communica-

tion and computation from scratch. Our S3C scheme is com-

posed of three components, secret sharing, gate computation

and bit-sharing circuit.

Secret Sharing

In ITSEC framework, we design a secret sharing scheme

called bit-xor (BTX) secret sharing, which serves as a building

block of the S3C scheme.

Definition 6 (Bit-xor Secret Sharing). BTX secret sharing

scheme disperses a secret bit σ into n shares as follows:

• The first (n − 1) bits σ1, σ2, · · · , σn−1 are randomly

chosen;

• The last bit is σn = σ1 ⊕ σ2 ⊕ · · · ⊕ σn−1 ⊕ σ.

For notational convenience, we define [σ;n] = (σ1, σ2, · · · ,
σn), and denote the share σi by [σ;n]i.

Obviously, BTX is an (n − 1, n)-threshold secret sharing

scheme. To see this, when (n − 1) shares are obtained by

adversaries, no information about the secret bit σ is leaked.

When n shares are obtained, the secret bit is completely

revealed. We further generalise the BTX secret sharing scheme

to bitwise-xor (BWX) secret sharing scheme, which is also an

(n− 1, n)-threshold secret sharing scheme, as follows.

Definition 7 (Bitwise-xor Secret Sharing). BWX secret shar-

ing scheme disperses a secret bit vector x ∈ {0, 1}K into n

shares as follows:

• The first (n− 1) shares x1, x2, · · · , xn−1 are randomly

chosen in {0, 1}K;

• The last share is xn ∈ {0, 1}K with σi(xn) = σi(x1) ⊕
σi(x2) ⊕ ... ⊕ σi(xn−1) ⊕ σi(x) and 1 ≤ i ≤ K , where

σi(v) denotes the ith bit of v.

AE

SR BR

1 1
([ ;3] ,[ ;3] )a b

2 2
([ ;3] ,[ ;3] )a b

3 3
([ ;3] ,[ ;3] )a b

3 3
([ ;3] ,[ ;3] )a b

1 1
([ ;3] ,[ ;3] )a b

2 2
([ ;3] ,[ ;3] )a b

Fig. 3. Communication Pattern for AND Computation

For notational convenience, we define [x;n] = (x1, x2, · · · ,
xn), and denote the share xi by [x;n]i.

Gate Computation

We now focus on how to use the BTX and BWX secret

sharing schemes to construct an efficient S3C. Specifically, we

demonstrate how to compute the XOR and AND of two bits

a and b when each bit is shared among the three parties using

the BTX secret sharing scheme. Suppose that a = a1⊕a2⊕a3
and b = b1 ⊕ b2 ⊕ b3, and the auctioneer (AE) holds a1 and

b1, the seller agent (SA) holds a2 and b2, and the buyer agent

(BA) holds a3 and b3. Our objective is that after XOR or AND

computation, each party holds one share of [a⊕b; 3] or [ab; 3],
respectively.

Concretely, the procedures to calculate the outputs of an

XOR gate and an AND gate is as follows:

• XOR Gate: To compute the output of XOR gate, noticing
a⊕ b = (a1 ⊕ a2 ⊕ a3)⊕ (b1 ⊕ b2 ⊕ b3)

= (a1 ⊕ b1)⊕ (a2 ⊕ b2)⊕ (a3 ⊕ b3),
we get











[a⊕ b; 3]1 = a1 ⊕ b1 = [a; 3]1 ⊕ [b; 3]1,

[a⊕ b; 3]2 = a2 ⊕ b2 = [a; 3]2 ⊕ [b; 3]2,

[a⊕ b; 3]3 = a3 ⊕ b3 = [a; 3]3 ⊕ [b; 3]3.

(1)

Hence, to compute the XOR of two bits, each party only

needs to do XOR on its own shares of a and b in order

to get his share of the XOR output.

• AND Gate: To compute the output of AND gate, noticing
ab = (a1 ⊕ a2 ⊕ a3)(b1 ⊕ b2 ⊕ b3)

= a1b1 ⊕ a1b2 ⊕ a1b3 ⊕ a2b1 ⊕ a2b2 ⊕ a2b3
⊕ a3b1 ⊕ a3b2 ⊕ a3b3

= (a1b1 ⊕ a1b3 ⊕ a3b1)⊕ (a2b2 ⊕ a2b1 ⊕ a1b2)
⊕ (a3b3 ⊕ a3b2 ⊕ a2b3),

we get


































[ab; 3]1 = a1b1 ⊕ a1b3 ⊕ a3b1

= g([a; 3]1, [b; 3]1, [a; 3]3, [b; 3]3),

[ab; 3]2 = a2b2 ⊕ a2b1 ⊕ a1b2

= g([a; 3]2, [b; 3]2, [a; 3]1, [b; 3]1),

[ab; 3]3 = a3b3 ⊕ a3b2 ⊕ a2b3

= g([a; 3]3, [b; 3]3, [a; 3]2, [b; 3]2),

(2)

where g(x1, x2, x3, x4) = x1x2 ⊕ x1x4 ⊕ x3x2. We can

see that in order to compute the AND gate, a limited

quantity of communication among the parties are needed,

as shown in Fig. 3. Specifically, AE sends its shares

[a, 3]1 and [b, 3]1 to SA; SA sends its shares [a, 3]2 and

[b, 3]2 to BA; BA sends its shares [a, 3]3 and [b, 3]3 to

AE. At the end, each party holds a share of [ab, 3].

Bit-sharing Circuit

From the above analysis on the gate computation compo-

nent, we can see that when each party holds a share of each

input bit, the three parties can compute the output bit of an

XOR gate using eq (1) without any communication, and that

of an AND gate using eq (2) with limited communications
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shown in Fig. 3. At the end of the computation of an XOR or

AND gate, each party holds a share of the output bit of the

gate. By repeating the gate computation, we can compute any

circuit composed of XOR and AND gates.

It is well known in computation complexity theory that any

function feasible to compute can be specified as a polynomial-

size boolean circuit using exclusively AND and XOR gates.

Therefore, using the BTX secret sharing scheme, we can

compute any feasibly computable function through computing

the corresponding boolean circuit gate by gate. We call such

boolean circuit used in S3C scheme the bit-sharing circuit

(BSC). Compared to garbled circuits [1][2] used in secure

two-party computation (S2C), our bit-sharing circuits have the

following advantages:

• Reusability. Bit-sharing circuits are reusable. Garbled

circuits cannot be reused, since the reuse of random labels

representing input or output bits of gates can lead to

information leakage. In contrast, our bit-sharing circuits

are by nature reusable thanks to the circuit computation

procedure. Any bit-sharing circuit can be implemented as

a function with input bits being the input arguments and

output the return values.

• Execution speed. Our bit-sharing circuits are faster than

garbled circuits. Garbled circuits are based on symmetric

encryption algorithms, so computation of circuits often

requires a series of encryption or decryption operations.

In contrast, our bit-sharing circuits are based on BTX

secret sharing scheme, and its computation requires only

simple bit-level logic operations.

• XOR-free. Similar to garbled circuits, our bit-sharing

circuits are also “XOR-free”. In our context, XOR-

free means that the computation of an XOR gate is

communication-free, and thus can be done by each party

independently.

C. The Global ITSEC Protocol

Armed with the building blocks introduced in the previous

subsection, we now specify the global ITSEC framework.

We denote the three parties including the auctioneer (AE),

the seller agent (SA) and the buyer agent (BA) by P1, P2

and P3, respectively. The protocol is described in Protocol

1. Compared to other secure spectrum auction schemes, IT-

SEC not only incurs limited performance overhead because

of the advantages of bit-sharing circuits, but also achieves

information-theoretic security as proved in the next subsection.

D. Security Analysis of ITSEC

This subsection conducts a formal security analysis on

ITSEC. We apply in our analysis the semi-honest adver-

sary model, which is used in almost all existing literature.

Specifically, we assume that each party follows the protocol

specification, but attempts to learn information beyond the

output. According to theoretical results in secure multi-party

computation, when at most one party is corrupted, tri-party

computation can achieve information-theoretic security for any

functionality.

Protocol 1 Information-theoretically secure framework

The protocol proceeds in three phases: input sharing, computation
and output reconstruction.
Input Sharing: Each bidder di(1 ≤ i ≤ n) holds as input its bid

value xi ∈ {0, 1}K , and distributes [xi; 3] to the three parties.
Computation: P1 (the auctioneer) performs bid-independent com-
putations by itself. Then, P1 generates a circuit describing bid-
dependent computations, and distributes the circuit to other parties,
who validate the circuit, respectively. Each party repeats the
following operations until all gates are processed: Consider the
first gate in the computational order that has not been processed
yet. According to the type of gate, do one of the following.

• XOR gate: The parties hold [a; 3], [b; 3] for the two input
bits a, b to the gate. Each party Pk(1 ≤ k ≤ 3) computes
[a⊕ b; 3]k = [a; 3]k ⊕ [b; 3]k using eq (1), independently.

• AND gate: The parties hold [a; 3], [b; 3] for the two input
bits a, b to the gate.

– Communication Step. Party P1 sends [a; 3]1, [b; 3]1 to party
P2; party P2 sends [a; 3]2, [b; 3]2 to party P3; party P3

sends [a; 3]3, [b; 3]3 to party P1.
– Computation Step. Each party Pk computes [ab; 3]k in-

dependently from [a; 3]k , [b; 3]k , [a; 3](k−2)%3+1 and
[b; 3](k−2)%3+1 using eq (2).

Output Reconstruction: At this point all gates, including the
output gates have been processed, and each party holds a share
of each output bit. For each output bit σ, the parties reconstruct
the bit as follows: First, party P1 generate a random bit r,
and sends b1 = [σ; 3]1 ⊕ r, to party P2; secondly, party P2

sends b2 = [σ; 3]2 ⊕ b1 to party P3; thirdly, party P3 sends
b3 = [σ; 3]3 ⊕ b2 to party P1; finally, party P1 recovers the bit
by calculating b3 ⊕ r = [σ; 3]3 ⊕ [σ; 3]2 ⊕ [σ; 3]1 = σ. Once
the output reconstructed, P1 publishes the auction output to each
bidder.

To proceed, we first define the information-theoretic security

(IT security) against semi-honest adversaries for three-party

computation in the sense of cryptography [13].

Definition 8 (IT Security against Semi-honest Adversaries).

Let f(x, y, z) be a deterministic functionality with three inputs

x, y and z, and three outputs fA(x, y, z), fB(x, y, z) and

fC(x, y, z). Suppose that protocol Σ computes functionality

f(x, y, z) among three parties Alice, Bob and Carl. Let

V Σ
A (x, y, z), V Σ

B (x, y, z) and V Σ
C (x, y, z) represent Alice’s,

Bob’s and Carl’s views during an execution of Σ on (x, y, z).
In other words, if (x, rΣA), (y, rΣB) and (z, rΣC) denotes Alice’s,

Bob’s and Carl’s inputs and randomness, then






V Σ
A (x, y, z) = (x, rΣA,MAin,MAout),

V Σ
B (x, y, z) = (y, rΣB,MBin,MBout),

V Σ
C (x, y, z) = (z, rΣC ,MCin,MCout)

where MXin denotes the set of messages received by party X ,

MXout denotes the set of messages sent from party X .

We say that protocol Σ is secure (or protects privacy)

against semi-honest adversaries if there exist simulators S1,

S2 and S3 with arbitrary computation power such that














{S1(x, fA(x, y, z))}x,y,z
stat
≡ {V Σ

A (x, y, z)}x,y,z,

{S2(y, fB(x, y, z))}x,y,z
stat
≡ {V Σ

B (x, y, z)}x,y,z,

{S3(z, fC(x, y, z))}x,y,z
stat
≡ {V Σ

C (x, y, z)}x,y,z,

(3)

where
stat
≡ denotes statistical indistinguishability.

The following theorem establishes the IT security of ITSEC.

Theorem 1. ITSEC (Protocol 1) is information-theoretically

secure against semi-honest adversaries.
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Proof We can prove the IT security of Protocol 1 in

three separate cases, depending on which party the adversary

has corrupted. Since in the protocol, the three parties are

symmetric, we only need to prove the case where one of the

parties is corrupted.

Specifically, we show that for all adversaries with un-

bounded computation power, the adversary’s view based on

the interaction between the corrupted party and any other

party is statistically indistinguishable to the adversary’s view

when the corrupted party interacts with a simulator instead.

Mathematically, we show that there exist simulators S1, S2

and S3 that satisfy conditions in eq (3).

Without loss of generality, assume that party Pk(1 ≤ Pk ≤
3) is corrupted. For each part of the protocol, we simulate the

protocol execution as follows:

• Input sharing: Party Pk receives its input [xi; 3]k(1 ≤
i ≤ n) from the bidders, nothing needs to be simulated.

• Addition: Party Pk sends or receives nothing, so there is

nothing to show.

• Multiplication: As for input sharing, we can assume that

the two input bits held by party Pk before the current

multiplication are [a; 3]k and [b; 3]k. This is trivially the

case for the first multiplication and can be assumed

by induction for the following ones. Then party Pk

receives [a; 3](k−2)%+1 and [b; 3](k−2)%+1 from honest

party P(k−2)%+1. According to the BTX secreting sharing

scheme, [a; 3]k and [a; 3](k−2)%+1 reveal nothing about

bit a, so we can simulate [a; 3](k−2)%+1 as a random bit;

similarly, [b; 3]k and [b; 3](k−2)%+1 reveal nothing about

bit b, so we can also simulate [b; 3](k−2)%+1 as a random

bit.

• Output Construction: We simulate this part in two

separated cases, depending on whether the corrupted

party is the auctioneer or not:

– Case 1: k = 1, the auctioneer is corrupted. We

simulate each bit received from party P3 by P1 as

the XOR result of the corresponding output bit and

the random bit r used to send a bit to party P2 in

the same round.

– Case 2: k 6= 1, the auctioneer is not corrupted.

We simulate each bit received from party Pk−1 as

a random bit.

In all cases, we can see that condition (3) holds. We thus

conclude that Protocol 1 is IT secure against semi-honest

adversaries. �

V. CIRCUIT DESIGN IMPLEMENTING ITSEC FOR SECURE

SPECTRUM AUCTIONS

Having presented the IT secure framework for truthful

spectrum auctions, the remaining challenge to implement an

IT secure spectrum protocol is to design a circuit for the

spectrum auction mechanism. By designing a circuit, we

mean designing an algorithm in a data-oblivious fashion so

that the execution path does not depend on the input. In

this section, we propose circuit design for both single-sided

and double spectrum auction mechanisms implementing the

ITSEC framework.

sort (in non-increasing order)min
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Fig. 4. Main Circuit Components for SPRING

A. Circuit for Single-sided Spectrum Auction Mechanism

Single-sided Spectrum Auction. We start by a sealed-

bid single-sided spectrum auction where one auctioneer A
sells M homogenous spectrum channels to a set of buyers

B = {b1, b2, ..., bN},each requesting only one channel. Each

channel sold can potentially be reused by multiple non-conflict

buyers who are separated far enough.

To solve the above single-sided spectrum auction problem,

we apply the truthful spectrum auction mechanism proposed

in paper [29] termed as SPRING, summarized as follows:

Algorithm 2 Truthful Single-sided Spectrum Auction: SPRING

Input: Bid values, location coordinates of buyers in B, and the
number M of channels sold.

Output: Winning buyer groups and the clearing price.
Buyer group formation:

1: Create a conflict graph of buyers according to their location
coordinates, and form non-conflict buyer groups based on the
conflict graph independently on bids. Denote the resulted buyer
group set by G = {G1, G2, ..., GH}.
Winner determination:

2: for each i ∈ [1, H ] do
3: v(Gi) = |Gi| ·minb∈Gi

v(b); // compute group bid
4: end for
5: Sort the buyer group bids in non-increasing order.

v(G′

1) ≥ v(G′

2) ≥ ... ≥ v(G′

H)
The winning buyer groups are the first k = min(M,H) buyer
groups in the sorted list.
Pricing:

6: The clearing price is the (k + 1)st buyer group bid (if existent)
or 0 (otherwise), which is evenly shared among the buyers in
each winning group.

Circuit Description. From Algorithm 2, we can see that

the step “buyer group formation” is bid-independent, and the

step “pricing” simply reveals a bid value. So we only need

to design a circuit for the step “winner determination” to

secure SPRING. Fig. 4 shows the main circuit components.

Group bidding can be implemented using circuits of minimum

selection and integer multiplication with a constant, and bid

sorting using odd-even merge sorting network. We will explain

these building-block circuits in detail later in Sec. V-C.

B. Circuit for Double Spectrum Auction Mechanism

Double Spectrum Auction. We now proceed to a sealed-

bid double spectrum auction with one auctioneer A, a set

of sellers S = {s1, s2, · · · , sM}, and a set of buyers B =
{b1, b2, · · · , bN}. Each seller si contributes one channel and

each buyer bj requests one. The channels are homogenous
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to buyers so that the requests are not channel specific. Each

channel contributed by sellers can potentially be reused by

multiple non-conflict buyers who are separated far enough.

We focus on TRUST [12], a truthful double auction mech-

anism, as summarized in Algorithm 3.

Algorithm 3 Truthful Double Spectrum Auction: TRUST

Input: Bid values, location coordinates of buyers in B, and bid
values of sellers in S.

Output: Winning sellers and buyer groups, and selling and buying
clearing prices.
Buyer group formation:
Just as Algorithm 2.
Winner determination:

1: for each i ∈ [1, H ] do
2: v(Gi) = |Gi| ·minb∈Gi

v(b); // compute group bid
3: end for
4: Sort the seller bids and the buyer group bids so that:

v(s′1) ≤ v(s′2) ≤ ... ≤ v(s′M )
v(G′

1) ≥ v(G′

2) ≥ ... ≥ v(G′

H)
Find k = argmax {v(s′k) ≤ v(G′

k)}, and then the first (k− 1)
sellers and the first (k − 1) buyer groups in the sorted lists are
the auction winners.
Pricing:

5: Pay each winning seller equally by the kth seller bid, and charge
each winning buyer group equally by the kth buyer group bid,
which is evenly shared among the buyers in each winning group.

Circuit Description. Performing a similar analysis as in the

single-sided case, we can see that we only need to design a

circuit for the step “winner determination”. The main circuit

components for TRUST are shown in Fig. 5.

The circuit design for group bidding and bid sorting is

exactly the same as the single-sided spectrum auction case.

For the moment, we focus on how the auction winners and

the clearing prices are determined in a data-oblivious manner,

after both the seller and buyer group bids are sorted, and

the Q pairs of seller-buyer-group bids are compared, where

Q = min(M,H), as shown in Fig. 5-(b).

First, we show that direct revelation of the comparison

results λi (1 ≤ i ≤ Q) and the corresponding winner IDs

may lead to information leakage. To illustrate this, consider

the following example:




Sorted seller bid & ID: (2, s2) (4, s3) (5, s1) (8, s4)
λi : 1 1 1 0
Sorted group bid & ID: (10, G3) (7, G4) (6, G2) (4, G1)



 .

The direct revelation of the values of λi and IDs reveals

not only auction result (i.e. winners: s2, s3, G3, G4; clearing

prices: 5 for sellers and 6 for buyer groups), but also bid

ranking information of both winning sellers and buyer groups

(i.e. s2 bids less than s3, and G3 bids more than G4). Clearly,

the auction is not secure.

Motivated by the above analysis, we now design a data-

oblivious method to determine auction result. We put the

sorted bidder IDs, bids, and the comparison results in an array

as follows:

V =













1 : v(s′1) . . . v(s′k−1) v(s′k) v(s′k+1) . . . v(s′Q)

2 : v(G′

1) . . . v(G′

k−1) v(G′

k) v(G′

k+1) . . . v(G′

Q)

3 : s′1 . . . s′k−1 s′k s′k+1 . . . s′Q
4 : G′

1 . . . G′

k−1 G′

k G′

k+1 . . . G′

Q

5 : 1 . . . 1 1 0 . . . 0













.

The fifth row of V is the values of λi(1 ≤ i ≤ Q), i.e.

v5,i = λi, where we assume that λi = 1 when i ≤ k, λi =
0, otherwise. We repeatedly compute the following equations

from right to left (i.e. i varies from Q− 1 to 1 by step −1):
v1,i = λi+1v1,i+1 + (1− λi+1)v1,i
v2,i = λi+1v2,i+1 + (1− λi+1)v2,i
v3,Q = v4,Q = 0
v3,i = λiλi+1v3,i
v4,i = λiλi+1v4,i

In the end, v1,1 and v2,1 are revealed to be clearing prices

for sellers and buyer groups, respectively. Sort v3,i and v4,i
ascendingly, then reveal and indicate winners as follows: if

v3,i > 0, then v3,i is the ID of a seller winner; if v4,i > 0,

then v4,i is the ID of a buyer group winner. Note that winners

are revealed in ascending order of IDs, which is independent

on bid ranking. In this way, we can compute the auction result

without leaking bid ranking information.

C. Design and Optimization for Building-block Circuits

In this subsection, we detail the design and optimization of

the building-block circuits in our design for both single-sided

and double secure spectrum auctions.

1) Sorting Network: In our implementations for both

single-sided and double spectrum auctions, bid sorting is a

dominant operation. We implement the sorting circuit using an

odd-even merge sorting network [8], [9], a circuit that sorts an

input sequence (a1, a2, ..., an) into a monotonically increasing

sequence (a′1, a
′

2, ..., a
′

n). The main building block of sorting

network is compare-and-swap circuits, a binary operator taking

as input a pair (a1, a2), and returning the sorted pair a′1, a
′

2,

with a′1 = min (a1, a2) and a′2 = max (a1, a2). Fig. 6 gives

an illustration of a compare-and-swap circuit and an odd-even

merge sorting network for n = 4. As desirable properties, the

odd-even merge sorting network is data-oblivious by nature

and achieves a computation complexity of O(n log2 n). In

practice, it outperforms most widely used sorting network

algorithms [10].

2) Atomic Building-block Circuits: In order to implement

buyer group bidding and bid sorting circuits, we need to

design the following basic building-block circuits: integer

comparison, swap, minimum selection, integer multiplication

with a constant. We call them atomic building-block circuits,

or atomic circuits more concisely. In our circuit design, similar

to garbled circuits, we can make use of the “XOR-free”
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property to optimize these circuits. Because XOR gate is

communication-free in bit-sharing circuits, we aim to use as

few as possible AND gates for each atomic circuit to minimize

the communication overhead. In the following, we denote

two K-bit non-negative integers by x = (xKxK−1...x2x1)
and y = (yKyK−1...y2y1). The four atomic circuits can be

designed and optimized as follows.

• Integer comparison. We directly apply the circuit pro-

posed in [7] for integer comparison, which is optimized

by “XOR-free” property. To compare integers x and y,

the circuit can be described as follows:
ci+1 = xi ⊕ (xi ⊕ ci) ∧ (yi ⊕ ci)
subject to 1 ≤ i ≤ K

where for c1 = 0, the comparison result cK+1 = [x > y];
for c1 = 1, cK+1 = [x ≥ y]. Comparison circuits for

[x < y] and [x ≤ y] can be obtained by interchanging

x and y. As we can see, the K-bit integer comparison

circuit only contains K AND gates.

• Swap. Suppose that x and y are the two integers to swap,

and the swap indicator is denoted by b (If b = 1, swap x

and y; else, remain untouched). A swap can be optimized

with only K AND gates as follows:
x′

i = [b ∧ (xi ⊕ yi)]⊕ xi, and y′

i = x′

i ⊕ (xi ⊕ yi)
subject to 1 ≤ i ≤ K

• Minimum selection. Minimum selection circuit with two

integers x and y can be optimized with only 2K AND

gates as
b = [x > y], mi = [b ∧ (xi ⊕ yi)]⊕ xi

subject to 1 ≤ i ≤ K
The above circuit can be easily extended to minimum

selection circuit with n integers using 2K(n− 1) AND

gates.

• Integer multiplication with a constant. First, we can

apply the circuit proposed in [7] for integer addition with

integers x and y, using K AND gates, as follows.
ci+1 = ci ⊕ (xi ⊕ ci) ∧ (yi ⊕ ci), si = ci ⊕ xi ⊕ yi
subject to 1 ≤ i ≤ K

where c1 = 0. The final sum is s = (cK+1sK
sK−1...s2s1). Then based on the optimized integer addi-

tion, we can design the optimized integer multiplication

with a constant by Algorithm 4 using K2 ∼ 2K2 AND

gates.

Algorithm 4 Integer Multiplication with a Constant

Input: x and a constant c = (cKcK−1...c2c1)
Output: Product p = c · x

1: xx = x; p = 0;
2: for all 1 ≤ i ≤ K do
3: p = (ci == 1) ? (p+ xx) : p;
4: xx = xx+ xx;
5: end for
6: return p;

VI. PERFORMANCE ANALYSIS AND EVALUATION

As our implementations for both single-sided and double

spectrum auctions under framework ITSEC exactly follow the

procedure of original auction mechanisms, the auction related

performance is the same as that of the original ones and is

extensively evaluated in existing literatures. So, in this section,

we focus on the analysis and evaluation of computation and

communication overhead caused by the security measures.

A. Analysis of Computation and Communication Complexities

For both of our single-sided and double spectrum auction

implementations, the dominant computation component is bid

sorting, whose complexity is O(n log2 n) where n is the

number of items sorted. Assuming that M ≤ N , and the

average size of buyer groups is roughly constant, we can derive

that the computation complexities of both single-sided and

double spectrum auction implementations are O(N log2 N)
with fixed bit length of bids, where N is the number of buyers.

This computation complexity is slightly higher than the com-

plexity O(N logN) of the corresponding unsecured schemes

determined by sorting algorithms. Similarly, we can derive that

the communication complexities of both implementations are

also O(N log2 N).

B. Evaluation of Computation and Communication Overhead

We implement both single-sided and double spectrum auc-

tion mechanisms under ITSEC using Java, and simulate the

three parties with three processes on a computer. We also

implement the corresponding unsecured schemes of both

single-sided and double spectrum auctions for comparison.

Experimental settings are as follows: All buyers are randomly

distributed in an area of 1000m × 1000m with protection

distance being 500m; Both seller and buyer bids take values

randomly in the interval [0, 2K−1] with K = 10; The number

M of channels for single-sided spectrum auctions is 200. All

experimental results are averaged on 10 random runs. In our

simulation, we focus on the following performance metrics:

running time (sum of CPU time spent by the three parties)

and message volume (data size of all messages sent between

the parties).

Figs. 7 and 8 trace the experimental results in both single-

sided and double auctions. The running time curves of ITSEC

schemes and unsecured schemes are compared, and message

volume curves are illustrated, as N varies from 1000 to 10000
by step 1000 (and for double spectrum auctions, M varies

from 300 to 3000 by step 300). From the figures, we can

make the following observations:

• Curve Trend. Both the running time and message volume

curves of ITSEC grow faster than linearly in N in

both auction cases, which is in accordance with the

theoretical results we obtain. Particularly, the message

volume curves scale only slightly faster than linearly

in both auction cases, which probably results from the

“XOR-free” property and our circuit optimization.

• Running Time. Even for large N , the running times of

ITSEC scheme are very close to those of the unse-

cured schemes in both auction cases. For example, when
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N = 10000, for single-sided auctions, the running time of

ITSEC is 65.31 min, and that of the unsecured scheme

is 63.63 min; for double auctions, the running time of

ITSEC is 67.59 min, and that of the unsecured scheme

is 59.48 min. The results demonstrate that ITSEC brings

only limited computation overhead.

• Message Volume. The message volumes of ITSEC are

also limited with respect to the number of sellers and

buyers. For example, when N = 10000, the message vol-

ume is 4.91MB for single-sided auctions, and is 8.73MB

for double auctions. The results demonstrate that ITSEC

incurs only limited communication overhead.
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Fig. 8. Computation and communication overhead for double auctions

From the experimental results, we conclude that ITSEC

achieves comparable performance in terms of computation

with respect to unsecured spectrum auction schemes, and

incurs only limited communication overhead.

VII. CONCLUSION

In this paper, we have proposed ITSEC, the first

information-theoretically secure framework for truthful spec-

trum auctions. Previous studies on secure spectrum auctions

either did not provide adequate security, or suffered great per-

formance overhead for security. In contrast, we have achieved

information-theoretic security in the sense of cryptography,

and formally proved the security in the presence of semi-

honest adversaries in this work. Specifically, ITSEC reveals

nothing about the bids to any participant with arbitrary com-

putation power, except the auction result. Furthermore, we

have implemented both single-sided and double auction mech-

anisms under ITSEC framework in Java, and have theoretically

and experimentally shown that ITSEC achieves comparable

performance in terms of computation with respect to spectrum

auction mechanisms without any security measure, and incurs

only limited communication overhead.
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