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Abstract—Neighbor discovery plays a crucial role in the
formation of wireless sensor networks and mobile networks where
the power of sensors (or mobile devices) is constrained. Due to the
difficulty of clock synchronization, many asynchronous protocols
based on wake-up scheduling have been developed over the years
in order to enable timely neighbor discovery between neighboring
sensors while saving energy. However, existing protocols are not
fine-grained enough to support all heterogeneous battery duty
cycles, which can lead to a more rapid deterioration of long-
term battery health for those without support. Existing research
can be broadly divided into two categories according to their
neighbor-discovery techniques—the quorum based protocols and
the co-primality based protocols. In this paper, we propose two
neighbor discovery protocols, called Hedis and Todis, that opti-
mize the duty cycle granularity of quorum and co-primality based
protocols respectively, by enabling the finest-grained control of
heterogeneous duty cycles. We compare the two optimal protocols
via analytical and simulation results, which show that although
the optimal co-primality based protocol (Todis) is simpler in its
design, the optimal quorum based protocol (Hedis) has a better
performance since it has a lower relative error rate and smaller
discovery delay, while still allowing the sensor nodes to wake up
at a more infrequent rate.

Index Terms—Neighbor discovery, heterogeneous duty cycles.

I. INTRODUCTION

As human technology continues to advance at an un-

precedented rate, there are more mobile wireless devices in

operation than ever before. Many have taken advantage of

the ubiquity of these devices to create mobile social network

applications that use mobile sensing as an important feature

[11][13]. These applications rely on their devices’ capability

to opportunistically form decentralized networks as needed.

For this to happen, it is important for these devices to be able

to discover one another to establish a communication link. In

order to save energy, each of the devices alternates between

active and sleeping states by keeping its radio “ON” for only

some of the time [5]. This is challenging to achieve because

two nodes can communicate only when both of their radios are

“ON” at the same time; and with clock drifts, having set times

for all the nodes to wake up at the same time is not trivial.

Since clock synchronization is difficult in a distributed system,

neighbor discovery must be done asynchronously. Over the

years, the asynchronous neighbor discovery problem has been

widely studied [2][3][4][7][8][18][19][21], and existing re-

search mainly focused on satisfying the following three design

requirements:

1) Guarantee neighbor discovery within a reasonable time

frame;

2) Minimize the number of time slots for which the node

is awake to save energy;

3) Match the nodes’ awake-sleep schedules with their het-

erogeneous battery duty cycles as closely as possible to

prolong overall battery lifetime1.

Most existing solutions to this problem use patterned wake-

up schedules to satisfy the first two requirements. We classify

these solutions into two broad categories: (1) quorum based

protocols that arrange the radio’s time slots into a matrix and

pick wake-up times according to quorums in the matrix; and

(2) co-primality based protocols that use the number theory to

choose numbered time slots as the radio’s wake-up times.

In a quorum based protocol, a node populates time slots into

a matrix, where the elements in the matrix represent time slots

the node takes to run a period of the wake-up schedule [14].

The specific arrangements of rows and columns depend upon

the protocol scheme, which typically assign slots as “active”

or “sleeping”, such that it will ensure these chosen active time

slots in the matrix of one node will overlap with those active

ones of a neighboring node. Especially, when nodes have the

same duty cycles, two nodes choosing active times from a

row and a column respectively in the matrix will be ensured

to achieve neighbor discovery regardless of clock drifts.

A co-primality based protocol directly takes advantage of

properties of the Chinese Remainder Theorem (CRT) [12]

to ensure that any two nodes would both be active in the

same time slot [4]. Under these protocols, nodes wake up

at time slots in multiples of chosen numbers (a.k.a. protocol

parameters) that are co-prime to one another. Such a neighbor

discovery protocol fails when nodes choose the same number

that would compromise the co-primality. Thus, every node is

allowed to choose several numbers and wake up at multiples

of all of those chosen numbers, which guarantees that nodes

discover one another within a bounded time/delay.

Up to now, all of the protocols incepted, be it quorum

based or co-primality based, fail to meet the third design

requirement, as their requirements for duty cycles are too

specific. As a quorum based protocol, Searchlight [2] requires

that the duty cycles be in the form 2
ni , where n is a fixed

1A duty cycle is the percentage of one period in which a sensor/radio is
active.



integer and i = 1, 2, 3, . . . (it only supports duty cycles of

1, 1
2 ,

1
4 ,

1
8 ,

1
16 , . . . if n = 2). Therefore, it greatly restricts the

choices of supported duty cycles due to the requirement for

duty cycles to be in the form 2
ni . For a co-primality based

protocol like Disco [4], it restricts duty cycles to be in the

form 1
p1

+ 1
p2

, where p1 and p2 are prime numbers. Such

stringent requirements on duty cycles force devices to operate

at duty cycles that they are not designed to operate at, thus

shortening their battery longevity.

In this paper, we present two optimal neighbor discovery

protocols, called Hedis (HEterogeneous DIScovery as a quo-

rum based protocol) and Todis (Triple-Odd based DIScovery

as a co-primality based protocol), that guarantee asynchronous

neighbor discovery in a heterogeneous environment, mean-

ing that each node could operate at a different duty cycle.

Specifically, they optimize the duty cycle granularity in their

respective protocol categories to support duty cycles in the

form of 2
n and 3

n respectively, and n is an integer that

help achieve almost all duty cycles smaller than one. We

analytically compare these two protocols with existing state-

of-the-art protocols to confirm their optimality in the support

of duty cycles, and also compare them against each other as

a comparison between the two general categories of neighbor

discovery protocols (quorum vs. co-primality based protocols).

Our results show that while the discovery latencies are similar

for both protocols, Hedis as an optimal quorum based protocol

matches actual duty cycles much more closely than Todis as

a co-prime based protocol.

The rest of this paper is organized as follows. We formally

define the problem as well as any necessary terms in section II,

and give a taxonomy of current research efforts in this area

in section III. In sections IV and V, we present our optimiza-

tions for the quorum based and co-primality based protocols

respectively, and we evaluate them with simulations in section

VI. Finally, we conclude with section VII.

II. PROBLEM FORMULATION

Here we define the terms and variables used to formally

describe the neighbor discovery problem and its solution; and

meanwhile we state the assumptions used in devising our

protocols.

Wake-up schedule. We consider a time-slotted wireless

sensor network where each node is energy-constrained. The

nodes follow a neighbor discovery wake-up schedule that

defines the time pattern of when they need to wake up (or

sleep), so that they can discover their respective neighbors in

an energy-efficient manner.

Definition 1. The neighbor discovery schedule (or simply

schedule) of a node a is a sequence sa , {sta}0≤t<Ta
of

period Ta and

sta =

{

0 a sleeps in slot t

1 a wakes up in slot t
.

Clock drift. We do not assume clock synchronization

among nodes, therefore any two given nodes may have random

clock drifts. We use the cyclic rotation of a neighbor discovery
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(b) Node b drifts by 1 time slot to the left

Fig. 1: An example of neighbor discovery: Two neighbor

discovery schedules are sa = {0, 0, 0, 0, 0, 1} and sb =
{0, 1, 0, 0, 0, 0, 0, 0, 1}. Without clock drift (1a), the two

nodes can discover each other every 18 time slots since

lcm(Ta, Tb) = 18. With clock drift (1b), neighbor discovery

fails.

schedule to describe this phenomenon. For example, a clock

drift by k slots of node a’s schedule sa is

rotate(sa, k) = {rta}0≤t<Ta
,

where rta = s
(t+k) mod Ta
a .

Definition 2. The duty cycle δa of node a is the percentage

of time slots in one period of the wake-up schedule where

node a is active (node a wakes up), defined as

δa =
|{0 ≤ t < Ta : sta = 1}|

Ta
.

Neighbor discovery. Suppose two nodes a and b have

schedules sa and sb of periods Ta and Tb, respectively.

If ∃t ∈ [0, lcm(Ta, Tb)) such that sta = stb = 1 where

lcm(Ta, Tb) is the least common multiple of Ta and Tb, we

say that:

• Nodes a and b can discover each other in slot t.
• Slot t is called a discovery slot between a and b.

Figure 1 shows an example of two nodes with neigh-

bor discovery schedules sa = {0, 0, 0, 0, 0, 1} and sb =
{0, 1, 0, 0, 0, 0, 0, 0, 1}, that have period lengths of Ta = 6
and Tb = 9 respectively. Node a is active on 1 slot within

each period (6 slots) while node b is active on 2 slots within

each period (9 slots). Thus the duty cycles of a and b are

da = 1
6 ≈ 16.7% and db =

2
9 ≈ 22.2%. In Figure 1a, We see

that for every period of 18 slots (lcm(Ta, Tb) = 18), nodes a
and b discover each other in slot 17. However, as illustrated

in Figure 1b, when a one-slot clock drift occurs in node b,
we have rotate(sb, 1) = {1, 0, 0, 0, 0, 0, 0, 1, 0} and these two

nodes can no longer discover each other.

III. A TAXONOMY OF NEIGHBOR DISCOVERY PROTOCOLS

In this section, we introduce a taxonomy of deterministic

asynchronous neighbor discovery protocols. Through examin-

ing existing solutions to the neighbor discovery problem, we

divide these protocols into two broad categories.



A. Why Deterministic Protocols

Many solutions have been proposed to solve the neighbor

discovery problem. One of the earliest such solutions are

the birthday protocols [10], which take upon a probabilistic

approach to neighbor discovery. These protocols rely on

the birthday paradox, which states that with as few as 23

people, the probability that two people have the same birth-

day exceeds 1
2 . As a non-deterministic protocol based upon

probability, birthday protocols are heterogeneous and supports

every duty cycle with the finest granularity. Following this,

many more similar probabilistic protocols were also developed

[15][16][17][20]. However, due to their probabilistic nature,

these protocols fail to provide a guaranteed upper bound for

neighbor discovery latency, which means that there is a chance

for two neighbors to never discover each other.

To combat this insufficiency, deterministic protocols with

worst case bounds for neighbor discovery were developed.

The earlier deterministic protocols such as [7][14], and [9]

all use the quorum concept. However, while these protocols

are effective in guaranteeing neighbor discovery, they are

generally lacking in duty cycle support. For example, [14] and

[7] are homogeneous, meaning that they require all the nodes

to have the same duty cycle. As a result, the co-primality based

approach was developed with Disco [4] and U-Connect [8],

although U-Connect is in some ways a hybrid approach using

elements from both the quorum and co-primality paradigms.

B. Quorum vs. Co-primality Based Protocols

The deterministic protocols for neighbor discovery can be

largely classified into two major categories, quorum based

protocols and co-primality based protocols.

1) Quorum Based Protocols: Quorum based protocols take

advantage of geometry in a 2-dimensional array.

Bounded discovery delay. In the most original protocols

like [14], time is arranged into an m×m matrix. Every node

then chooses a row and a column for which to wake up. This

ensures that regardless of any clock drifts, any two nodes

would be able to wake up at the same time slot every m2

time slots, thus guaranteeing an upper bound for neighbor

discovery. However, this method only works if every node

happens to use the same duty cycle. Lai et al. [9] improve

upon this method by constructing cyclic quorum system and

grid quorum system pairs, which allow for two different duty

cycles to coexist and still ensure bounded neighbor discovery.

Example protocols. The current latest development in quo-

rum based protocols is Searchlight [2], which is able to support

multiple duty cycles in the network. Searchlight essentially

divides the duty cycle period into a t
2 × t matrix, and uses a

combination of anchor and probing slots to generate wake-up

patterns. At the beginning of every t time slots is an anchor

slot, and a probing slot occurs at random slots between the

anchor slots. With this technique, Searchlight [2] shows that

it is able to allow neighbor discovery among nodes with many

different duty cycles.

2) Co-primality Based Protocols: A co-primality based

neighbor discovery protocol is one in which

• Each node, say, node a, chooses a set of integers (not

necessarily distinct) Na = {na
1 , n

a
2 , n

a
3 , . . . , n

a
|Na|

}.

• For two distinct nodes a and b, Na and Nb must satisfy

the following co-prime pair property.

Definition 3. For two distinct nodes a and b under a co-

primality based neighbor discovery protocol, there exists an

integer in Na that is co-prime to an integer in Nb—i.e.,

∃na
i0

∈ Na and nb
j0

∈ Nb such that na
i0

and na
j0

are co-prime.

Node a’s schedule sa , {sta}0≤t<Ta
under this co-primality

based protocol is

sta =

{

1 t is divisible by some na
i ∈ Na

0 otherwise
.

The period length is Ta = lcm(na
1 , n

a
2 , . . . , n

a
|Na|

) and its duty

cycle δa is

δa =
∑

1≤i1≤|Na|

1

na
i1

−
∑

1≤i1<i2≤|Na|

1

lcm(na
i1
, na

i2
)

· · ·+ (−1)|Na|+1 1

lcm(na
1 , n

a
2 , n

a
3 , · · · , n

a
|Na|

)
.

Bounded discovery delay. By the Chinese Remainder

Theorem (CRT) [12], we can obtain the following theorem.

Theorem 4. A co-primality based neighbor discovery protocol

can guarantee discovery for any two nodes for any amount

clock drift if the associated integer sets of the nodes in this

network satisfy the co-prime pair property. And the worst-case

discovery delay is bounded by the product of the two smallest

co-prime numbers, one from each set, i.e.:

min
gcd(na

i
,nb

j
)=1,1≤i≤Na,1≤j≤Nb

{na
i · n

b
j}.

Suppose the clock of node a is d time slots ahead of that of

node b, i.e., node b’s tth time slot is the (t+ d)th time slot of

node a, where d is the clock drift, the following congruence

system w.r.t. t applies:
{

t ≡ 0 (mod pi)

t+ d ≡ 0 (mod pj)
. (1)

If t is a solution to Eq. (1), then node a will discover node b
in node a’s t-th time slot (i.e., node b’s (t+ d)-th time slot).

By CRT, since pi and pj are co-prime, there exists a solution

t ≡ t0 (mod pipj).
Example protocols. Disco [4], as such a co-primality based

protocol, ensures co-primality by only using prime numbers as

possible parameters. In Disco, each node chooses two distinct

primes to create its wake-up schedule. For example, node a
chooses two distinct primes p1 and p2 and node b chooses p3
and p4. Node a is active (wakes up) in the t-th time slot iff

t is divisible by either p1 or p2 while node b is active in the

t-th time slot iff t is divisible by either p3 or p4. Therefore,

Disco can guarantee neighbor discovery for any two nodes for

any amount of clock drift with a bounded discovery delay of

min
gcd(pi,pj)=1,i=1,2,j=3,4

{pi · pj}.
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Fig. 2: Two example Hedis schedules.

Again, this delay is the product of the two smallest co-prime

numbers following from the CRT.

U-Connect [8] is a combination of Disco and the basic

quorum based protocol in that it restricts the dimensions of the

square quorum matrix to be a prime number. In this way, if

the duty cycles of the nodes happen to be the same, neighbors

would discover one another via the quorum method. On the

other hand, if they are different, the numbers chosen would be

co-prime to each other and thus enabling neighbor discovery

by Theorem 4.

More comprehensive surveys on neighbor discovery can be

found in [1] and [6].

IV. HEDIS: OPTIMIZING QUORUM BASED PROTOCOLS

Hedis is an asynchronous periodic slot-based neighbor dis-

covery protocol where each node picks its anchor and probing

slots according to the elements of a quorum that is carefully

selected in an (n− 1) by n matrix.

A. Design of the Hedis Schedule

For a node a that has a desired duty cycle δ, the period of

its schedule under Hedis, sa = {sta}0≤t<n(n−1), consists of

n(n−1) time slots, where the integer n is chosen such that 2
n

comes as close to δ as possible (and we call n the parameter

of this node). Under Hedis, its schedule is

sta =

{

1 t = ni, (n+ 1)i+ 1 (i = 0, 1, 2, . . . , n− 2)

0 otherwise
,

where ni (i = 0, 1, 2, . . . , n−2) denotes the index of an anchor

slot and (n+ 1)i+ 1 denotes the index of a probing slot.

Figure 2 shows two example Hedis schedules when n =
4, 6, and the two schedules consist of of n(n − 1) = 12, 30
time slots, respectively. Each grid in the figure represents

a time slot, and the integer inside a grid denotes its slot

index, e.g., the grid with 0 inside denotes the 0th time slot

in the schedule (note that a schedule starts from the 0th time

slot). The red and blue slots represent the anchor and probing

slots, during which the node wakes up. When n = 4, the

duty cycle is 2/4 = 50%. The full schedules are depicted in

Figure 3, where the two nodes with different duty cycles can

achieve successful neighbor discovery (overlap of colored slots

between schedules of nodes a and b) for many times in every

period. Next, we will show that Hedis can guarantee neighbor

discovery for any two nodes of same-parity parameters (both

odd or both even) with heterogeneous duty cycles for any

amount of clock drift.

B. Bounded Discovery Delay under Hedis

Lemma 5. Let m and n be positive integers. For any integers

a and b, there exists an integer x such that

x ≡ a (mod m) (2)

and

x ≡ b (mod n) (3)

if and only if

a ≡ b (mod gcd(m,n)).

If x is a solution of congruences (2) and (3), then the integer

y is also a solution if and only if

x ≡ y (mod lcm(m,n)).

The proof can be found in [12], on page 61, Theorem 2.9.

By Lemma 5, we further establish the following theorem.

Theorem 6. Hedis guarantees neighbor discovery within

bounded latency for any two nodes with the same-parity

parameters n and m, given any amount of clock drift between

their schedules. The average discovery latency is O(nm).

Proof: Nodes a and b are two arbitrarily given nodes,

whose parameters are n and m, respectively. The periods of

the Hedis schedules of nodes a and b are Ta = n(n− 1) and

Tb = m(m − 1), respectively. We use d to denote the clock

drift.

Without loss of generality, we study the following system

of congruences with respect to t:
{

t ≡ ni+ d, (n+ 1)i+ 1 + d (mod n(n− 1))

t ≡ mj, (m+ 1)j + 1 (mod m(m− 1)),
(4)

where i ∈ [0, n− 2], j ∈ [0,m− 2].

t ≡ ni+ d, (n+ 1)i+ 1 + d (mod n(n− 1))

(i ∈ [0, n − 2]) is true iff ∃i ∈ [0, n − 2] such that it is true,

and the same meaning for

t ≡ mj, (m+ 1)j + 1 (mod m(m− 1))

(j ∈ [0,m− 2]).
There are a number of nm pairs of simultaneous congru-

ences, which we divide into 4 groups: anchor-anchor, anchor-

probing, probing-anchor and probing-probing groups. E.g., the

anchor-probing group denotes the case where an anchor slot

of node a overlaps a probing slot of node b. Note that if we

find a solution that meets the requirements of any one of these

congruences, we obtain a solution to Eq. (4).

Group 1: anchor-anchor. Consider the following system

of congruences
{

t ≡ ni+ d (mod n(n− 1)) i ∈ [0, n− 2]

t ≡ mj (mod m(m− 1)) j ∈ [0,m− 2]
,

which is equivalent to
{

t ≡ d (mod n)

t ≡ 0 (mod m)
. (5)
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Fig. 3: Node a’s schedule is 3-slot ahead of node b’s schedule. The overlapped colored slots between their schedules represent

the successful neighbor discovery.

By Lemma 5, Eq. (5) has a solution if and only if

gcd(n,m) | d.

Group 2: anchor-probing. Consider the following system

of congruences
{

t ≡ ni+ d (mod n(n− 1)) i ∈ [0, n− 2]

t ≡ (m+ 1)j + 1 (mod m(m− 1)) j ∈ [0,m− 2]
,

(6)

which is equivalent to
{

t ≡ d (mod n)

t ≡ (m+ 1)j + 1 (mod m(m− 1)) j ∈ [0,m− 2]
.

(7)

By Lemma 5, Eq. (7) has a solution if and only if

gcd(n,m(m − 1)) | (m + 1)j + 1 − d for some integer

j ∈ [0,m− 2], i.e., the congruence with respect to j

(m+ 1)j ≡ d− 1 (mod gcd(n,m(m− 1))) (8)

has a solution.

Group 3: probing-anchor. Consider the following system

of congruences
{

t ≡ (n+ 1)i+ 1 + d (mod n(n− 1)) i ∈ [0, n− 2]

t ≡ mj (mod m(m− 1)) j ∈ [0,m− 2]
,

(9)

which is equivalent to
{

t ≡ (n+ 1)i+ 1 + d (mod n(n− 1)) i ∈ [0, n− 2]

t ≡ 0 (mod m)
.

(10)

By Lemma 5, Eq. 10 has a solution if and only if

gcd(m,n(n− 1)) | (n+ 1)i+ 1 + d

for some integer i ∈ [0, n−2], i.e., the congruence with respect

to i

(n+ 1)i ≡ −d− 1 (mod gcd(m,n(n− 1))

has a solution.

Group 4: probing-probing. Consider the following system

of congruences
{

t ≡ (n+ 1)i+ 1 + d (mod n(n− 1)) i ∈ [0, n− 2]

t ≡ (m+ 1)j + 1 (mod m(m− 1)) j ∈ [0,m− 2]
.

(11)

By Lemma 5, Eq. 11 has a solution if and only if

gcd(n(n− 1),m(m− 1)) | (n+ 1)i− (m+ 1)j + d

for some integer i ∈ [0, n− 2] and j ∈ [0,m− 2].
Now we begin to prove this theorem by cases.

Case 1: If m > n, the congruence system of anchor-

probing (Group 2) is true. Proof: If m > n, we have

m − 1 ≥ n ≥ gcd(n,m(m − 1)). And note that gcd(m +
1, gcd(n,m(m−1))) = gcd(m+1, n,m(m−1)) = gcd(m+
1, 2, n) = 1. This is because m and n are both odd or are

both even. So one of m + 1 and n are odd, and we have

gcd(m + 1, 2, n) = 1. Therefore (m + 1)j (j ∈ [0,m − 2])
runs over all congruence classes modulo gcd(n,m(m − 1)).
Then Eq. (8) has at least ⌊(m−1)/gcd(n,m(m−1))⌋ solutions

and on average (m− 1)/gcd(n,m(m− 1)) solutions. Hence

Eq. (7) has at least ⌊(m − 1)/gcd(n,m(m − 1))⌋ solutions

and on average (m− 1)/gcd(n,m(m− 1)) solutions modulo

lcm(n,m(m − 1)). Therefore, the average discovery latency

is
lcm(n,m(m−1))

(m−1)/gcd(n,m(m−1)) = nm.

Case 2: If n > m, the congruence system of probing-anchor

(Group 3) is true. Proof: If n > m, similarly to case 1, we

have Eq. (10) has at least ⌊(n−1)/gcd(m,n(n−1))⌋ solutions

and on average (n− 1)/gcd(m,n(n− 1)). Hence Eq. (9) has

at least ⌊(n− 1)/gcd(m,n(n− 1))⌋ solutions and on average

(n−1)/gcd(m,n(n−1)) modulo lcm(m,n(n−1)). Therefore,

the average discovery latency is nm.

Case 3. If n = m, we consider the result of d mod n. If

d ≡ 0 (mod n), then gcd(n,m) = n | d, and thus the anchor-

anchor case (Group 1) is true and the average discovery latency

is O(nm). Now we concentrate on the case where d 6≡ 0
(mod n). Since n = m, Eq. (8) becomes

(n+ 1)j ≡ d− 1 (mod n).

Since (n+ 1)j = nj + j ≡ j (mod n), this is equivalent to

d ≡ j + 1 (mod n).

For j ∈ [0, n − 2], j + 1 runs over[1, n − 1]. Because d 6≡ 0
(mod n), there exists a j ∈ [0, n−2] that satisfies Eq. (8), and

therefore the anchor-probing case (Group 2) is true. Similarly,

the probing-anchor case (Group 3) is also true. And it is easy

to check that the average discovery latency is O(n2), i.e.,

O(nm).

V. TODIS: OPTIMIZING CO-PRIMALITY BASED

PROTOCOLS

Now we optimize the asynchronous co-primality based

protocols, and propose Todis that exploits properties of con-

secutive odd integers for achieving co-primality.

As a co-primality based protocol, Todis creates wake-up

schedules for the nodes based on multiples of numbers that are

co-prime to each other. This ensures that any two given nodes

would be able to wake up at the same time by the co-prime

pair property as illustrated in Section III, thus succeeding in

neighbor discovery. Recall that Disco [4] guarantees this by

simply using prime numbers as parameters, which limits the

variety of parameters to choose from.



For two nodes a and b, we need to construct two sets

of integers, Na and Nb, that must satisfy the co-prime pair

property. In our quest to find co-prime pairs, we observe that

for two numbers to be co-prime, at least one of them must be

odd. Thus, we explore the possibility of achieving co-primality

using odd integers. We observe that given two odd integers a
and b, if they are not co-prime, often times either “a+ 2 and

b”, or “a and b + 2” is a co-prime pair. For example, if 15

and 21 are not co-prime, we are able to find that either “17

and 21”, or “15 and 23” is a a co-prime pair. Following this

logic, we design our Todis protocol using sets of consecutive

odd integers.

A. Design of the Todis Schedule

1) Trying sets of two consecutive integers: First, we tried

using two consecutive odd integers in Na for each node a, i.e.,

Na = {n, n + 2} where n ≥ 1 and n is odd. Unfortunately,

for given nodes a and b, there are instances where the sets

Na and Nb do not satisfy the co-prime pair property for very

small numbers (i.e., less than 100). For example, when Na =
{33, 35} and Nb = {75, 77} and ∀na

i ∈ Na, n
b
j ∈ Nb, we

have gcd(na
i , n

b
j) > 1.

2) Using sets of three consecutive integers in Todis: In

Todis, we use three consecutive odd integers n − 2, n and

n+ 2 (n ≥ 3) for constructing a wake-up schedule.

The co-prime pair property requires that at least one of the

three consecutive odd integers that node a chooses (i.e., n−2,

n and n + 2) is co-prime w.r.t. one of the three integers that

node b chooses (i.e., m− 2, m and m+ 2).

Bounded discovery delay in practical networks. Gener-

ally, the triples consisting of three consecutive odd integers

can also fail to satisfy the required co-prime pair property,

as seen in counterexamples shown by the CRT. However, the

two smallest sequences of odd integers in these counterex-

amples are Na = {1600023, 1600025, 1600027} and Nb =
{2046915, 2046917, 2046919}. Such integers are too large to

be chosen for creating a “practical” duty cycle anyway. For

example, an n value larger than 1600023 would imply a duty

cycle δa smaller than 0.00000187496. In practical applications,

however, duty cycles are much greater than 0.00000187496.

Therefore, any chosen sets Na and Nb based on duty cycles

would satisfy the co-prime pair property. By Theorem 4, Todis

guarantees neighbor discovery with a delay bounded by

min
gcd(n+i,m+j)=1,i,j=−2,0,2

{(n+ i) · (m+ j)}.

A node a that has a desired duty cycle of δ may therefore

choose an odd integer n such that

3(n2 − n− 1)

n(n2 − 4)
≈

3

n
= δ̂

is as close to δ as possible. We call n the parameter of node

a.

Under Todis, its wake-up schedule is

sta =

{

1 t is divisible by either n− 2, n, or n+ 2

0 otherwise
,

Fig. 4: The first 71 time slots under Todis when n = 15 (i.e.,

the node chooses 13, 15 and 17). The node wakes up in slots

0, 13, 15, 17, 26, 30, 34, 39, 45, 51, 52, 60, 68, . . ..

with a period length of (n− 2)n(n+ 2) and a duty cycle of

1

n− 2
+

1

n
+

1

n+ 2
−

1

(n− 2)n
−

1

n(n+ 2)
−

1

(n− 2)(n+ 2)

+
1

(n− 2)n(n+ 2)
=

3(n2 − n− 1)

n(n2 − 4)
.

Figure 4 shows the first 71 time slots under the Todis

schedule when n = 15 (i.e., the node chooses 13, 15 and

17). Each grid in the figure represents a time slot, and the

integer inside a grid denotes its slot index, e.g., the grid with

0 inside denotes the 0th time slot in the schedule (note that a

schedule starts from the 0th time slot). The gray slots represent

the active slots where the node wakes up. In this example, the

duty cycle is
3·(52−5−1)
5·(52−4) ≈ 18.9%.

B. Analysis of Duty Cycle Granularity

Now we discuss the granularity of Todis in matching any

desired duty cycle in practical applications. Suppose node a’s

desired duty cycle is δa, the relative error ǫ(δa) between δa
and its approximation δ̂a is defined by

ǫ(δa) =

∣

∣

∣
δ̂a − δa

∣

∣

∣

δa
. (12)

We want to mathematically estimate the upper bound of ǫ
given δa, which we denote as ǫ̂(δa).

In Todis, node a needs to choose an odd integer na such

that
3(n2

a−na−1)
na(n2

a−4) lies closest to δa, i.e.,

na = arg min
n odd

|
3(n2 − n− 1)

n(n2 − 4)
− δa|.

Thus, the best approximation of the desired duty cycle δa is

δ̂a =
3(n2

a − na − 1)

na(n2
a − 4)

≡ min
n odd

|
3(n2 − n− 1)

n(n2 − 4)
− δa|.

Let f(2k− 1) and f(2k+1) be two consecutive supported

duty cycles, where f(n) = 3(n2−n−1)
n(n2−4) . Relative error ǫ reaches

a local maximum at δa = f(2k−1)+f(2k+1)
2 . Thus we obtain a

quartic equation with respect to k

16δak
4 − 24k3 + (12− 40δa)k

2 + 36k + 9δa − 9 = 0. (13)



By Eq. (13), we can obtain a solution k = k(δa) in complex

radicals (the other three solutions are discarded). Then we have

ǫ(δa) ≤ ǫ̂(δa) ,
f(2k(δa)− 1)− δa

δa
,

where ǫ̂(δa) is also a complex expression in radicals with

respect to δa.

Note that ǫ(δa) = ǫ̂(δa) iff δa = 3(n2−n−1)
n(n2−4) for some odd

integer n. We illustrate ǫ̂(δa) in Figures 5 and 6 (see the

“Estimation” lines), and we can observe that ǫ̂(δa) is a very

tight upper bound for ǫ(δa).
The upper bound function ǫ̂(δa) is an increasing function

in [0, 1). In practical applications, δa is smaller than 20%,

and thus ǫ is upper bounded by 6.71%, which is a very small

relative error. Moreover, ǫ drops below 3.34% when δa ≤
10%. Asymptotically,

ǫ̂(δa) ≃
2δa

√

9 + 4δ2a + 3
≃

1

3
δa

linearly approaches 0 as δa goes to 0. This property implies

that the error decreases with the decline of the desired duty

cycle.

VI. PERFORMANCE EVALUATION

We compare Hedis and Todis against state-of-the-art neigh-

bor discovery protocols of both the quorum based and the co-

primality based varieties. These protocols include Disco [4]

(co-primality based), Searchlight [2] (quorum based), and

U-Connect [8] (a combination of both). We evaluate the

performances of these protocols using two metrics, namely

the discovery latency and the duty cycle granularity.

• In Disco, each node chooses a pair of primes p1 and p2
to support duty cycles of the form 1

p1

+ 1
p2

, and the worst-

case discovery latency is min{p1p3, p1p4, p2p3, p2p4}.

• In U-Connect, each node wakes up 1 time slot every p
time slots and wakes up p+1

2 time slots every p2 time

slots. Therefore U-Connect supports duty cycles of the

form 3p+1
2p2 , and has the worst-case discovery latency of

p1p2 if one node uses prime p1 while another uses p2. The

dependence of Disco and U-Connect upon prime numbers

greatly restricts their support of choices of duty cycle

varieties.

• Searchlight requires that a node’s parameter n1 be a

multiple or factor of its neighboring node’s parameter n2

to guarantee neighbor discovery. Therefore, in a network

that implements Searchlight, the number that each node

chooses must be a power-multiple of the smallest chosen

number (i.e., 2, 4, 8, 16, or 3, 9, 27, 81, etc.), guaranteeing

that any two nodes’ numbers are multiples of each other.

As a result, Searchlight only supports duty cycles of the

form 2
ti , where t is an integer (i.e., the aforementioned

smallest chosen number) and i = 0, 1, 2, 3, . . .

Table I gives an overall theoretical comparison among these

protocols. As the table shows, while the difference in discovery

latency exists among these protocols, all of them perform on

the order of the multiple of the principle parameters in the two

participating nodes.

TABLE I: Comparison of Hedis and Todis with existing

neighbor discovery protocols.

Protocol Parameter Average Supported
name restriction dis. delay duty cycles

Disco
prime p1, p2 O(min{p1p3, 1

p1
+ 1

p2p3, p4 p1p4, p2p3, p2p4})

U-Connect
prime

O(p1p2)
3p1+1

2p2
1p1 , p2

Searchlight
power-multiple

O(t1t2)
2
ti
1of t1 , t2

Hedis
same parity

O(nm) 2
nn, m

Todis odd n,m O(nm)
3(n2

−n−1)

n(n2
−4)

≈ 3
n

• Discovery latencies may be similar among the different

protocols, because two nodes may choose similar param-

eters so as to match the desired duty cycle.

• In contrast, the metric of duty cycle granularity presents

a different story. While all the parameters used in the

protocols all have special restrictions due to protocol

design, it is obvious that those for Hedis and Todis are the

least stringent. For example, fewer than 2% of integers

under 1000 are prime, while half of them are odd, giving

Todis a much larger pool of numbers to choose from for

its parameters as compared to Disco and U-Connect.

We confirm these theoretical results using simulations. We

measure the relative errors each of the aforementioned proto-

cols yields at differing duty cycles, as well as their discovery

latencies in node pairs operating at various duty cycles.

A. Duty Cycle Granularity

The first set of simulations comparatively studies the sup-

ported duty cycles. We study two groups of duty cycles:

1) Small duty cycles 1 ≤ 1/δ ≤ 100, i.e., δ =
1, 1

2 ,
1
3 ,

1
4 , . . . ,

1
100 ;

2) Equispaced large duty cycles 0 ≤ δ ≤ 1, i.e., δ =
0%, 1%, 2%, 3%, 4%, . . . , 100%.

We use the metric called the relative error (defined in Eq. 12)

to quantify the capability of supporting each studied duty

cycle, which is denoted as

ǫ , |δ′ − δ|/δ,

where δ′ is the closest duty cycle that is supported by each

simulated protocol, w.r.t. δ. Note that a smaller ǫ implies that

the protocol provides more choices for energy conservation

with a finer granularity of duty cycle control. For Searchlight,

we let the smallest duty cycle unit be 1/2 to allow the finest

duty cycle granularity.

Figure 5 illustrates the results for small duty cycles, while

Figure 6 shows those of large duty cycles. These results

provide us the following insights:

• Searchlight is inferior to the other protocols in supporting

various duty cycles because it requires the duty cycle to

be 2
ti , where t is a fixed integer and i = 1, 2, 3, . . .. In this

simulation, we use t = 2 to give Searchlight support for

the duty cycles 1, 1
2 ,

1
4 ,

1
8 , . . .. The relative error increases
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bers in the parentheses indicate the

parameters of each corresponding pro-

tocol.

significantly as the desired duty cycle deviates away from

the supported duty cycles (e.g., in Figure 6, it has a peak

at 37.5% = 1/2+1/4
2 , and 1/2 and 1/4 are supported duty

cycles).

• The schedules in Disco and U-Connect are generated

using prime numbers, which have a denser distribution

than power-multiples. Thus, Disco and U-Connect per-

form better than Searchlight.

• Both Hedis and Todis greatly outperform all the other

protocols, having very small relative errors. In fact, for

small duty cycles, the relative errors from Hedis is

nearly constantly zero (see Figure 5). On the other hand,

although Todis also performs well, its error rate obviously

increases much faster than Hedis as the duty cycle δ
increases.

• The theoretical “Estimation" lines for Todis (see Figures 5

and 6) holds up well in that it follows the same pattern as

Todis’ actual error rates. This confirms our prior analysis

in section V of Todis’ duty cycle granularity, where we

estimated the upper bound relative error for Todis.

B. Discovery Latency

In this set of simulations, we study the discovery laten-

cies of these protocols. For each simulation, we take 1000

independent pairs of nodes and assign various duty cycles.

In two instances, we compare the protocols’ performance in

heterogeneous discovery scenarios. We assign duty cycles of

1% and 5% to each respective node in the node pair in the

first instance (see Figure 7), and 1% and 10% in the second

instance (see Figure 8). We also compare the performance of

the protocols in two homogeneous discovery scenarios, with

each node in the node pair operating at the same duty cycles

of 5% in the first scenario (see Figure 9) and 1% in the second

one (see Figure 10).

Heterogeneous vs. homogeneous duty cycles. From these

four cumulative distribution function graphs (CDFs), we see

that overall, all of the protocols have comparative discovery

latencies, with the odd exception of Searchlight in Figure 7.

Nonetheless, it must be noted that all 5 protocols presented

were eventually successful in neighbor discovery for 100% of

the pairs tested. These CDFs also show that Hedis is one of

the few protocols that consistently perform above average in

both the heterogenous and homogeneous neighbor discovery

cases. For example, Figures 9 and 10 indicate that Searchlight

is the clear winner for discovery latency in the homogeneous

case, but it does poorly in the heterogeneous cases, as seen in

Figures 7 and 8.

In addition, we see that for up to 90% of the CDF, Hedis

and Todis are both near top performers, but the protocol with

one of the smallest latencies in reaching 100% of the CDF

in every case is U-Connect. We attribute this to the fact that

U-Connect uses smaller values as its parameters, thus having

a smaller upper bound in the worst case.

Similarly, we attribute Todis’ consistent long tail in each

CDF scenario to its larger parameters. Therefore, although it

can quickly allow nodes to discover each other in most cases,

seen in its quickly reaching 90% in the CDFs, it has the longest

latency in the worst-case scenarios.

Hedis vs. Todis. These various simulations show that Hedis

and Todis optimize the duty cycle granularity in both the

quorum based and the co-primality based neighbor discovery

approaches, with Hedis having a finer granularity than Todis.

Additionally, both protocols perform reasonably well in terms

of discovery latency, with Todis having a larger worst case

latency bound due to its larger parameters.

VII. CONCLUSION

In this paper, we explored the current two main approaches

of designing an asynchronous heterogeneous neighbor discov-

ery protocol with guaranteed latency upper bounds—the quo-

rum based and the co-primality based approaches. Using these

two approaches we designed the Hedis and Todis neighbor

discovery protocols, emphasizing on duty cycle granularity

optimization for both. Hedis, as a quorum based protocol,

forms a (n− 1)×n matrix of time slots and uses the anchor-

probing slot method to ensure neighbor discovery. Todis, as

a co-primality based protocol, uses sets of three consecutive

odd integers to ensure co-primality and thus ensures neighbor
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discovery due to CRT. In the design of both protocols we

proved their capability in ensuring acceptable upper bounds

in discovery latency. Through analytical comparisons as well

as simulations, we confirmed the optimality of Hedis and Todis

in duty cycle granularity among existing protocols. Hedis is

able to support duty cycles in the form of 2
n , while Todis can

support duty cycles roughly in the form of 3
n , allowing both

protocols to effectively cover any practical duty cycle and thus

prolong battery longevity.
We also showed in both our analysis and simulations that

Hedis as a quorum based protocol is better than Todis as a

co-primality based protocol in both duty cycle granularity and

discovery latency, although differences by the latter metric are

minor. By being able to support duty cycles at such a fine gran-

ularity while still guaranteeing an acceptable discovery latency

bound, Hedis truly paves the way for neighbor discovery in

wireless sensor networks.
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