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Abstract—Data harvesting using mobile data ferries has re-
cently emerged as a promising alternative to the traditional
multi-hop transmission paradigm. The use of data ferries can
significantly reduce energy consumption at sensor nodes and
increase network lifetime. However, it usually incurs longer data
delivery latency as the data ferry needs to travel through the
network to collect data, during which some delay-sensitive data
may become obsolete. Therefore, optimizing the trajectory of the
data ferry with data delivery latency bound is important for this
approach to be effective in practice. To address this problem,
we formally define the time-constrained data harvesting problem,
which seeks an optimal data harvesting path in a network to
collect as much data as possible within a time duration. We
first characterise the performance bound given by the optimal
data harvesting algorithm and show that the optimal algorithm
significantly outperforms the random algorithm, especially when
network scales. Motivated by the theoretical analysis and proving
the NP-completeness of the time-constrained data harvesting
problem, we then devise polynomial-time approximation schemes
(PTAS) and mathematically prove the output being a constant-
factor approximation of the optimal solution.

I. INTRODUCTION

In wireless sensor networks with limited energy supply,
a critical concern is how the sensing data from individual
sensors can be collected to the sink with minimum energy
consumption. The traditional multi-hop forwarding paradigm
suffers from high energy consumption of forwarding nodes,
especially those near the sink. As an efficient alternative, data
harvesting using mobile devices, also termed as data mules [1]
or data ferries [2], has been proposed and implemented in
several applications such as underwater environmental moni-
toring [3]. The core idea can be summarised as follows: a data
ferry (e.g., robot, vehicle) travels across the sensor field and
harvests data from sensor nodes while they are within each
other’s communication range, and later transfers the harvested
data to the sink.

The use of data ferries in data harvesting can significantly
reduce energy consumption at sensor nodes and thus increase
network lifetime. However, as the data ferry can harvest
data only when it travels close to the target node, it usually
incurs longer data delivery latency, during which some delay-
sensitive data may become obsolete. Therefore, optimizing the
trajectory of the data ferry to limit or minimise data delivery
latency is a primary concern for this approach to be effective
in practice.

In this paper, we consider the trajectory optimisation prob-
lem in data collection applications for wireless sensor net-

works. This problem seeks an optimal data harvesting path
to collect as much data as possible within a time duration.
We call the problem time-constrained data harvesting prob-
lem. Specifically, our problem formulates the situation when
delay-sensitive data are reported to the sink within certain
amount of time before they become obsolete. We conducted
theoretical analysis and designed efficient algorithm for the
time-constrained data harvesting problem. We have proved that
the time-constrained data harvesting problem is NP-complete.
To address this problem, we have designed a polynomial-
time approximation schemes (PTAS). That is, our devised data
harvesting algorithm gives a constant-factor approximation of
the optimal solution of the time-constrained data harvesting
problem in polynomial time.

The contributions presented in this paper are naturally
articulated as follows:

• We formulate the time-constrained data harvesting prob-
lem. We analytically characterise the performance bound
of the optimal data harvesting algorithm. Our analysis
demonstrates that in a network where nodes are randomly
deployed with fixed density and the data ferry moves
at constant speed, the quantity of harvested data does
not scale with the number of nodes in the network
under the random data harvesting algorithm, while this
quantity scales logarithmically for the optimal algorithm
design, indicating a significant performance gain when
the network scales. Even though the trend is logarithmic,
the gap can still be significant in large networks. In other
words, a data harvesting algorithm not carefully chosen,
such as randomly choosing a data harvesting path, can
be very inefficient.

• Motivated by the theoretical analysis, we focus on the
design of PTAS finding a constant-factor approximation
of the optimal solution. We first give a formal proof on the
NP-completeness of the time-constrained data harvesting
problem by relating it to the well-known travel salesman
problem (TSP) [4], for which there is no polynomial-
time algorithm with an approximation factor better than
220
219 [5].

• Given the complexity of the problem, we first study a
specific scenario with non-overlapping neighborhoods,
i.e., the network is sufficiently sparse such that the data
ferry cannot harvest data from multiple sensors without
changing its location. We then extend the analysis to the
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generic case with overlapping neighborhoods, i.e., the
network is sufficiently dense such that the data ferry can
harvesting data from multiple sensors without changing
location. For both cases, we develop a methodology that
relates the performance of topological paths to geomet-
rical paths to design PTAS and mathematically prove
the output being a constant-factor approximation of the
optimal solution.

Despite our focus on the data harvesting problem, the
generic problem formulation of our work makes the analysis
methodology and obtained results broadly applicable to several
engineering domains ranging from mobile charger schedul-
ing, target monitoring to security patrolling, with a common
generic objective of designing an optimal path such that a
time-constraint utility function depending on the number of
encountered targets is maximised.

The rest of the paper is organized as follows. We formulate
the time-constraint data harvesting problem in Sec. III. In
Sec. IV, we derive performance of the optimal data harvesting
algorithm and the random algorithm, laying the theoretical
foundation of the problem. In Sec. V, we first establish the NP-
completeness of the time-constraint data harvesting problem,
and then design PTAS for the problem. Sec. VI presents
simulation analysis of the proposed PTAS. Sec. VII the paper.

II. RELATED WORK

The problem we address and the methodology we employ
are related to the following research fields.

A. Data ferry Assisted Data Harvesting

There is a large body of existing work on data ferry
assisted data harvesting [6], [7], [8], [9], [10] (cf. [11] for
a comprehensive survey). The problem we address is the
optimisation of data harvesting trajectory of the data ferry,
which is a hard problem in general, since we are constrained in
both space (communication range between the data ferry and
sensors) and time domain (limiting data harvesting latency).
Existing solutions contour this difficulty by either using simple
mobility and communication models [6], [7], [8], [9], [10] or
assuming that the trajectory is already given [6].

The authors in [12], [2] address a similar problem of
designing data harvesting path for data ferries to minimise the
data harvesting latency under the constraint that all sensors are
visited. The algorithms they propose are based on the well-
known travel salesman problem (TSP) [4] and its variant TSP
with neighbors (TSPN) [13]. However, our problem is different
because TSP requires the path to pass all sensors while we
seek the most profitable path to harvest maximum data given
the time constraint. Our problem formulation complements
the TSP formulation and is particularly pertinent when the
network is large and it is impossible to the data ferry to traverse
every node. Technically, as detailed in the main part of the
paper, our problem requires an original study that cannot draw
from existing results.

B. Mobile Charger Scheduling

Another similar problem is the mobile agent scheduling
problem where a mobile charger needs to travel within the
charging range of each sensor node to recharge them under the
constraint of the battery life of sensor nodes, which is similar
to the time constraint in our data harvesting problem. However,
they rely on additional assumptions or simplifications to make
the problem tractable. For example, the authors of [14] find
out a near-optimum traveling path to recharge all sensor nodes
using linear programming, assuming the traveling speed being
infinite, and then remove this assumption and derive a bound of
performance degradation. However, their algorithm implicitly
assumes the travelling is fast enough. In our work, we remove
these assumptions and analytically establish the performance
properties of the proposed data harvesting algorithm.

III. TIME-CONSTRAINED DATA HARVESTING PROBLEM

We consider a sensor network composed of n nodes, de-
noted by the set V = {v1, v2, · · · , vn}, randomly distributed
in an Euclidean square [0, D]2. We are interested in the
asymptotic scenario where both n and D are large with the
node density λ = n

D2 being a constant. In this case, the
considered network converges in distribution to an infinite
random geometric graph induced by a homogeneous Poisson
point process with density λ [15]. Each node vi has unit data
message1 to be harvested by a data ferry, denoted by s, moving
at a constant speed. To harvest data generated by vi, s should
move into the communication range of vi, which is modeled
as a disk Di centered at vi with radius r. We call Di the
neighborhood of node vi. By slightly abusing notations, we
also use Di to denote the border of the disk. For a path P ∈ P
where P denotes the possible path set, we denote d(P ) the
Euclidean length of P . We say that a path P covers a point M
if there exists a point on P within distance r to M . In other
words, if s moves along P , it can harvest the data generated
by all the nodes that it covers. Denote Λ(P ) the number of
nodes P covers.

We consider the data harvesting problem faced by s in
which it seeks an optimal data harvesting path to harvest as
much data as possible within a time duration T . The problem
we address models the situation where delay-sensitive data
should be reported to the sink within certain time in order to
be further analysed. To make the notation concise, we let s
move at unit speed and thus T is the maximum path length
s can traverse before deposing the harvested data. The results
obtained can be easily scaled to arbitrary speed by scaling the
time duration T . Throughout our analysis, we are interested
in the non-trivial case where r � T and 2Tr � D2, i.e., the
maximum path length is much larger than the communication
range, while the area covered by a path of length T is much
smaller than the network area. The time-constrained data
harvesting problem is formalized as follows.

Problem 1 (Time-constrained Data Harvesting Problem). The
time-constrained data harvesting problem is as follows:

1The case where nodes generate multiple data messages can be tackled by
devising the node generating m unit data messages to m virtual nodes at the
same position, each generating unit data message.
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maximize Λ(P ),
subject to d(P ) ≤ T .

That is, s seeks the optimal path P ∗ ∈ P of Euclidean
length d(P ∗) ≤ T , along which it can harvest the maximum
quantity of data. When there are more than one maximum, the
optimal path P ∗ is the one with minimum Euclidean length.

We conclude this section by stating the following properties
of P ∗ that will be useful in subsequent proofs and analysis.

Lemma 1 (Properties of P ∗). Let P ∗(τ) denote the optimal
solution of Problem 1 with parameter T = τ , the following
properties hold:
• Monotonicity: Λ(P ∗(τ1)) ≤ Λ(P ∗(τ2)), ∀τ1 ≤ τ2;

• Scalability: Λ(P ∗(κτ)) ≥ κΛ(P ∗(τ))

1 + κ
, ∀τ, ∀κ ∈ (0, 1).

Proof: The monotonicity follows straightforwardly from the
definition of P ∗. We now prove the scalability of P ∗. Let
m denote the integer such that m < 1

κ ≤ m + 1. Divide
P ∗(τ) into m+ 1 non-overlapping parts of length τ

m+1 each,
it follows from the pigeonhole principle that there exists at
least one part, denoted as p, which covers at least Λ(P∗(τ))

m+1

nodes. It follows from m < 1
k ≤ m+ 1 and the monotonicity

property that

Λ(P ∗(κτ)) ≥ Λ

(
P ∗
(

τ

m+ 1

))
≥ Λ(p)

≥ Λ(P ∗(τ))

m+ 1
≥ κΛ(P ∗(τ))

1 + κ
,

which completes the proof.
The time-constrained data harvesting problem has a number

of important variants. In some applications, we require that the
data harvesting path to be a cycle or have predefined starting
and end points; it is sometimes required to differentiate sensor
nodes by giving weights to them (e.g., giving higher weights
to sensors at key positions) and seek the path maximising the
weighted sum of harvested data; furthermore, we may dispose
multiple data ferries to for data harvesting. Many of these
variants can be addressed using the framework established in
this paper to design and optimise data harvesting path.

IV. ANALYSIS OF OPTIMAL AND RANDOM DATA
HARVESTING ALGORITHMS

Aiming at laying theoretical foundation of the time-
constrained data harvesting problem, this section studies the
performance of the optimal data harvesting algorithm and a
natural algorithm where the data harvesting path is randomly
chosen.

A. Random Data Harvesting Algorithm

A simple data harvesting algorithm is to randomly choose
a data harvesting path of length T . We call this algorithm
random data harvesting algorithm, termed concisely as ran-
dom algorithm. Our motivation of starting with the random
algorithm is two-fold:
• It is a natural strategy and very easy to implement;
• It provides a reference for performance comparison for

more sophisticated algorithms as well as the optimal one.

In our study, we are particularly interested in the following
questions:

• What is the performance of the random algorithm?
• What is the performance of the optimal data harvesting

algorithm?
• What is the performance degradation between the random

and the optimal algorithms?

To answer the above questions, we consider a sensor net-
work as a random geometric graph depicted in Sec. III where n
nodes are placed uniformly at random in the area [0, D]2. Note
that this is a natural modeling choice as in sensor networks,
especially large ones, we usually do not have control over
the position of nodes. Theorem 1 establishes the performance
of the random algorithm in terms of the average quantity of
harvested data and its sharpness2.

Theorem 1 (Performance of Random Data Harvesting Algo-
rithm). Consider the random data harvesting algorithm where
s randomly chooses a path P of length T , it holds that

• E[Λ(P )] ≤ O(λrT );
• Pr {Λ(P ) ≥ nεE[Λ(P )]} → 0, when n → ∞, ∀ε > 0,

that is, Pr {Λ(P ) = Θ(nε)} → 0.

Proof: Recall the notation that a point M is covered by a
path P if the minimum distance between any point on P and
M is at most r, it is straightforward to see that the maximum
Euclidean area covered by a path of length T is A = 2rT +
πr2. Recall that r � T , it then holds that

E[Λ(P )] ≤ λA = λ(2rT + πr2) =⇒ E[Λ(P )] ≤ O(λrT ).

To prove the second part of the theorem, we use the
following Markov’s inequality [16].

Lemma 2 (Markov’s Inequality). For any non-negative ran-
dom variable X and any a > 0, it holds that

Pr{X ≥ a} ≤ E[X]

a
.

Regarding Λ(P ) as a random variable and letting a =
nεE[Λ(P )], by applying Markov’s inequality, we have

Pr {Λ(P ) ≥ nεE[Λ(P )]} ≤ 1

nε
→ 0, when n→∞,

which quantifies the sharpness of Λ(P ).
With Theorem 1, we are able to answer the first question

posed in the beginning of this subsection:

• In average, the expected harvested data for the random
algorithm does not scale with respect to either the popu-
lation size n of the network or its geometrical size D;

• With high probability, we cannot expect better outcome
than Θ(λrT ).

2Throughout the paper, we use the following asymptotic notations:

• g1(x) = O(g2(x)) ⇔ ∃c > 0, ∃x0, ∀x > x0, |g1(x)| ≤ c|g2(x)|;
• g1(x) = Ω(g2(x)) ⇔ ∃c > 0, ∃x0, ∀x > x0, |g2(x)| ≤ c|g1(x)|;
• g1(x) = Θ(g2(x)) ⇔ ∃0 < c1 ≤ c2, ∃x0, ∀x > x0, c1g2(x) ≤

g1(x) ≤ c2g2(x).
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B. Optimal Data Harvesting Algorithm

Having derived the performance of the random algorithm,
we proceed to investigate the performance of the optimal data
harvesting algorithm, as stated in Theorem 2.

Theorem 2 (Performance of Optimum Algorithm). Let P ∗

denote the path of the optimal data harvesting algorithm, it
holds that

• E[Λ(P ∗)] = Θ

(
log n

log log n

)
;

• Pr

{
Λ(P ∗) = Θ

(
log n

log log n

)}
→ 1, when n→∞.

Proof: We prove the theorem in two steps.
Step 1: lower-bound of Λ(P ∗): we show that

Pr

{
Λ(P ∗) = Ω

(
log n

log logn

)}
≥ 1− 1

n
→ 1, when n→∞.

Our proof uses the well-known results in the bins and balls
problem stated in the following lemma for completeness.

Lemma 3 (Maximum Load in Bins and Balls Problem [17]).
When throwing m balls into Θ(m) bins, the max-loaded bin
has Θ

(
logm

log logm

)
balls with probability at least 1− 1

m when
m→∞.

We first construct “bins” in the following claim.

Claim 1. A path of length T can cover all nodes in a square
having sides of length

√
2rT .

Proof: We prove the claim by constructing a zigzag path P
covering all nodes in a square [0, b]2:

• Start from (0, r) and move straightly towards (b, r);
• Move straightly from (b, r) to (b, 3r);
• Move straightly from (b, 3r) to (0, 3r);
• Repeat the above process until covering all nodes in

[0, b]2.

The total length of the zigzag path P can be computed after
some elementary geometrical operations as

d(P ) = b ·
⌈
b

2r

⌉
+ 2r ·

⌊
b

2r

⌋
.

When T � r, it can be calculated that with d(P ) = T , P can
cover all nodes in a square with sides of length b =

√
2rT .

Armed with Claim 1, we now divide the network area
[0, D]2 into D2

2rT non-overlapping bins, each corresponding to a
square of sides of length

√
2rT . Apply Lemma 3 by regarding

nodes as balls, the path covering all nodes in the max-loaded
bin covers at least Θ

(
logn

log logn

)
nodes with probability 1− 1

n .
Hence for the optimal path P ∗, it holds that

Pr

{
Λ(P ∗) = Ω

(
log n

log logn

)}
≥ 1− 1

n
→ 1, when n→∞,

which complete Step 1 of the proof.
Step 2: upper-bound of Λ(P ∗): we show that

Pr

{
Λ(P ∗) = O

(
log n

log log n

)}
→ 1, when n→∞. We first

prove the following claim.

Claim 2. Divide the area of [0, D]2 into B = D2

4r2 non-
overlapping small squares3 of sides of length 2r. It holds that
a path of length T covers at most Θ

(
T
2r

)
small squares.

Proof: The proof is straightforward by noticing that any
curve of length 2r covers at most 4 small squares.

Let k denote the number of non-overlapping small squares
covered by the optimal data harvesting path P ∗, it follows
from Claim 2 that k = O

(
T
2r

)
. Let b denote the number of

nodes in a small square, it follows from Lemma 3 that

Pr

{
b = O

(
log n

log logn

)}
≥

Pr

{
b = Θ

(
log n

log log n

)}
≥ 1− 1

n
.

When n→∞, we have k � n; the necessary and sufficient
condition of Λ(P ∗) = O

(
logn

log logn

)
is that all small squares

covered by P ∗ contains O
(

logn
log logn

)
nodes; hence we have

Pr

{
Λ(P ∗) = O

(
log n

log log n

)}
=(

Pr

{
b = O

(
log n

log logn

)})k
≥
(

1− 1

n

)Θ( T
2r )
→ 1,

following T � n. This completes the second step of the proof.
Combining the two steps proves the sharpness result:

Pr

{
Λ(P ∗) = Θ

(
log n

log log n

)}
→ 1, when n→∞.

To prove E[Λ(P ∗)] = Θ

(
log n

log log n

)
, we proceed as

follows:
• Apply the result of Step 1 and notice the fact that

Λ(P ∗) ≥ 0, we have E[Λ(P ∗)] = Ω
(

logn
log logn

)
;

• Apply the result of Step 2 and notice the fact that
Λ(P ∗) ≤ n, we have

E[Λ(P ∗)] ≤ Θ

(
log n

log log n

)(
1− 1

n

)Θ( T
2r )

+

n

[
1−

(
1− 1

n

)Θ( T
2r )
]
≤ Θ

(
log n

log log n

)
, n→∞.

Combining above analysis leads to E[Λ(P ∗)] =

Θ

(
log n

log log n

)
.

C. Discussion

Comparing the performance of optimal and random data
harvesting algorithms, we can observe that when the network
scales, especially when n→∞, the optimal algorithm signif-
icantly outperforms the random one. Even though the trend is
logarithmic not polynomial or exponential, the gap can still be
significant in large networks. In other words, a data harvesting
algorithm not carefully chosen, such as randomly choosing a
harvesting path, can be very inefficient. The motivates our
second part of work on the following fundamental question:

3To make the analysis concise and clear, we treat D
2r

as integer. The analysis
can be easily extended to cover the case where D

2r
is not integer.
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• How to design efficient data harvesting algorithms that
approaches the performance of the optimal algorithm
(i.e., efficient algorithms solving Problem 1)? Mathemat-
ically, by efficient algorithms we mean polynomial-time
approximation schemes (PTAS).

Remark. Theorem 2 establishes the performance of the opti-
mal algorithm. However, it does not specify how the optimal
path can be constructed given a network instance. Choosing
the path as indicated in the first step in the proof of Theorem 2
only performs well in the average sense when a large number
of instances are executed, but it cannot give the optimal path
for a given network instance. In fact, as we will show in the
next section by Theorem 3, the problem of constructing the
optimal path as formulated in Problem 1 is NP-complete.

V. POLYNOMIAL-TIME APPROXIMATION SCHEME DESIGN
FOR TIME-CONSTRAINED DATA HARVESTING PROBLEM

In this section, we design polynomial-time approximation
data harvesting algorithms that approaches the performance of
the optimal algorithm. To start, we first show that Problem 1
is NP-complete.

A. NP-completeness of Problem 1

Theorem 3 (NP-completeness of Time-constrained Data Har-
vesting Problem). Problem 1 is NP-complete.

Proof: Consider the following problem which has been
proved to be NP-hard in [5].

Problem 2. Find a tour in the travelling salesman problem
(TSP) with an approximation factor better than 220

219 .

To prove the NP-hardness of Problem 1, we prove that
Problem 2 can be reduced to Problem 1 in polynomial time,
i.e., Problem 2≤PProblem 1.

To that end, given any graph Gt , (Vt, Et) on which we
need to solve the TSP, we instantiate Problem 1 by choosing r
such that r < mine∈Et d(e), for example, r → 0. We consider
the non-trivial case where |Vt| ≥ 2. Before showing how to
reduce Problem 2 to Problem 1 in polynomial time, we prove
the following property of Problem 1.

Lemma 4. Denote P ∗(τ) the solution of Problem 1 on Gt with
parameter T = τ and r < min

e∈Et
d(e); let tmin , min

e∈Et
d(e) and

tmax ,
∑
e∈Et

d(e), it holds that

Λ(P ∗(tmin)) = 2 and Λ(P ∗(1.5tmax)) = |Vt|.

Proof: For the first part, it is easy to see that Λ(P ∗(tmin)) =
2 when r < mine∈Et d(e). To show Λ(P ∗(1.5tmax)) ≥ |Vt|, it
suffices to notice that a spanning tree of Gt can be converted
into a path using the famous 1.5-approximation algorithm for
the TSP in [18]. Since the length of any spanning tree of Gt
is upper bounded by tmax, we are sure to be able to find a
path passing all nodes with the maximum length 1.5tmax. In
other words, Λ(P ∗(1.5tmax)) = |Vt|.

Now we construct the following algorithm. The algorithm
iterates on a variable t from t = tmin + ε to 1.5tmax by

increasing t by ε from one iteration to the next, where ε is a
small constant chosen such that ε ≤ tmin

220 . In each iteration i, it
solves Problem 1 with the constraint d(P ) ≤ ti , tmin + i · ε,
whose solution is denoted by Pi. The algorithm halts at the
first iteration i∗ where Λ(Pi∗) = |Vt| while Λ(Pi∗−1) = |Vt−
1| and outputs Pi∗ . It follows from Lemma 4 and Lemma 1
(Monotonicity) that ti∗ exists.

It then follows that Pi∗ is a TSP tour on Gt with an
approximation factor ti

ti−ε which is upper bounded by 220
219

as ti ≥ tmin + ε and ε ≤ tmin

220 . Hence P2 is a solution of
Problem 2.

The above analysis shows that Problem 2 can be reduced
to Problem 1 in polynomial time. It then follows from the
NP-hardness of Problem 2 that Problem 1 is NP-hard.

B. Polynomial-time Approximation Algorithm Design: Non-
overlapping Neighborhood Case

Given the complexity of the time-constrained data harvest-
ing problem, we first investigate a specific scenario where
the neighborhoods of any two nodes are non-overlapped (i.e.,
Di

⋂
Dj = ∅, ∀vi, vj ∈ V) and develop a PTAS for Problem 1.

We start by the following definition of topological path.

Definition 1 (Topological path). A path Pt is called a topo-
logical path in a graph if Pt is composed of uniquely the edges
in the graph.

Generically, we call a path geometrical path, denoted as Pg
for presentation clarity, to emphasize that Pg is not necessarily
a topological path as Pg may contain curves and may start
and end at any point. Of course, a topological path is also
a geometrical one, i.e., let Pg and Pt denote the sets of
geometrical and topological paths, it holds that Pc ⊂ Pg .

The key element towards designing a PTAS for Problem 1 is
to establish the relationship between geometrical and topologi-
cal paths in terms of path length and number of covered nodes,
the two metrics on which we are focused. This relationship is
established in two steps:
• Step 1: We show that any geometrical path Pg can be

approximated by a topological path Pt such that
d(Pt) = O(d(Pg)), and Λ(Pt) = Λ(Pg).

• Step 2: We show that any topological path Pt can be ap-
proximated by a geometrical path Pg via a geometrisation
procedure that we develop such that

d(Pg) = O(d(Pt)), and Λ(Pg) ≥ Λ(Pt).

We start by the first step to approximate a geometrical path
Pg by a topological path Pt. By slightly abusing the notation,
for a given path P , we reuse Λ(P ) to denote an ordered set
of nodes covered by P 4. Using this notation, a topological
path Pt can be uniquely noted by Λ(Pt). Given an ordered
set of nodes Vg = {v1, v2, · · · , v|Vg|}, for any geometrical
path Pg with Λ(Pg) = Vg , we construct a topological path
Pt = Vg . It holds that d(Pt) = O(d(Pg)) and Pt covers
all nodes in Vg . Let the geometrical path P ∗g denote the
geometrical path of minimum length among those covering
Vg , it holds that d(Pt) = Θ(d(P ∗g )). This approximation result

4We denote the end node with the smaller ID as the source node.
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is mathematically formalised in Lemma 5, whose proof is
detailed in the technical report [19].

Lemma 5. Given an ordered set of nodes Vg , ∀Pg , Λ(Pg) =
Vg , let Pt = Vg , it holds that d(Pt) = O(d(Pg)). Particularly,
let P ∗g = argmin

Λ(Pg)=Vg
d(Pg), it holds that d(Pt) = Θ(d(P ∗g )).

We then proceed to the second step to approximate a
topological path Pt by a geometrical path Pg by introducing
geometrisation, formally defined in the following.

Definition 2 (Geometrisation). Given a topological path Pt,
the geometrisation procedure finds a geometrical path Pg that
approximates Pt. By approximation we require that

d(Pt) = Θ(d(Pc)), and Λ(Pt) ≥ Λ(Pc).

Algo. 1 details the proposed geometrisation procedure,
whose core part is further illustrated in Fig. 1. It is straight-
forward to see that d(Pg) < d(Pt). One technical point
worth commenting is how to find Mi on Di such that
|Mi−1Mi| + |Mivi+1| is minimised (line 6). Mi can be
efficiently found by using the following technique: consider
the outside border of Di as a mirror; let a light beam be
emitted from Mi−1 and then be reflected by Di to reach vi+1;
it follows from the theory of optics that light always travels
using the shortest path; hence Mi corresponds to the reflection
point of the light beam on Di and can be found geometrically
by equalising the angle of incident and the angle of reflection.

Algorithm 1 Geometrisation
Input: Topological path Pt passing nodes in Vt
Output: Geometrised path Pg

1: Denote the intersection point of v1v2 and D1 by M1;
2: for i = 2 to |Vt| − 1 do
3: if Mi−1vi+1 covers Di then
4: Denote the first intersection point between Mi−1vi+1

and Di by Mi; // See Fig. 1 (left);
5: else
6: Find a point Mi on Di such that |Mi−1Mi| +

|Mivi+1| is minimised; // See Fig. 1 (right);
7: end if
8: end for
9: Denote the intersection point of M|Vt|−1v|Vt| and D|Vt|

by M|Vt|;
10: Return Pg = {M1M2, · · · ,M|Vt|−1M|Vt|};

vi−1

vi

vi+1Mi−1 Mi
vi−1

vi

vi+1Mi−1

Mi

Fig. 1. Illustration of the core part of Algo. 1.

It is worth mentioning that the for loop in Algo. 1 can
be repeated so as to further improve geometrisation effec-
tiveness (i.e., decrease d(Pg)). To make this clearer, let

P j−1
g = {M j−1

1 M j−1
2 , · · · ,M j−1

|Vt|−1M
j−1
|Vt| } denote the output

of Algo. 1 at iteration j − 1, for iteration j, it suffices to
set Pt = P j−1

g by letting vk = M j−1
k (2 ≤ k ≤ |Vt| − 1)

in the algorithm. We observe via simulation that that the
improvement is not significant or even negligible when Algo. 1
is executed more than a handful of times.

After establishing the relationship between geometrical and
topological paths, we are now ready to present the global
PTAS for Problem 1, as detailed in Algo. 2.

Algorithm 2 PTAS solving Problem 1: non-overlapping neigh-
borhood case
Input: Coordinates of nodes in V
Output: Π∗: a constant factor approximation of P ∗

1: Construct a complete graph G with node set V; set the
length of the edge between vi and vj to be vivj ;

2: For each node pair (vi, vj), find the topological path
Πt(i, j) passing the maximum number of nodes in V
whose geometrised path Πg(i, j) satisfies d(Πg(i, j)) ≤ T
using Algo. 1 and the algorithm of max-prize path in [20]
by setting the prize for each node to be 1;

3: Return Π∗ = argmax
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j));

The core idea of Algo. 2 is as follows: for each
node pair, we find the topological path Πt(i, j) passing
the maximum number of nodes in V whose geometrised
path Πg(i, j) satisfies d(Πg(i, j)) ≤ T ; we then return
Π∗ = argmax

Πg(i,j),∀vi,vj∈V
Λ(Πg(i, j)). The two building blocks

in Algo. 2 is the geometrisation algorithm (Algo. 1) and
the algorithm of max-prize path in [20]. Given a graph in
which each node has a certain amount of prize, the max-
prize algorithm finds in polynomial time a path collecting the
maximum quantity of prize whose length is bounded by a
constant, given as an input parameter. The following theorem
formally establishes the performance of Algo. 2.

Theorem 4 (Performance of Algo. 2). Algo. 2 returns Π∗

within polynomial time. It holds that Λ(Π∗) = Θ(Λ(P ∗)),
where P ∗ denotes the optimal data harvesting path under time
constraint T .

Proof: The polynomial-time complexity of Algo. 2 follows
from the polynomial-time complexity of Algo. 1 and the
algorithm of max-prize path.

The second part of the theorem Λ(Π∗) = Θ(Λ(P ∗)) can be
proved using Lemma 5 and Lemma 1. Specifically, it follows
from Lemma 5 that for any τ ≤ T , there exists a topological
path Pt such that

Λ(Pt) = Λ(P ∗(τ)), d(Pt) ≤ cτ,
where c ≥ 1 is a constant factor. Now let τ = T

c , apply
Lemma 1 by setting κ = 1

c , we have d(Pt) ≤ T and

Λ(Pt) = Λ(P ∗(τ)) ≥ Λ(P ∗(T ))

c+ 1
.

On the other hand, it follows from the geometrisation
procedure and Algo. 2 that

Λ(Π∗) = max
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j)) ≥ Λ(Pt) ≥
Λ(P ∗(T ))

c+ 1
.

The theorem is thus proved.
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C. Polynomial-time Approximation Algorithm Design: Over-
lapping Neighborhood Case

In this subsection, we extend our efforts to study the generic
case with overlapping neighborhoods.

We first construct a graph G′ whose node set is V and
there is an edge between vi and vj if vivj ≤ 2r. We then
construct a maximal independent set (MIS)5 of G′ using a
coloring algorithm similar as presented in [21], [12], detailed
in Algo. 3 for completeness.

Algorithm 3 MIS Construction of G′

Input: Graph G′

Output: MIS set U
1: Initialisation: Set U = ∅; Color all Di (vi ∈ V) white;
2: repeat
3: Color a white disk Di black and add vi into U ;
4: Color every white disk Dj gray if vj is vi’s neighbor;
5: until there is no white disk
6: Return U ;

We then define backbone topological paths, which can be
regarded as topological paths using nodes in the MIS U .

Definition 3 (Backbone Topological path). A path Pb is called
a backbone topological path, or backbone path for short,
in a graph if Pb is composed of uniquely the edges whose
endpoints are in the MIS of the graph except the source and
the destination nodes.

As in the case of non-overlapping neighborhood, we call a
path geometrical path, denoted as Pg , to emphasize that Pg
is not necessarily a backbone path. Of course, a backbone
path is also a topological path, and a geometrical one: i.e., let
Pg , Pt and Pb denote the sets of geometrical, topological and
backbone paths, it holds that Pb ⊂ Pt ⊂ Pg .

We apply the same analysis and design methodology in
the non-overlapping neighborhood case and adapt it in the
overlapping neighborhood case. A point M is said to be
touched by path P if the minimum distance between any point
of P and M is larger than r but smaller or equal to 2r. The key
element of designing a PTAS for Problem 1 with overlapping
neighborhoods is to establish the relationship among geomet-
rical, backbone, and geometrised backbone paths in terms
of path length and number of touched and covered nodes.
Specifically, we establish the relationship two steps:
• Step 1: We show that any geometrical path Pg can be

approximated by a backbone path Pb such that d(Pb) =
O(d(Pg)) and ∀vi covered by Pg , vi is either covered or
covered by Pb;

• Step 2: We show that any geometrical path Pg can be ap-
proximated by another geometrical path P ′g geometrised
from a backbone path Pb via a backbone geometrisation
procedure such that

d(P ′g) = O(d(Pg)), and Λ(P ′g) ≥ Λ(Pg).

5An independent set (IS) of an undirected graph is a subset U of nodes
such that no two nodes in U are neighbors. An IS is maximal if no node can
be added to U without violating IS. A maximal IS, or MIS, can be found in
polynomial-time. Note that a related concept, a maximum IS (called MaxIS),
is one IS of maximum cardinality. Finding MaxIS, however, is NP-complete.

We start with the first step by showing the following lemma.
The proof uses similar reasoning technique as the proof of
Lemma 5 and is detailed in the technical report [19].

Lemma 6. Given any geometrical path Pg , there exists a back-
bone path Pb such that d(Pb) = O(d(Pg)) and ∀vi covered
by Pg , vi is either covered or touched by Pb. Particularly, let
P ∗g = argmin

Λ(Pg)=Vg
d(Pg), it holds that d(Pb) = Θ(d(P ∗g )).

We then proceed to approximate a backbone path Pb by a
geometrical path Pg by introducing backbone geometrisation,
formally defined in the following.

Definition 4 (Backbone Geometrisation). Given a backbone
path Pb, the backbone geometrisation procedure finds a geo-
metrical path Pg that approximates Pb. By approximation we
require that d(Pb) = Θ(d(Pg)), and Λ(Pb) ≥ Λ(Pg).

In [12], the authors develop a polynomial-time backbone
geometrisation algorithm, which will be used in our design.

The following lemma approximates a geometrical path by
another geometrical path geometrised from a backbone path.

Lemma 7. Given any geometrical path Pg , there exists a path
P ′g geometrised from a backbone path Pb such that

d(P ′g) = O(d(Pg)), and Λ(P ′g) ≥ Λ(Pg).

Proof: The lemma follows straightforwardly from Lemma 6
and the backbone geometrisation algorithm.

After establishing the relationship among geometrical, back-
bone and geometrised backbone paths, we now present the
design of the global PTAS for Problem 1 for the overlapping
neighborhood case, as detailed in Algo. 4.

Algorithm 4 PTAS solving Problem 1: overlapping neighbor-
hood case
Input: Coordinates of nodes in V
Output: Π∗: a constant factor approximation of P ∗

1: Construct a graph G′ whose node set is V and there is an
edge between vi and vj if vivj ≤ 2r;

2: Run Algo. 3 on G′ to construct an MIS U ;
3: Construct a complete graph G with node set V; set the

length of the edge between vi and vj to be vivj ;
4: For each node pair (vi, vj), with the MIS U constructed

in 2, find the backbone path Πb(i, j) passing the maximum
number of nodes in V whose geometrised path Πg(i, j)
satisfies d(Πg(i, j)) ≤ T using the algorithm in [12] and
the algorithm of max-prize path in [20] by setting the
prize for each node i to be the number of nodes covered
or touched by Di;

5: Return Π∗ = argmax
Πg(i,j),∀vi,vj∈V

Λ(Πg(i, j));

The core idea of Algo. 4 is as follows: for each node
pair (vi, vj), we find the bcckbone path Πb(i, j) passing
the maximum number of nodes in V whose geometrised
path Πg(i, j) satisfies d(Πg(i, j)) ≤ T ; we then return
Π∗ = argmax

Πg(i,j),∀vi,vj∈V
Λ(Πg(i, j)). The two building blocks in

Algo. 2 is the backbone geometrisation algorithm [12] and the
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algorithm of max-prize path [20]. When running the algorithm
of max-prize path, we set the prize of each node vi to be the
number of nodes covered or touched by Di, which allows us
to achieve constant-factor approximation (as detailed in the
proof of Theorem 5). The following theorem establishes the
performance of Algo. 4.

Theorem 5 (Performance of Algo. 4). Algo. 4 returns Π∗

within polynomial time. It holds that Λ(Π∗) = Θ(Λ(P ∗)),
where P ∗ denotes the optimal data harvesting path.

Proof: The polynomial-time complexity of Algo. 2 follow-
ing from the polynomial-time complexity of the geometrisa-
tion procedure [12] and the algorithm of max-prize path. We
now prove second part of the theorem Λ(Π∗) = Θ(Λ(P ∗)).

Given a path Pg geometrised from a backbone path Pb,
we denote the total collected prize along Pb by Q(Pb) and set
Q(Pg) = Q(Pb). It can be noted that Λ(Π∗) ≤ Q(Π∗). It then
follows from Algo. 4 and Lemma 7 that Q(Π∗) = Ω(Λ(P ∗)).

In the calculation of the max-prize in Algo. 4 (Step 4), a
node may be counted multiple times in the final prize of the
path. This is because a node can be covered by at most one
node from the MIS U but can be touched by multiple nodes
from U . We next upper-bound the number of times a node is
counted by 5. To prove this, we note that a node is counted
more then once in the prize of a path if and only if it is
not covered by any node in U and it is touched by multiple
nodes in U . Since any two node in U do not have overlapping
neighborhoods, it is geometrically easy to see that any node
not covered by any node in U can be touched by at most 5
nodes in U . This result leads to 5Λ(Π∗) ≥ Q(Π∗).

We have already proved that Q(Π∗) = Ω(Λ(P ∗)). It then
holds that Λ(Π∗) = Ω(Λ(P ∗)). On the other hand, by the
definition of P ∗, we have Λ(Π∗) ≤ Λ(P ∗). It then holds that
Λ(Π∗) = Θ(Λ(P ∗)), which completes the proof.

VI. NUMERICAL ANALYSIS

In this section, we conduct numerical analysis to evaluate
the performance of the our constant-factor approximation
algorithm of the time-constrained data harvesting problem. To
our knowledge, our algorithm is the only one addressing the
trajectory optimisation in the time-constraint data harvesting
problem, so we evaluate the performance of our algorithm with
respect to the random algorithm where the data harvesting path
is randomly chosen.

Specifically, we set up a simulation area of an Euclidean
quare [0, 1000]2 and randomly deploy a number of n nodes
in the square, where n varies from 200 to 1000. The time
constraint T is set to 100. We vary the communication range
r to study various representative scenarios. By varying n
and r, we can simulate both a sparsely deployed network
where the neighborhoods of nodes are largely non-overlapping
(small n and r) and a densely deployed network where the
neighborhoods of nodes are largely overlapping (large n and
r). For each set of chosen parameters, we run a number
of independent simulations where the nodes’ positions are
randomly chosen and the required number of simulation runs is
calculated using “independent replications” [22]. Throughout

our simulations, we trace the following metric to evaluate the
performance of our algorithm:

Υ =
Quantity of data harvested by our algorithm

Quantity of data harvested by random algorithm
The value of Υ characterises the performance gain of our
algorithm over the random one. We are particularly interested
in tracing the following cases:
• Worst-case performance gain: Under given parameters n,
r, we study the worst-case performance gain among the
simulation runs, i.e., the minimum value of Υ, denoted
as Υmin. This result gives the lower-bound of the perfor-
mance gain our algorithm can achieve over the random
one;

• Best-case performance gain: Under given parameters n,
r, we study the best-case performance gain among the
simulation runs, i.e., the maximum value of Υ, denoted
as Υmax. This result gives the upper-bound of the per-
formance gain our algorithm can achieve;

• Average performance gain: Under given parameters n,
r, we study the average performance gain among the
simulation runs, i.e., the average value of Υ, denoted as
Υavg. This result gives the average of the performance
gain of our algorithm.

The simulation results are illustrated in Fig. 2 and Fig. 3.
In Fig. 2, we fix n = 200 and trace Υ as a function of r by
varying r from 2 to 10. In Fig. 2, we fix r = 6 and trace Υ
as a function of n by varying n from 200 to 1000. Based on
the simulation results, we make the following observations:
• Compared to the random algorithm, our algorithm

achieves significant performance gain. Particularly, our
algorithm can secure a performance gain of nearly 5 times
that of the random algorithm in the simulated scenarios.
In the extreme case, it performances 50 times better than
the random algorithm. The results also demonstrate our
theoretical finding in Sec. IV that a data harvesting algo-
rithm not carefully chosen, such as randomly choosing a
data harvesting path, may lead to significant performance
loss.

• When the system scales, the performance gap between
our algorithm and the random one increases, which again
is in accordance of our theoretical analysis Sec. IV. When
the communication range r increases, the the performance
gap also increases. This can be explained by the fact that
our algorithm carefully chooses the data harvesting path
so as to cover as many nodes as possible given the time
constraint. In contrast, the random algorithm cannot fully
take the advantage brought by larger r with a randomly
chosen path.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have studied the problem of time-
constrained data harvesting problem in which a data ferry
seeks an optimal data collection path to collect as much
data as possible within a time duration. This problem models
the situation where time-sensitive data should be reported to
the sink within certain time before they become obsolete.
We have first characterised the performance bound given
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Fig. 2. Maximum, average, and minimum performance gain of our algorithm
over the random algorithm as functions of r (n = 200).
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Fig. 3. Maximum, average, and minimum performance gain of our algorithm
over the random algorithm as functions of n (r = 6).

by the optimal data harvesting algorithm and shown that
the optimal algorithm significantly outperforms the random
algorithm, especially when the network scales. Motivated by
the theoretical analysis and proving the NP-completeness of
the time-constrained data harvesting problem, we have then
devised a PTAS of the problem and mathematically proved its
output being a constant-factor approximation of the optimal
solution.

As a small step towards characterising efficient data harvest-
ing algorithms, our work can stimulate further investigations
in this field. The first interesting research direction is to use the
methodology in the paper to study more sophisticated variants
of the data harvesting problem, e.g., the case of multiple data
ferries with heterogeneous moving speed. The second consists
of investigating the data harvesting problem where the data
ferry does not have full knowledge of the network topology
and should make its decision based on only local information
and interactions.
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