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Abstract—Neighbor discovery, the process of discovering all
neighbors in a device’s communication range, is one of the
bootstrapping networking primitives of paramount importance
and is particularly challenging when devices have directional
antennas instead of omni-directional ones. In this paper, we
study the following fundamental problem which we term as
oblivious neighbor discovery: How can neighbor nodes with
heterogeneous antenna configurations and without clock synchro-
nization discover each other within a bounded delay in a fully
decentralised manner without any prior coordination? We first
establish a theoretical framework on oblivious neighbor discovery
and establish the performance bound of any neighbor discovery
protocol achieving oblivious discovery. Guided by the theoretical
results, we then design an oblivious neighbor discovery protocol
and prove that it achieves guaranteed oblivious discovery with
order-minimal worst-case discovery delay in the asynchronous
and heterogeneous environment. We further demonstrate how
our protocol can be configured to achieve a desired trade-off
between average and worst-case performance.

I. INTRODUCTION

Directional antennas have been widely used in emerging

wireless networks given the capability in limiting interference,

enlarging transmission range and hence boosting network

capacity and reducing energy consumption. For example,

direction antennas are particularly attractive in the 60GHz

networks to ensure high transmission quality and acquire

sufficient link budget to cater Gbps data rate. In spite of

significant performance gain brought by directional antennas,

their deployment brings specific design challenges for many

fundamental communication and networking functionalities,

some of which require a complete rethinking or redesign.

In this paper, we focus on neighbor discovery, a supporting

primitive that discovers all the neighbors in a device’s com-

munication range. It is one of the bootstrapping primitives

supporting many basic network functionalities, such as topol-

ogy control, clustering, medium access control, etc. Compared

to the traditional omni-direction antenna paradigm, neighbor

discovery with directional antennas is intuitively more chal-

lenging as directional antennas can only cover a fraction of

the azimuth. Hence, neighbor discovery protocols need to

be carefully designed in order to guarantee that any pair of

neighbor nodes can eventually steer their antennas toward each

other at certain time instance. Moreover, nodes may not be

synchronised and their antennas can be heterogeneous in terms

of beamwidth. Neighbor discovery protocols should be able to

guarantee discovery in this challenging environment in a fully

decentralised manner without any prior coordination.

We coin the term oblivious neighbor discovery problem

to denote the following problem: How can neighbor nodes
with heterogeneous antenna beamwidth and without clock
synchronization discover each other within a bounded delay in
a fully decentralised manner without any prior coordination?
Particularly, the following requirements should be satisfied:

• Bounded (and minimum) worst-case discovery delay;

• Discovery oblivity, the capability of guaranteeing discov-

ery regardless of the antenna beamwidth and the relative

positions of nodes. This requirement is particular in the

neighbor discovery with directional antennas.

We emphasize that it is the combination of the above design

requirements that makes the oblivious neighbor discovery

problem far from trivial and should be handled holistically.

As reviewed in Section II, no existing work to our knowledge

can satisfy both of them simultaneously. Aiming at provid-

ing a comprehensive investigation on the oblivious neighbor

discovery problem, we articulate our work as follows:

• Theoretical framework. We establish a theoretical frame-

work on oblivious neighbor discovery and establish the

performance bound of any oblivious neighbor discovery

protocol. Our theoretical results not only shed light on

the structure of the problem, but also serve as design

guidelines for oblivious neighbor discovery protocols.

• Protocol design. Guided by the theoretical results, we

further design an oblivious neighbor discovery protocol

and prove that it achieves guaranteed oblivious discovery

with order-minimal worst-case discovery delay in the

asynchronous and heterogeneous environment. We fur-

ther demonstrate how the protocol can be configured to

achieve a desired trade-off between average and worst-

case performance.

II. RELATED WORK

As discussed in Section I, designing efficient neighbor

discovery protocols for devices with directional antennas is

particularly challenging. A natural approach to contour the

challenge is to use omni-directional antennas in the neighbor

discovery process [1], [2] (cf. [3–7] for major neighbor dis-

covery protocols with omni-directional antennas). The main

disadvantages of this approach is two-fold. Firstly, it requires
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an additional omni-directional antenna; Secondly, the discov-

ered neighbor set using the omni-directional antenna can be

significantly different from that using the directional one.

Neighbor discovery protocols using purely directional an-

tennas can be categorised into two classes, probabilistic and

deterministic protocols. In probabilistic approaches [8–14],

each node randomly chooses a direction to steer its antenna.

Probabilistic protocols have the advantages of being memory-

less and stationary and thus are especially robust and suitable

in decentralised environments where no prior coordination

or synchronisation is available. The main drawback of them

is the lack of performance guarantee in terms of discovery

delay. This problem is referred to as the long-tail discovery

latency problem in which two neighbor nodes may experience

extremely long delay before discovering each other. Determin-

istic protocols [13], [15–18], where each node points its an-

tenna based on a predefined sequence, are proposed to provide

guaranteed upper-bound on the worst-case discovery delay.

However, the current state-of-the-art deterministic neighbor

discovery solutions with directional antennas either fail to

achieve bounded discovery delay, or require time synchroni-

sation among nodes, which may be not be practical in many

applications or require prior coordination among nodes.

In spite of the existing research in the literature, none of

them can solve the oblivious neighbor discovery problem by

ensuring nodes with heterogeneous antenna configurations and

without clock synchronization to discover each other within a

bounded delay in a fully decentralised manner without any

prior coordination, which is the focus of this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a time-slotted (but not necessarily synchro-

nised) two-dimensional wireless network operating on a single

frequency band. The set of nodes in the network is denoted

by S with cardinality S � |S|. Each node i ∈ S is equipped

with a directional antenna with beamwidth θi (0 < θi ≤ 2π).

When θi = 2π, the antenna of node i degenerates to an omni-

directional one. Under such generic antenna model, the com-

munication range of node i can be divided into Ni � 2π
θi

non-

overlapping sectors, indexed from 0 to Ni − 1 in clockwise1.

To discover its neighbors, each node i ∈ S lets its antenna

scan the communication range which is a disk around itself.

As analysed in Section II, any probabilistic antenna scan

strategy cannot achieve bounded discovery delay and suffers

from the long-tail discovery latency problem in which two

neighbor nodes a and b within the communication range of

each other may experience extremely long delay before they

can discover each other. Motivated by this observation, we

consider deterministic neighbor discovery algorithms in which

each node switches its antenna in each slot based on a specific

pattern so as to discover its neighbors. We term such antenna

pattern the antenna scan pattern, or antenna scan sequence
and give its formal definition in the following.

1To make our analysis concise, we assume that Ni is an integer. The
generation to non-integer Ni is trivial by letting the last sector be partially
overlapped with its neighbor sectors.
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Fig. 1: Example of an-

tenna configuration: the dot-

ted blue and red circles rep-

resent the communication

range of node a and b; a has

Na = 4 antenna sectors, b
has Nb = 6 sectors; a is

situated in sector hb = 3
of b, b is situated in sector

ha = 0 of a.

Definition 1 (Antenna Scan Sequence). The antenna scan
sequence is defined as a sequence u � {ut}0≤t≤Tu−1 where
ut is the index of sector at which the antenna is steered, Tu

is the period of the sequence2.

Now consider a pair of neighbor nodes a and b and assume

that a is situated in the sector hb ∈ [0, Nb − 1] of b and b is

situated in the sector ha ∈ [0, Na − 1] of a, they can discover

each other if and only if they steer their antennas towards

each other. Formally, let u and v denote the antenna scan

sequences of a and b, with periods Ta and Tb, if there exists

t ∈ [0, TaTb − 1] such that ut = ha and vt = hb, a and b can

discover each other in slot t. Figure 1 and Example 1 further

illustrate the above definition.

Example 1. Consider the setting of Figure 1 with the following
two scenarios:

• Scenario 1: u = {0, 1, 2, 3} with Ta = 4 and v =
{5, 4, 3, 2, 1, 0} with Tb = 6, i.e., a lets its antenna scan
counter-clockwise while b lets its antenna scan clockwise;

• Scenario 2: u = {0, 1, 2, 3} with Ta = 4 and v =
{0, 1, 2, 3, 4, 5} with Tb = 6, i.e., both of them let their
antenna scan counter-clockwise.

If b is situated in sector 0 of a (ha = 0) and a in sector 3 of b
(hb = 3), it can be checked that they can discover each other
in slot 8 in Scenario 1, while they cannot discover each other
in Scenario 2. The antenna scan sequences and the discovery
process are illustrated in Figure 2.

Slot index

a:
b:

0 1 2 3 4 5 6 7 8 9 10 11 ...

0 1 2 3 0 1 2 3 0 1 2 3 ...
5 4 3 2 1 0 5 4 3 2 1 0 ...

0 1 2 3 4 5 6 7 8 9 10 11 ...

0 1 2 3 0 1 2 3 0 1 2 3 ...
0 1 2 3 4 5 0 1 2 3 4 5 ...

Slot index

a:
b:

Fig. 2: Example of antenna scan sequences: upper: Scenario 1;

lower: Scenario 2.

To model the situation where nodes are not synchronised,

we apply the concept of cyclic rotation to antenna scan

sequences. Specifically, given an antenna scan sequence w, we

2A probabilistic neighbor discovery strategy can be regarded as a special
case where Tu → ∞.
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denote w(k) a cyclic rotation of w by k where k is referred

to as the cyclic rotation phase. Consider an example where

u = {0, 1, 2, 3} with Tu = 4, we have u(2) = {2, 3, 0, 1}.

The situation where k is fractional, corresponding to the case

where time slots of different nodes are not aligned, is analysed

in Section V-D.

B. Problem Formulation

From Example 1, we can see that the antenna scan se-

quences should be carefully devised to guarantee discovery be-

tween any pair of neighbor nodes. To evaluate the performance

of a neighbor discovery protocol, we introduce the following

two performance metrics:

• Discovery oblivity. The first metric, specific for the prob-

lem of neighbor discovery with directional antennas, is

the discovery oblivity, which characterizes the capability

of a neighbor discovery protocol of discovering neighbors

regardless of their antenna beamwidth, relative positions

and clock drift. A neighbor discovery protocol is obliv-

ious if it can guarantee discovery between any pair of

neighbors a and b for any combination (Na, Nb) ∈ N
2,

(ha, hb) ∈ [0, Na − 1]× [0, Nb − 1], and any initial clock

offset combination (t0a, t
0
b) ∈ [0, Ta − 1]× [0, Tb − 1].

• Worst-case discovery delay. Given two nodes a and b,
the worst-case discovery delay between them is defined

as the upper-bound of the latency (in number of slots)

before successful discovery for all possible clock drfits.

We emphasize that discovery oblivity is particularly impor-

tant in neighbor discovery with directional antennas due to the

following two reasons.

• The antennas of nodes may have heterogeneous

beamwidth (i.e., arbitrary Na and Nb);

• The relative positions of nodes are usually not known

beforehand and may change if nodes are mobile (i.e., ha

and hb are arbitrary and not known).

Armed with the above definitions and related mathematic

notations introduced in this section, we can formulate the

oblivious neighbor discovery problem.

Problem 1 (Oblivious neighbor discovery problem). The
oblivious neighbor discovery problem is defined as follows:

minimise T ,
subject to ∀t0a ∈ [0, Ta−1], t0b ∈ [0, Tb−1], ∀Na, Nb ∈ N,

and ∀ha ∈ [0, Na − 1], hb ∈ [0, Nb − 1],
∃t ≤ T such that ut(t

0
a) = ha, vt(t

0
b) = hb.

That is, devising antenna scan sequences to minimize T ,
the worst-case discovery delay, while guaranteeing discov-
ery between any pair of neighbor nodes a and b for any
combination of (Na, Nb), any combination of (ha, hb) ∈
[0, Na − 1]× [0, Nb − 1], and any combination of (t0a, t

0
b).

IV. THEORETICAL PERFORMANCE BOUND

In this section, we establish the worst-case neighbor discov-

ery delay bound for any oblivious neighbor discovery protocol.

We also analyse the structure of the antenna scan sequence to

guarantee oblivious discovery between any pair of nodes a and

b. The results derived in this section serve as design guidelines

for the oblivious neighbor discovery protocol devised later in

Section V that approaches the performance bound.

We start by showing a structural property of the antenna

scan sequence of any oblivious neighbor discovery protocol.

Lemma 1. If two nodes a and b can achieve oblivious
discovery with the worst-case discovery delay D by using the
antenna scan sequences u and v, then for any combination of
cyclic rotation phases (t0a, t

0
b) and any combination (ha, hb)

where 0 ≤ ha ≤ Na − 1 and 0 ≤ hb ≤ Nb − 1, there exists
t < D such that ut(t

0
a) = ha and vt(t

0
b) = hb.

Proof: We prove the lemma by contradiction. Assume that

there exits a combination (h0
a, h

0
b) such that there does not

exist t < D such that ut(t
0
a) = h0

a and vt(t
0
b) = h0

b . Then

consider the case where a is situated in the sector h0
b of b

and b is situated in the sector h0
a of a, it can be noted that a

and b cannot discover each other within D slots in this case,

which contradicts the condition that they can achieve oblivious

discovery within D slots.

Remark. Lemma 1 shows that given any cyclic rotation
phases t0a and t0b , to ensure discovery within D slots, the pair
(ut(t

0
a), vt(t

0
b)) (0 ≤ t < D) must cover all combinations of

(ha, hb) where 0 ≤ ha ≤ Na − 1 and 0 ≤ hb ≤ Nb − 1, i.e.,
all combinations in [0, Na − 1]× [0, Nb − 1].

We then investigate the period of the antenna scan sequences

of any oblivious neighbor discovery protocol. For any node a
whose antenna scan sequence is denoted by u, the sequence

period Tu is a function of Na. In the following theorem, we

prove that Tu ≥ N2
a .

Theorem 1 (Lower-bound of Tu). For any oblivious neighbor
discovery protocol, it holds that Tu ≥ N2

a for each node a.

Proof: Assume, by contradiction, that Tu < N2
a . We prove

the theorem by considering a symmetrical setting between a

pair of neighbor nodes a and b where Nb = Na, which leads to

Tv = Tu where Tv is the period of the antenna scan sequence

of b, denoted by v.

Let nu,g (nv,h) denote the number of slots in sequence u (v)

in which a (b) points its antenna in direction g ∈ [0, Na − 1]
(h ∈ [0, Nb − 1]). Recall that Nb = Na, we can express the

period length of u and v as follows:

Tu = Tv =

Na−1∑
h=0

nu,g =

Nb−1∑
g=0

nv,h

=

Nb−1∑
h=0

Na−1∑
g=0

nu,g + nv,h

2Na
. (1)

Moreover, since a and b use the antenna scan sequences of

the same period Tu, the discovery must occur within Tu slots

under an oblivious neighbor discovery protocol.

We now fix u and cyclically rotate v by k slots from k = 0
to Tu − 1. Recall Lemma 1, for any k, there exists at least

one slot t such that ut = g and vt(k) = h for any pair of

(g, h) ∈ [0, Na − 1] × [0, Nb − 1]. It follows that the total

accumulated number of slots in which ut = g and vt(k) = h,

as k is incremented from 0 to Tu − 1, is at least Tu. On the

other hand, we can count the total accumulated number of
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slots in which ut = g and vt(k) = h, as k is incremented

from 0 to Tu − 1, as nu,g · nv,h. Hence it holds that

nu,gnv,h ≥ Tu.

Recall (1), we have

Tu =

Nb−1∑
h=0

Na−1∑
g=0

nu,g + nv,h

2Na

≥
Nb−1∑
h=0

Na−1∑
g=0

√
nu,gnv,h

Na
≥ Na

√
Tu.

It then follows that Tu ≥ N2
a , which contradicts with the

assumption Tu < N2
a and completes the proof.

We next establish the worst-case discovery delay bound for

any oblivious neighbor discovery protocol.

Theorem 2 (Worst-case Discovery Delay Bound). For any
oblivious neighbor discovery protocol, the worst-case discov-
ery delay between any pair of neighbor nodes a and b cannot
be lower than NaNb.

Proof: We prove the theorem by contradiction. Assume that

there exist a pair of antenna scan sequences, u for a and v
for b, with which the worst-case discovery delay is less than

NaNb. It follows from Lemma 1 that for any cyclic rotation

phases t0a and t0b and any combination (ha, hb) ∈ [0, Na −
1]× [0, Nb − 1], there exists t < D such that ut(t

0
a) = ha and

vt(t
0
b) = hb. That is, the pair (ut(t

0
a), vt(t

0
b)) (0 ≤ t < D)

must cover all the possible combinations (ha, hb), which is

impossible with D < NaNb.

Theorem 2 derives the performance limit of any oblivious

neighbor discovery protocol. We can further generalise Theo-

rem 2 on the pair-wise neighbor discovery to the network-wise

neighbor discovery, as stated in the following corollary.

Corollary 1. For any network where the largest two antenna
sector numbers of neighbor nodes are N1 and N2, the worst-
case discovery delay for any pair of neighbor nodes in the
network to discover each other, denoted by Dn, is lower-
bounded by N1N2 for any oblivious neighbor discovery proto-
col. Asymptotically, when N1 � N2 � O(N), Dn � O(N2).

We conclude this section by summarising the derived results

on any oblivious neighbor discovery protocol:

• Discovery delay bound (Theorem 2): The worst-case

discovery delay is lower-bounded by NaNb, or O(N2)
if Na � Nb � N ;

• Antenna scan sequence structure (Lemma 1, Theorem 1):
Given two antenna scan sequences u and v, for any cyclic

rotation phases t0a and t0b , the pair (ut(t
0
a), vt(t

0
b)) (0 ≤

t < D) must cover all combinations in [0, Na − 1] ×
[0, Nb − 1]; The period of the antenna scan sequence of

node i cannot be shorter than N2
i .

V. AN OBLIVIOUS NEIGHBOR DISCOVERY PROTOCOL

WITH DIRECTIONAL ANTENNAS

In this section, we devise an oblivious neighbor discov-

ery protocol with directional antennas, which (1) achieves

oblivious discovery between any pair of neighbors a and b,

(2) approaches the performance bound derived in Section IV

without any prior knowledge or coordination.

Our design is composed of two steps. In the first step, each

node independently constructs a binary sequence such that the

sequences of any two distinct nodes are cyclic rotationally

distinct to each other. In the second step, each node generates

its antenna scan sequence based on the sequence constructed

in the first step.

A. Constructing Cyclic Rotationally Distinct Sequence

In our approach, the antenna scan sequence for each node

is constructed based on its globally unique ID (e.g., address),

which can be mathematically expressed as a binary sequence

of length l. Using globally unique IDs is a typical method to

break the symmetry of any pair of nodes.

In the first step, each node independently generates a binary

sequence based on its ID such that the binary sequences of

any two nodes are cyclic rotationally distinct one to the other.

Note that the sequences resulting from cyclic rotations of a

sequence are not considered to be cyclic rotationally distinct

to each other and the original sequence. We term the sequences

generated from the ID sequences the extended ID sequences.

A simple way of constructing cyclic rotationally distinct

extended ID sequences has been proposed in [19] as sum-

marised as follows: let i denote the ID of node i, which

is an l-bit binary sequence; let 1(k) (0(k)) denote a binary

sequence of 1 (0) of length k; construct the following binary

sequence I � i||1(l)||0(l). It is proved in [19] that sequences

constructed in this way are cyclic rotationally distinct to each

other.

We now generalise the above algorithm to the following

algorithm that constructs cyclic rotationally distinct sequences.

The reason of developing a new algorithm is two-fold.

• The establishment of bounded discovery delay in our

problem requires the length of the extended ID sequence

to be odd, (cf. proof of Theorem 3) which cannot be

achieved by the algorithm in [19];

• The length of the extended ID sequence generated by

our algorithm is shorter than that in [19], which leads to

shorter discovery delay.

Lemma 2. Given any two extended ID sequences a and b
generated from two ID sequences α and β as follows:

a � 0(l1)||α||1(l2) and b � 0(l1)||β||1(l2),
under the condition that l1 + l2 ≥ l+1, it holds that a and b
are cyclic rotationally distinct to each other, i.e., it holds that

α 	= β =⇒ a 	= b(k), ∀k ∈ [0, l + l1 + l2),

where b(k) is b with a cyclic rotation of k bits.

Proof: We prove the lemma by considering the three

possible scenarios illustrated in Figure 3, and showing, in

each scenario, that a bit in a and another bit in b(k) have

different values although the two bits are in the same position

within the respective extended ID sequences. This is sufficient

to prove that the two extended ID sequences a and b are cyclic

rotationally distinct one to the other.

Case 1: k ∈ (0, l1). As indicated by the arrow in Figure 3,

it holds that aL−1 = 1 and bL−1(k) = 0 where L = l+l1+l2.
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0 … 0 α 1 … 1

0 … 0 β 1 … 1
k

0 … 0
b(k)

aCase 1

0 … 0 α 1 … 1

0 … 0 β 1 … 1
k

0 … 0
b(k)

a

β

Case 2

0 … 0 α 1 … 1

β 1 … 1
k

0 … 0
b(k)

a

β0 … 0

Case 3

Fig. 3: Illustration of the three cases in the proof of Lemma 2.

Case 2: k ∈ [l1, l + l2]. Note that l1 + l2 ≥ l + 1, as

indicated by the arrow in Figure 3, it holds that al+l1 = 1 and

bl+l1(k) = 0.

Case 3: k ∈ (l+ l2, l+ l1 + l2). As indicated by the arrow

in Figure 3, it holds that al1−1 = 0 and bl1−1(k) = 1.

Noticing that α 	= β =⇒ a 	= b, we thus conclude that

a 	= b(k), ∀k ∈ [0, l + l1 + l2).
In our design, we set l1 and l2 such that the total length

of the extended ID sequence L � l + l1 + l2 is odd, e.g.,

l1 + l2 = l + 1, leading to L = 2l + 1.

B. Constructing Antenna Scan Sequence

In the second step, each node i constructs its antenna scan

sequence u based on the extended ID sequence, denoted as ei,
generated in the first step by choosing l1 and l2 such that the

resulting sequence length L = l+l1+l2 is odd. Specifically, let

pi denote the smallest odd prime number not smaller than Ni

and co-prime to L; let bi denote the smallest integer satisfying

2bi ≥ Ni and set qi = 2bi ; the antenna scan sequence of

node i, u, is constructed as follows:

ut =

⎧⎪⎨
⎪⎩
t mod pi eit = 0 and t mod pi < Ni,

t mod qi eit = 1 and t mod qi < Ni,

rand(Ni − 1) otherwise,

(2)

where rand(Ni−1) denotes a random integer in [0, Ni−1]. It

can be noted that the period of the antenna scan sequence u is

Lpiqi without taking into account the random part. Figure 4

provides an example of the antenna scan sequences for two

nodes a and b and their discovery process.

C. Discovery Delay Analysis

In the following theorem, we prove the correctness of our

protocol in achieving oblivious discovery and establish the

worst-case discovery delay bound.

Theorem 3 (Correctness and Worst-case Discovery Delay

Bound). Our neighbor discovery protocol can ensure obliv-
ious discovery between any pair of neighbors a and b. The
worst-case discovery delay between them is upper-bounded
by Lmax{paqb, pbqa}, asymptotically O(NaNb).

Proof: Given any system parameter combination (t0a, t
0
b),

(Na, Nb) and (ha, hb), by Lemma 2, there exit 0 ≤ l0 < L
such that eal0(t

0
a) 	= ebl0(t

0
b). Without loss of generality, assume

that eal0(t
0
a) = 0 while ebl0(t

0
b) = 1.

Slot index

ea :
u :

0 0 1 1 1 0

1 2 3 4 5 6

0 1 2 r 0 2

7 8 9 10 11 12

0 1 1 1 0 0
0 r 0 1 1 2

...

...

...

0 13 14 15

1 1 1 0
0 1 2 0

ID �=01, Expended ID a=00111 (l1=1,l2=2), Na=3, pa=3, qa=4 

Slot index

eb :
v :

0 1 0 1 1 0

1 2 3 4 5 6

0 1 r 1 0 r

7 8 9 10 11 12

1 0 1 1 0 1
0 1 0 1 1 1

...

...

...

0 13 14 15

0 1 1 0
0 1 0 0

ID β=10, Expended ID b=01011, Nb=2, pb=3, qb=2

Slot index

u :
V(1) :

1 2 3 4 5 6

0 1 2 r 0 2

7 8 9 10 11 12

0 r 0 1 1 2

...

...

0 13 14 15

0 1 2 0

Discovery between a and b: ta
0=0, tb

0=1, ha=2, hb=1

0 1 r 1 0 r 0 1 0 1 1 1 00 1 0 0 ...

Fig. 4: Example of antenna scan sequences for node a and b (r
denotes a randomly number in [0, Ni − 1]): they can discover

each other in slot 2.

Since pa is an odd prime and qb is a power-multiple of

2, it holds that pa is co-prime with qb. Let u and v denote

the antenna scan sequences of a and b. We examine the slots

tk = l0+kL where k ∈ N. More specifically, we consider the

subsequences of u(t0a) and v(t0b) in these slots, i.e., {utk(t
0
a)}

and {vtk(t0b)}. Recall (2), we can write utk(t
0
a) and vtk(t

0
b) as

follows: {
utk(t

0
a) = t0a + l0 + kL mod pa,

vtk(t
0
b) = t0b + l0 + kL mod qb.

Recall that (1) L is odd, (2) pa is an odd prime and co-

prime to L, (3) qb is a power-multiple of 2, it holds that L,

pa and qb are co-prime one to another. It then follows from

the Chinese Remainder Theorem [20] that for any parameter

settings (t0a, t
0
b), (Na, Nb) and (ha, hb), there exists k0 < paqb

such that{
k0L mod pa = ha − t0a − l0 mod pa,

k0L mod qb = hb − t0b − l0 mod qb.

It then follows that{
utk(t

0
a) = t0a + l0 + kL mod pa = ha,

vtk(t
0
b) = t0b + l0 + kL mod qb = hb.

Hence, a and b can discover each other in slot tk0
with the

worst-case discovery delay bounded by Lpaqb.

Similarly, when eal0(t
0
a) = 1 while ebl0(t

0
b) = 0, we can

prove that the worst-case discovery delay is upper-bounded by

Lqapb. Therefore, it holds that the worst-case discovery delay

of our protocol is upper-bounded by Lmax{paqb, qapb}. In the

asymptotical case, we have pa � qa � Na and pb � qb � Nb

and hence the delay upper-bound is O(NaNb).

We end this subsection with the following two remarks:

• Tightness of worst-case discovery delay. Theorem 3

establishes the worst-case discovery delay bound as

Lmax{paqb, pbqa}. We illustrate via an example in Fig-

ure 5 that this bound is actually very tight. In the example

where the initial clock drift is t0a = 10 and t0b = 0, a and b
discover each other only at slot 58, which corresponds to

the discovery delay of 59 slots. The worst-case discovery

delay bound derived by Theorem 3 in this example is 60.

• Upper-bound of average discovery delay. We can derive
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the upper-bound of the average discovery delay by using

the same technique as the proof of Theorem 3. Specif-

ically, using the same notation, given a random pair of

t0a and t0b , the expectation of k0 is bounded by paqb−1
2 .

Assume that node IDs can be regarded as random binary

sequences, the expectation of l0 is bounded by L
2 . The

average discovery delay is thus upper-bounded by Lpaqb
2 ,

and asymptotically when pi � qi � Ni � N , it can be

bounded by LN2

2 . Note that this is a very conservative

and thus loose bound, as illustrated in the simulations.

u :
ID �=1, Expended ID a=011 (l1=1,l2=1), Na=3, pa=5, qa=4 

ID β=0, Expended ID b=001, Nb=3, pb=5, qb=4

0123r1120r032320113r0123r022310103r3122r012300133r2121r00233

Discovery between a and b at slot  58: ta
0=10, tb

0=0, ha
0=hb

0=3

v : 

012321120203232011330123402231010323122101230013332121000233...v : 

u : 012301130123212001330123312201030323112101230023312101230223012301130...

012301130r23212001330123r12201030323112r01230023312101r30223

u(10)

Fig. 5: Tightness of worst-case discovery delay.

D. Discovery Analysis with Non-aligned Slots

Our previous results implicitly assume slots are aligned.

In this subsection, we relax this assumption to study the

situation where slots are non-aligned. In this context to ensure

discovery, it is required that a neighbor discovery protocol

should be able to ensure that any pair of neighbor nodes can

discover each other with an overlap of α slot where α ∈ (0, 1]
is a system-dependent parameter3. A typical condition widely

imposed in the literature is to require a discovery to last at

least half of the slot duration, i.e., α = 0.5.

We next demonstrate that our protocol can achieve the above

practical objective. To show this, consider two nodes a and b
whose extended ID sequences are denoted as ea and eb. Given

any parameter setting (t0a, t
0
b), (Na, Nb) and (ha, hb) with non-

aligned slots, it holds that either ut(t
a
0) and vt(t

b
0) overlap for

at least half slot duration for any t ≥ 0 or ut(t
a
0 + 1) and

vt(t
b
0) overlap for at least half slot duration for any t ≥ 0. We

thus investigate these two cases:

• Case 1: ut(t
a
0) and vt(t

b
0) overlap for at least half slot

duration for any t ≥ 0. In this case, the previous analysis

can be directly applied. The only difference is that instead

of an entire overlap, a discovery in this case is a partial

overlap of at least half slot duration.

• Case 2: ut(t
a
0+1) and vt(t

b
0) overlap for at least half slot

duration for any t ≥ 0. In this case, since u and v are

cyclic rotationally distinct to each other, we can prove in

the same way as Theorem 3 that within the same delay

bound, there exists t∗ such that ut∗(t
a
0 + 1) = ha and

vt∗(t
b
0) = hb. Hence a and b can discovery each other in

slot t∗ with an overlap of at least half slot duration.

3A practical example is that switching antenna from one direction to another
incurs non-negligible delay.

Figure 6 illustrates the two cases of the neighbor discovery

with non-aligned slots with the scan sequences of the example

in Figure 4. As proved in this subsection as well as illustrated

in Figure 6, in both cases, a and b can discover each other

within the worst-case delay derived in Theorem 3 with an

overlap of more than half slot.

Slot index

U(0) :
V(1) :

1 2 3 4 5 6

0 1 2 r 0 2

7 8 9 10 11 12

0 r 0 1 1 2

...

...

0 13 14 15

0 1 2 0

Discovery between a and b with non-aligned slots: ta
0=0, tb

0=1, ha=2, hb=1

0 1 r 1 0 r 0 1 0 1 1 1 00 1 0 0 ...

Slot index

U(1) :
V(1) :

1 2 3 4 5 6

0 1 2 r 0 2

7 8 9 10 11 12

0 r 0 1 1 2

...

...

0 13 14 15

0 1 2 0
0 1 r 1 0 r 0 1 0 1 1 1 00 1 0 0 ...

Case 1: ut(0) and vt(1) overlap for at least half slot for any t

Case 2: ut(1) and vt(1) overlap for at least half slot for any t

Fig. 6: Neighbor discovery with non-aligned slots.

E. Discovery Beacon Scheduling

Our theoretical analysis hinges on the fact that two neighbor

nodes are able to discover each other once they steer their

antennas to each other at the same slot for at least half of

a slot during which they exchange discovery beacons. This

assumption is also largely made in the literature. In this

subsection, we design discovery beacon scheduling to achieve

discovery once an overlap of at least half slot occurs. By

overlap, we mean that in the overlapping slot, a and b steer

their antennas toward each other.

Before motivating and discussing our design, we present a

beacon scheduling mechanism initially proposed in [3] and

improved in [5]. In this approach, each node sends two

beacons each active slot, one at the beginning of the slot,

the other at the end. The node remains in listening mode in

the intermediate period. Under the condition that the slots

of two nodes are not perfectly aligned, they can receive a

beacon from the other node in each overlapping active slots.

To handle perfect slot alignment, the slot overflowing scheme

is developed in [5], where each active slot overflows by δ,

a small amount that is sufficient to receive a beacon from

another node. However, their approach cannot be applied in

our context as it requires that active slots are separated by

inactive slots to allow slot overflow, but in our context a node

remains active in each slot, making slot overflow impossible.

Motivated by the above argument, we devise the following

beacon scheduling scheme.

• Consider node i in slot t, we call slot t a p-slot if eit = 0
and t mod pi < Ni, i.e., the condition of first line of (2)

is satisfied; in the same way we define the q-slot. If the

condition of the third line of (2) holds, the node randomly

chooses between a p-slot and a q-slot. Recall the proof

of Theorem 3, given any pair of neighbors a and b, there

must exists an overlap between a p-slot of a and a q-slot

of b and between a q-slot of a and a p-slot of b.
• At each p-slot, node i sends two beacons, one beacon

scheduled δp after the beginning of the slot and the other
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scheduled δp before the end of the slot, as illustrated

in Figure 7 (upper left). The beacon schedule in the q-

slots proceeds in the same way. The parameters δp and

δq are set such that δp+δq < 1
2 , where we normalise slot

duration to 1 to simplify notation.

p-slot
δp δp

q-slot
δq δq

Node a
δp δp

Node b

δq δq

Node b

δp δp

Node a
δq δq

Node a
δp δp

Node b
δq δq

...

...

Δt

Δt

Fig. 7: Illustration of our beacon scheduling and the resulting

mutual discovery.

The following theorem formally proves that the proposed

beacon scheduling mechanism can guarantee mutual discovery.

Theorem 4. Our beacon scheduling mechanism can guarantee
mutual discovery.

Proof: We prove the theorem by distinguishing two cases:

(1) slots are perfectly aligned, (2) slots are not aligned. To

make the notation concise, we assume each slot last unit time.

In the first case with aligned slots, recall the proof of

Theorem 3, given any pair of neighbors a and b, there must

exist an entire overlap between a p-slot of a and a q-slot of b.
Since δp 	= δq and δp + δq < 1

2 , each node can successfully

receive two beacons from the other, as illustrated in Figure 7

(upper left).

In the second case with non-aligned slots, recall the analysis

in Section V-D and the proof of Theorem 3, given any pair

of neighbors a and b, there must exists an overlap of at least

half slot between a p-slot of a and a q-slot of b and between

a p-slot of b and a q-slot of a. Consider the overlap between

a p-slot of a and a q-slot of b and assume, without loss of

generality, that δp < δq . We first prove that a can receive the

first q-beacon of b in the overlapping slot (cf. Figure 7 upper

right). To that end, we need to show that the first q-beacon of

b does not collide with the second p-beacon of a. Assume, by

contradiction, that they collide. It then holds that

1− δp = Δt+ δq, (3)

where Δt denotes the time offset between the overlapped slots.

It follows from the analysis in Section V-D that Δt ≤ 1
2 . It

follows from (3) that

δp + δq = 1−Δt ≥ 1

2
,

which contradicts to the setting that δp + δq < 1
2 . Hence, a

can receive the first q-beacon of b without collision.

We then prove that b can receive a discovery beacon from

a by distinguishing the following two subcases:

• If Δt 	= δq − δp, b can receive the second p-beacon of a
because by applying similar analysis, we can show that

the transmission time of the second p-beacon of a differs

that of the second q-beacon of b (cf. Figure 7 upper right).

• If Δt = δq−δp, b cannot receive the second p-beacon of a
because the transmission time of the second p-beacon of

a coincides with that of the second q-beacon of b. In this

case, we consider the overlap between a q-slot of a and a

p-slot of b. It can be easily checked that the transmission

time of the second q-beacon of a in this slot differs that

of the second p-beacon of b (cf. Fig. 7 lower). b can thus

receive the second q-beacon of a in this slot.

We have thus proved that both a and b can receive at least a

beacon of each other. The mutual discovery is achieved.
The devised beacon scheduling mechanism can be further

adapted in collision-prone environments when the network size

is large. In this context, more than one simultaneously trans-

mitted beacons lead to collision and thus cannot be recovered

at the receiver. To limit collision, we can desynchronize p-

beacons and q-beacons by adding a small random time drift

to δp and δq . Note that in such context, discovery delay

cannot be bounded due to collision. The utility of our neighbor

discovery protocol is to ensure that any pair of neighbors

will eventually steer their antennas toward each other, without

which discovery can never be achieved.

VI. TRADING OFF WORST-CASE AND AVERAGE

DISCOVERY DELAY

In the previous section, we have shown that the worst-

case discovery delay of our protocol is bounded by

Lmax{paqb, pbqa} and this bound is very tight, i.e., there are

extremely unlucky cases where discovery cannot be achieved

before the worst-case delay. On the other hand, it is easy to

see that a purely random strategy where each node points its

antenna to a random direction each slot leads to an average

delay of NaNb even in such extremely unlucky cases. How-

ever, the worst-case discovery delay of any random discovery

strategy cannot be bounded. Generally, random or probabilistic

neighbor discovery protocols usually perform well in the

average case by limiting the expected discovery delay, with

the main drawback being the lack of performance guarantee

in terms of worst-case discovery delay. The following question

naturally arises: How to improve the average performance
of our protocol in those extremely unlucky cases while still
ensuring a bounded discovery delay.

In this section, we investigate how a desired trade-off

between the worst-case and the average discovery delay can be

achieved by adapting our neighbor discovery protocol, more

specifically by properly choosing the parameters pi and qi. To

make our analysis tractable, we focus on a synchronised case

where Na = Nb = N and a and b choose the same parameters,

i.e., pa = pb and qa = qb. However, the idea presented via

this example also holds in the general cases. Recall the antenna

scan sequence in our approach (equation (2)), we note that for

slots Ni ≤ t mod pi (when eit = 0) and Ni ≤ t mod qi (when

eit = 1), each node i randomly points its antenna. We can

configure the number of such “random slots” via pi and qi so

as to improve the average performance while still ensuring the

bounded discovery delay by the operations in the remaining

“deterministic slots”. Specifically, choosing larger pi and qi
results in more “random slots”, thus improving the average

performance at the price of increasing the worst-case delay.

By choosing proper pi and qi, we can trade off the worst-case

and the average discovery delay.
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We next provide an approximative quantitative analysis on

the above trade-off. Consider the case where N is sufficiently

large and pi � qi � p. Approximatively, within each p slots,

there are p−N “random slots” where player i randomly points

its antenna. We call such p − N “random slots” a random

frame. The probability that discovery can be achieved within

one random frame can be calculated as

q = 1−
(
1− 1

N2

)p−N

.

Recall that the worst-case delay is bounded by approximatively

Lp2 rounds, i.e., Lp random frames, we can then calculate the

upper-bound of the average discovery delay d as follows:

d ≤ q · p+ (1− q)q · 2p+ · · ·+ (1− q)Lp−1 · Lp2.
Given a target expected delay bound d̄, p can be chosen

based on the above inequality. To get more insight, we consider

the case where we set p sufficiently larger than N but linear

to N , i.e., p = (1 + λ)N with sufficiently large λ. We have

q � λ
N . After some algebraic operations, the average delay is

bounded by

d <

∞∑
k=0

(1− qk)q · (k + 1)p =

(
1 +

1

λ

)
N2,

with the worst-case discovery delay being L(1 + λ)2N2. We

can thus trade off the worst-case and the average discovery

delay by choosing proper λ.

VII. NUMERICAL ANALYSIS

In this section, we conduct a suite of simulations to illustrate

the theoretical results established in previous analysis and to

evaluate the performance of the developed neighbor discovery

protocol in several typical application scenarios.

A. Pair-wise Neighbor Discovery

We start by simulating the baseline scenario of pair-wise

discovery between a pair of neighbor nodes a and b. Specif-

ically, we trace the discovery delay for different antenna

configurations of a and b, i.e., different combinations of

(Na, Nb). The relative positions of a and b, represented by

(ha, hb) is also randomly generated. The clock drift between

a and b is randomly generated from [0, 1000] slots. Both a
and b have an ID of 8 bits randomly attributed to them.

Throughout our simulations, each point represents the worst-

case or average value of a number of independent simulation

runs, with the required number of simulation runs calculated

using “independent replications” [21].

Figure 8 traces the worst-case and the average discovery

delay of our protocol. For comparison, we also trace the

average discovery delay of the random strategy where each

node steers its antenna at a random direction each slot. We

cannot trace the worst-case delay of the random strategy

because we observe that in some cases, discovery cannot be

achieved within the simulation duration which is set to 105

slots. From the results, we make the following observations:

(1) For given Na, the worst-case delay increases linearly w.r.t.

Nb, which is in accordance of our theoretical result established

in Theorem 2. (2) The worst-case and average discovery delay

trade-off between the random strategy and the deterministic

25 50 75 100 125
0

10

10^2

10^3

10^4

Transmission range

Ti
m

e 
(n

um
be

r o
f s

lo
ts

)

Worst−case delay
Average delay
Average delay (random)

Fig. 10: Discovery delay comparison between our protocol and

the random discovery strategy in a network.

one as ours is clearly demonstrated. Our simulation results

seem to favor a well-designed deterministic strategy as we

see a limited performance loss in terms of average delay with

the advantage of having strict worst-case delay bound.

We then investigate trading off worst-case and average

discovery delay by incorporating the mechanism proposed

in Section VI. To that end, we pick settings where a and

b can only discover each other almost with the worst-case

discovery delay. We implement the mechanism proposed in

Section VI and trace the resulting trade-off between the worst-

case and average discovery delay in Figure 9. Specifically, we

implement two settings: (1) Small p and q, in this setting, p
and q are chosen as the smallest eligible values larger than

2N ; (2) Large p and q, in this setting, p and q are chosen as

the smallest eligible values larger than 10N . The simulation

results clearly demonstrate the trade-off between worst-case

and average discovery delay: with larger p and q, the worst-

case discovery delay is more important, while the average

delay is less. The trade-off can thus be parameterised to satisfy

specific application requirement by tuning p and q.

B. Network-wide Neighbor Discovery

We further complete our simulation study by investigating

a more complex scenario of a randomly deployed wireless

network. To that end, we simulate in a network with 100
nodes randomly deployed in a 200m × 200m square. We

vary the transmission range of nodes from 25m to 125m
such that the average number of neighbors of a node varies

from around 3 to more than 50, which we believe can cover a

wide range of practical scenarios. For each node i, its antenna

parameter Ni is randomly chosen from {6, 12, 18, 24, 30, 36}.

Other parameters are the same as previous simulations. We use

the standard beacon format as in the literature [5], [6] and our

beacon scheduling mechanism with δp = 0.1 and δq = 0.2.

We trace the worst-case and the average discovery delay of

our protocol and the average discovery delay of the random

strategy. Again, we observe that in some cases, discovery

cannot be achieved under random strategy within the sim-

ulation duration which is set to 105 slots. As illustrated in

Figure 10, the worst-case discovery delay of our protocol

is bounded and only increases slightly w.r.t. the number of

neighbors. This result reflects the fact that in the simulated

cases, collisions among beacons only have limited impact

on the discovery performance. This is because beacons are

very short, especially compared to normal data packets, thus
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Fig. 8: Discovery delay comparison between our protocol and the random discovery strategy under fixed Na and varying Nb:

left Na = 6, middle Na = 18, right Na = 36.
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Fig. 9: Trading off worst-case and average discovery delay under fixed Na and varying Nb: left Na = 6, middle Na = 18,

right Na = 36.

limiting the collision probability, the fact that the antennas

are directional also limits the collision probability. Conse-

quently, the probability of having consecutive collisions on

the discovering slots is even more rare. In terms of average

discovery delay, we observe that our protocol is only slightly

outperformed by the random strategy.

VIII. CONCLUSION

We have formulated and studied the oblivious neighbor

discovery problem. We have established the performance

bound of any neighbor discovery protocol achieving oblivious

discovery. Guided by the theoretical results, we have designed

an oblivious discovery protocol and proved that it achieves

guaranteed oblivious discovery with order-minimal worst-

case discovery delay in the asynchronous and heterogeneous

environment. In the future research, we plan to investigate the

energy-constraint case where nodes stay in the dormant state

most of the time while only wakes up periodically.
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