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Abstract—Searching for a particular group of tags in an
RFID system is a key service in such important Internet-of-
Things applications as inventory management. When the system
scale is large with a massive number of tags, deterministic
search can be prohibitively expensive, and probabilistic search
has been advocated, seeking a balance between reliability and
time efficiency. Given a failure probability 1

O(K)
, where K

is the number of tags, state-of-the-art solutions have achieved
a time cost of O(K logK) through multi-round hashing and
verification. Further improvement however faces a critical bot-
tleneck of repetitively verifying each individual target tag in each
round. In this paper, we present a novel Tree-based Tag Search
(TTS) that approaches O(K) through batched verification. TTS
smartly hashes multiple tags into each internal tree node and
adaptively controls the node degrees. It conducts bottom-up
search to verify tags group by group with the number of groups
decreasing rapidly. We derive the optimal hash code length and
node degrees to accommodate hash collisions, and demonstrate
the superiority of TTS through both theoretical analysis and
extensive simulations. In particular, we show that, with increasing
reliability demand and system size, TTS achieves an even higher
performance gain, making it a highly scalable solution.

I. INTRODUCTION

Radio frequency identification (RFID) technology [11] has

recently been attracting remarkable attentions from both the

academic and the industrial communities. A typical RFID

system comprises two types of devices. One type called the
reader transmits a high power RF signal. The other type

called the tag is attached on a physical object and is able

to capture the energy in the RF signal of a nearby reader and

modulates this RF signal by adjusting the impedance match

on its antenna such that a message of zeros and ones can

be sent back to the reader. With the development of RFID

technology, new generations of tags are armed with abilities

of sensing, and computing and become programmable, e.g.,

WISP tag [1]. These capabilities and low manufacturing cost

make them widely deployed in various applications ranging

from inventory control [2] and supply chain management [13],

to object localization [8] and human-computer interaction [23].

This paper focuses on the fundamental tag search problem in

a large-scale RFID system which is formally defined as: given
a set of wanted tags, the target is to search in the system
to confirm which wanted tags are currently present within
interrogation areas of the readers. For example, suppose some

defective products from a manufacturer have been delivered to

multiple warehouses, the manufacturer wants to know which

defective products exist in which warehouse to further recall

and fix them in time. To this end, the manufacturer provides

the IDs of the tags attached to these products to warehouse

administrators and asks for tag search service [4]. Obviously,

fast and reliable tag search is desirable in this scenario to

reduce financial loss and even avoid potential safety problems.

Despite its importance, the efficiency of tag search has yet

to be further optimised. Deterministic protocols introduced

in [4] can solve the tag search problem. While they are time-

consuming for transmitting a large number of tag IDs. For

example, when searching for 20, 000 tags in a system of

50, 000 tags, they require 19.4s and 130s, which are 4.4 times

and 29.6 times the searching time of the probabilistic method

with the failure probability 0.001 in [4]. Therefore, a series of

probabilistic search protocols [25] [4] [16] [28] are proposed

to accelerate tag search with a guaranteed failure probability.

Albeit the previous schemes employing Bloom filter [25]

[4] or filtering vectors [16] [28] can filter out non-wanted tags

effectively without transmission of tag IDs, they waste a large

amount of time verifying the found wanted tags individually.

For instance, suppose 5, 000 tags of a wanted tag set exist

in a system of 20, 000 tags, to achieve a failure probability

10−4, E-STEP [16] needs to execute 21 rounds. In fact, after

the first 7 rounds, there are only 69 ineligible tags, indicating

that the main purpose of the remaining 14 rounds is to verify

the correctness of each individual target tag rather than further

filter out ineligible tags. In this context, the existing methods

that cannot verify target tags in a batch are not efficient

anymore. Moreover, PLAT [28] assumes that the reader has all

tag IDs in the system besides those of wanted tags; therefore, it

cannot work in the scenario with unknown tags in [25] [4] [16].

In this paper, we propose a fast and reliable Tree-based Tag

Search (TTS) that enables batched verification. TTS builds a

tree of adaptive depth and node degrees by smartly hashing

multiple tags into each internal tree node. It then executes two

hashing-based functions on top of the tree, namely verification

and refinement functions. Specifically, TTS first verifies tags

group by group from the bottom of the tree to the up with

the number of groups decreasing rapidly. Only when the

verification function finds the existence of ineligible tags is the

refinement function executed to refine this group. We perform

theoretical analysis for determining optimal hash code length

as well as depth and node degrees of the tree to guarantee

reliability demand and minimise time cost. We would like

to emphasize that given a failure probability 1
O(K) where K

is relative to the number of tags, TTS achieves a time cost



of O(K log(d) K)1 with tree depth d, providing a significant

improvement over prior work O(K logK).
Note that a small d can reduce log(d) K to a constant

quickly. For example, for a large K=296, we know logK=96,

while setting d=4 yields log(4) K=1.4. That said, the time

cost of TTS approaches O(K). Its superiority is also con-

firmed by extensive simulations. In particular, with increasing

reliability demand and system size, TTS achieves an even

higher performance gain, making it a highly scalable solution.

II. PROBLEM FORMULATION AND MOTIVATION

We study an RFID system that consists of a backend server,

one or multiple readers and a large number of tags. The back-

end server that has powerful computing and storage capability

coordinates the readers and is responsible for the data storage

and information processing. The readers, connected via high-

speed channels with the backend server, transmit commands

to the tags and report their responses to the server. When

the server synchronizes the readers, we can logically consider

them as a whole [25] [4] [16]. Consequently, we regard the

server and the readers as a single entity that is denoted by the

reader for simplicity. The tags, each having a unique 96-bit

ID, are able to communicate with the reader wirelessly and

implement the commands with lightweight hash functions [1].

The communication between the reader and tags follows

the Listen-before-talk mechanism [6]: the reader initiates com-

munication first by sending commands and broadcasting the

parameters to tags, such as frame size and random seed. Each

tag uses a hash function and the received seed to map its ID

to one slot in the frame and replies to the reader in this slot.

Consider an arbitrary time slot, if no tag replies in this slot,

it is called an empty slot; if one or multiple tags reply in this

slot, it is called a busy slot.

A. Problem Formulation

Let Y = {y1, y2, · · · , ym} denote the set of m tags attached

on the products that are currently covered by the RFID system.

These tags are referred to as present tags. Due to the dynamics

of the RFID system, e.g., unknown (i.e., new) tags/products

move in and/or known ones leave from the warehouse, the

reader does not know the tags covered by the system, that is,

it has no knowledge of IDs of the present tags in Y . While it is

a common assumption [25] [4] [16] that the reader knows the

cardinality of Y from the estimation through the tag counting

schemes analysed in [27].

Given a set of n wanted tags X={x1, x2, · · · , xn}, we are

interested in finding which wanted tags in X are currently

present in the coverage area of the RFID system, i.e., finding

the set of the tags Z=X∩Y . For clearness, the tags in

X∩Y are referred to as target tags, and the others are called

ineligible tags containing X−Y (non-target tags) and Y −X
(non-wanted tags). It is of great importance for a tag search

scheme to have high reliability, which is required in realistic

1Throughout the paper, we use log to denote the logarithm to the base 2 and
define an iterated logarithm function log(i) k with the following properties: 1)
log(0) k = k; 2) for an integer i ≥ 1, log(i) k = max{1, log(log(i−1) k)}.

TABLE I
MAIN NOTATIONS

Symbols Descriptions
X The set of the wanted tags: |X| = n
Y The set of the present tags in the system: |Y | = m
Z The set of the target tags: X ∩ Y
λ The intersection ratio: |Z|/min{|X|, |Y |}
Z∗ The set of the tags in the final search result

Pfail The required failure probability
P ∗
fail The achieved failure probability by TTS

K max{m,n}
d The depth of the tree and # of rounds in TTS
δi The degree of a node at the level i
Li The set of the nodes at the level i
pi The allowed failure probability in the round i

ri, �i The length of hash codes used in the round i

log(i) k
1) if i = 0, log(0) k = k

2) if i ≥ 1, log(i) k = max{1, log(log(i−1) k)}

applications. In this case, a question arises naturally: how to

achieve high reliability while keeping time cost as small as

possible? Therefore, we devote this paper to designing a fast

and reliable tag search scheme.

Denote by Z∗ the set of tags in the final search result and let

Pfail be the probability that the final search result is unequal

to the ground truth, the RFID tag search problem is formally

defined as follows:

Definition 1 (Tag search problem). Given X and Y , the tag
search problem is to devise a protocol to find Z = X ∩ Y
with the probability at least Pr{Z∗ = Z} ≥ 1−Pfail within
minimum time. In this problem, Pfail should be relative to the
number of tags [4], so we set

Pfail =
1

O(Ka)
,

with K=max{m,n} and a constant a>0, such that the
expected number of failure events K·Pfail among K runs
could approach 0 for a large K.

In the prior work [25] [4] [16], the cardinality of the set Z
is set to λ ·min{|X|, |Y |} where λ called intersection ratio is

a constant. In the analysis, we assume that |X| and |Y | and

|Z| are of the same order of magnitude, i.e., O(K). Table I

summaries main notations used in the paper.

B. Motivation

1) Prior art: Multi-round filters. It is desirable for a tag

search scheme to have high reliability and time efficiency.

The existing works [25] [4] [16], however, experience a

significant degradation of time efficiency as the reliability

demand increases. Specifically, the reader either receives a

filtering vector from tags in Y or sends one to them, and

detects ineligible tags by observing differences between the

received vector and the supposed responses of tags in X .

The existing schemes essentially execute multiple rounds each

with a constant failure probability to satisfy a required failure

probability. As a result, they must operate for O(logK) rounds

(or O(logK) hash functions should be used in [25]) each

consuming time O(K) in order to achieve the required failure
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Fig. 1. Exemplify [16]: Pfail = 10−4, |X| = 10, 000, |Y | = 20, 000.

probability O( 1
Ka ) with K=max{m,n} and a constant a,

which results in the overall time cost O(K logK).

2) Observations. We observe from the previous work [25]

[4] [28] [16] that a lager amount of time is wasted verifying

each individual tag repetitively. Take [16] as an example.

Suppose |X| = 10, 000, |Y | = 20, 000, |Z| = 1, 000 : 2, 000 :
9, 000 and Pfail = 10−4, the number of rounds is equal to

21 [16]. As shown in Fig. 1, after the first 7 rounds, there are

79 non-target tags when |Z| = 1, 000, and only 14 non-target

tags left when |Z| = 9, 000, indicating that the remaining 14
rounds in nature are repeated to verify the correctness of search

result. For clearness, look at Fig. 2 where almost the whole

filtering vector consists of responses from target tags. As only

one ineligible tag exists, all slots here are in fact used to check

target tags individually. Moreover, after this round, all target

tags have been found, but the existing schemes still run round

after round until the required failure probability is achieved,

leading to the waste of a large amount of time. Therefore, if

we can design a compact structure to verify tags in batches

with a low failure probability, the overall time cost will be

reduced significantly.

This motivates us to wonder: can we design a scheme that
achieves a failure probability O( 1

Ka ) while reducing the prior
time cost O(K logK) towards O(K)?

3) Design overview. Motivated by the observations above,

the design of our scheme follows the guidelines below:

• First, we should verify tags in batches instead of individ-

ual verification in previous work, and refine search result

only when the verification result is false.

• Second, the number of runs should be reduced signif-

icantly compared to O(logK) in the previous work,

suggesting a better scalability to reliability requirement.

Based on these guidelines, we propose a fast and reliable

Tree-based Tag Search (TTS) that exploits an adaptive tree

to map tags into multiple groups. TTS operates in multiple

rounds each consisting of two phases: 1. Batched verification:

the reader verifies correctness of tags group by group. 2.

Refinement: if the verification result is false, we further

refine this group by examining tags individually. As we will

demonstrate in Sec. IV, our scheme is able to achieve the

failure probability 1
O(Ka) with a time cost of O(K log(d) K),

which is significantly superior to the previous O(K logK).

Fig. 2. Filtering vector in prior work. 0 and 1 mean zero and at least one
response in the slot. Ineligible tags can be found in a slot of which the state
is different between supposed and received filtering vectors.

III. TTS DESIGN

In what follows, we first illustrate the basic idea of TTS

with a simple example, and elaborate its design and theoretical

performance analyse, subsequently.

A. TTS: Basic Idea

In this subsection, we introduce the basic idea of TTS with

Example 1. Note that a non-leaf node and a leaf node are

referred to as node and leaf, respectively for clearness. The

height of a node means its distance from leaves, and the level

i is the layer where nodes with the hight i locate.

Example 1. Given n = 4 wanted tags: X={x0, x1, x2, x3}
and there are m=4 present tags: Y={y0, y1, y2, y3} in the

RFID system. Suppose x1 = y1 and x2 = y2, we have the

target tag set Z = {x1, x2}.

Before executing TTS, we first build a tree of the depth 2,

as shown in Fig. 3. Specifically, we use a hash function h to

hash the tags in X and Y into K = 4 values in {0, 1, 2, 3}.

Suppose h(x0)=h(x1)=h(y1)=0, h(y0)=1, h(x2)=h(y2)=2,

and h(x3)=h(y3)= 3. Then we use these 4 values as the leaves

of the tree, i.e., leaves 0 to 3. Each leaf can be interpreted as

a set of tags assigned to it from X and Y . Let each node at

the level 1 have logK=2 children (i.e., leaves), and let the

node at the level 2, i.e., root, have K
logK=2 children, we can

obtain the tree shown in Fig. 3. By the tree, we divide the tag

sets X and Y into different groups, i.e., tags are assigned to

different leaves and nodes.

Obviously, two same tags, i.e., target tags, will be assigned

to the same leaf, e.g., x1 and y1, x2 and y2, due to the fact that

h(x)=h(y) if the tag ID x=y. While two different tags may

also map to the same leaf, e.g., x0 and y1, x3 and y3, because

of hash collisions. Two questions thus arise: 1. How to know

whether only the same tags map to a leaf? 2. If different tags

from X and Y map to the same leaf, how to filter out ineligible

tags, e.g., non-target tags x0 and x3 and non-wanted tags y0
and y3? To address the challenges above, TTS proceeds in 2
rounds from the bottom of the tree to the up.

The first round: TTS operates at the level 0, as shown in
Fig. 4(a), where each leaf can be interpreted as a slot. The

reader first requests present tags assigned to the leaf (slot) 0
to reply and a new hash function is used by tags here. Since

only the tag y1 qualifies, it sends a 1-bit hash code at this slot,

assumed to be 1. With the same hash function, the reader has

the hash codes for the tags x0, x1, assumed to be 0 and 1. As
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Fig. 4. Illustrate TTS on top of the tree in Example 1.

only the codes of x1 and y1 are equal, the reader considers

x0 to be non-target definitely, and temporarily regards x1 as

a target tag while keeping y1 active for further verification.

The reader repeats these operations for the leaves (slots) 1
to 3. As no tag of X maps to the slot 1, y0 is found non-

wanted and will keep silent until TTS finishes. Moreover, as

x2 = y2, the reader regards x2 as a target tag temporarily.

While for the leaf 3, though different, x3 and y3 still have the

same code 0 due to the hash collision, and will keep active

for further verification. After this round, the reader holds an

updated candidate target tag set {x1, x2, x3}, and y1, y2, y3
are still active in the system.

The second round: TTS operates at the level 1, as shown
in Fig. 4(b), where each node can be regarded as a slot and

new hash functions are used. The reader executes Phase 1:

batched verification function. It first requires each of active

tags mapped to the leaves in the subtree of the node 0, i.e.,

leaves 0 and 1, to reply with its new 2-bit hash code together.

As only y1 qualifies and x1=y1, their codes are equal, x1 is

regarded as a target tag with higher probability than the first

round. Subsequently, the tags y2, y3 assigned to the leaves 2, 3
of the node 1 reply with their new hash codes, 00 and 11. For

the concurrent transmission, the reader receives an aggregation

of two physical-layer signals, assumed to be 11. From the

hash codes of x2 and x3, i.e., 00 and 01, the reader calculates

their combination, supposed to be 01. As the received value is

different from the calculated one, there is at least one ineligible

tag in X and Y mapped to the leaves 2 or 3.

To filter out ineligible tags, the reader further queries y2
and y3, and the one with the small leaf number responds first

with a 3-bit hash code. The reader first receives 011 from

y2, which is the same as x2, and regards x2 as a target tag.

Similarly, as the codes of y3 and x3 are unequal, the reader

finds x3 ineligible. After this round, the reader has the final

result Z∗={x1, x2} that is equal to the ground truth Z.

Note that we will formally present how to configure the

hash code sizes used in TTS in Sec. IV such that the required

failure probability and time cost can be guaranteed.

B. Tree Architecture

As mentioned in Sec. II-B, an efficient tag search should be

able to verify tags in batches as well as should have limited

rounds. In this subsection, we show how to group tags by a

tree of depth d, where d is the number of rounds in TTS.

The challenge lies in that we need to carefully design the

relationship between the tree depth and node degrees, which

decides the performance of TTS.

Given the wanted tag set X and the present tag set Y , the

reader has K=max{m,n}. Then, the reader constructs a tree

following the rules [3] below: First, it maps each wanted tag

ID into one of values in [K]={0, 1, 2, · · · ,K − 1}, referred

to as buckets, by a uniform hash function. Second, it builds a

tree with these K buckets as its leaves.

Step one: hash tags into buckets. Since a tag ID is 96-bit,

there would be 296 RFID tags at most. Suppose the universe is

U , we define h: U→[K] as a hash function that can uniformly

map each tag into [K]. We present a hash value in decimal and

the hash code length is logK. For each j ∈ [K], we define

a set Xj = {x ∈ X|h(x) = j} representing the tags of X
that are mapped to the bucket j. With h, each tag of Y is also

hashed to [K], which, however, is unknown to the reader. We

define Yj = {y ∈ Y |h(y) = j} for Y .

Step two: build the tree. Let T denote the tree of the depth

d. Define the set of nodes with the height 0 ≤ i ≤ d as Li.

We build T , as depicted in Fig. 5 following the rules below:

1) We make the K buckets obtained in the step one as the

K leaves. That is, each leaf j stands for a set of the tags

that are mapped to its corresponding hash value, i.e., j.

We denote by A(j) and B(j) the set of tags of X and Y
assigned to the leave j, respectively.

2) Denote by δi the degree of each node with the height i.
That is, each node v at the level i has δi children. For

i = 1, let δ1 = log(d−1) K; and let δi =
log(d−i) K

log(d−i+1) K
for

2 ≤ i ≤ d.

We can extract two pieces of information from the tree.

First, tags are assigned to different groups. Each leaf j stands

for tags mapped to it. For each node v at the level 0<i<d, tags

of all leaves in its subtree can be regarded as those assigned

to it, forming a bigger group than leaves, e.g., blue and red

rectangles in Fig 5. As a result, the reader can query at a leaf or

a node a group of tags, enabling batched verification. Second,

A(j) at each leaf j is actually a candidate target tag set due

to the fact that if there exists at least one target tag in A(j),
i.e., A(j)∩Z �=∅, then at least one tag of Y is also mapped to

the leaf j, i.e., A(j)∩B(j) �=∅. These candidate tag sets can

be regarded as initial input of TTS. Denote by A(j)−1=A(j)
and B(j)−1=B(j) the initial input for every leaf j.

For a node v∈T , let Θ(v) be the set of all leaves in the

subtree of v. We further denote the initial candidate target tag
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set for every node v by A−1
v =∪j∈Θ(v)A(j)−1 and B−1

v =
∪j∈Θ(v)B(j)−1, and for the tree by A−1=(A(j)−1)0≤j≤K−1

and B−1=(B(j)−1)0≤j≤K−1.

C. General Search Process

Having described the tree design, we start formally present-

ing our tag search scheme TTS that operates on the tree for

d rounds. The execution of d rounds starts from the level 0
where the leaves locate and terminates after the level d−1.

Each round i for 1≤i≤d−1 consists of two phases where

two hashing-based functions are executed: 1) verifying the

correctness of the candidate tag set for each node v; 2) refining

candidate tag sets that are proven incorrect in the first phase.

In the round i = 0, the reader can verify and refine candidate

sets in one phase. Specifically, TTS works as follows:

In the first round i = 0, the reader first queries the tags of

Y in the system with the command containing the frame size

K, the hash code size r0, and a random seed. On receiving the

query, each tag uses the hash function h to map its ID to one

slot of the frame, i.e., a leaf in the tree, and then transmits in its

chosen slot an r0-bit hash code generated by a hash function

h1. Here the existing techniques [24] [10] [20] are used to

decode collisions when multiple tags respond in the same slot,

which will be discussed later. In each slot, after obtaining hash

codes from tags, the reader compares them with those of the

wanted tags in X selecting this slot. If they match, the reader

tentatively believes them to be the same tags, i.e., the target

tags. Otherwise, they are ineligible tags, i.e, non-target tags

in X and non-wanted tags in Y . Then the reader ACKs the

found ineligible tags to silence them until TTS ends, while the

others will keep active. Therefore, after this round, for each

0 ≤ j < K, the reader deducts the non-target tags from the

initial input A−1(j) = A(j) and gets an updated candidate

set, denoted by A0(j).
Each of the remaining d−1 rounds, i.e., the levels 1 to d−1

of the tree, has two phases. Consider an arbitrary round i for

1≤i≤d− 1, with the candidate set Ai−1(j) of the leaf j from

the round i−1, TTS proceeds as follows:

Phase 1: batched verification. The reader further queries

tags in Y with the parameters: the frame size K, the node

degree δi at the level i, the hash code size ri and �i, and a

random seed. Each tag still picks the same slot as the round

0 by h such that the structure of the tree does not change.

While in the slot v, i.e., node v at the level i, a tag whose

chosen slot number is between v·δi and (v+1)·δi − 1 replies

with a ri-bit hash code outputted from h1. That said, tags

assigned to the node v can be verified together. Moreover,

executing Li slots in this frame, i.e., the number of nodes at

the level i, is enough to cover all K leaves. As more tags are

scheduled to respond in one slot, the methods [24] [10] [20]

separating the collided transmission may not work effectively,

but fortunately, in this phase, we just need to check whether the

tags in Y selecting this slot, accordingly those of Y mapped

to the leaves v·δi to (v+1)·δi−1, are target tags. To this end,

the reader measures the channel and aggregates physical-layer

symbols from multiple tags, as implemented in [24] [26] [5]. If

the hash codes of the responsive tags and the wanted tags are

the same, their aggregated values should be the same. In this

case, all responsive tags in this slot are temporarily regarded

as target tags and will keep active, and the reader will start

the next slot; otherwise, Phase 2 will be executed.

Phase 2: refinement. Because Phase 1 finds unequal hash

codes in the node v (slot v), TTS refines candidate tag sets of

all leaves in the subtree of the node v one by one. To this end,

each of the tags mapped under h to the leaves between v·δi
and (v+ 1)·δi−1, sends an �i-bit hash code by hash function

h2 in the order of their leaf numbers, e.g., from leaf 2 to 3
in Fig. 4 in Example 1. TTS then proceeds similarly as the

round 0. After Phase 2, TTS starts to search in a new slot.

After the current round, for each leaf j, the reader deducts

the found ineligible tags from the candidate set Ai−1(j) and

obtains an updated set Ai(j) that will be used as the input

for the next round. TTS then starts the new round, which

is identical except that the founded non-wanted tags in Y
will keep silent and the used parameters are different. The

above process repeats round after round until the number of

the executed rounds exceeds d when the reader is able to

obtain the final candidate sets for all leaves such that their

union set induced by the reader at the root of T is exactly

Z∗ = X ∩ Y = Z with a high probability.

IV. PERFORMANCE ANALYSIS

From Sec. III-A and III-C, we know that tree structure and

success probability of two hashing-based operations, namely

the verification and refinement functions, play important roles

in the performance of TTS. Therefore, we next formally study

how to design these parameters such that TTS can achieve
1

O(Ka) failure probability and O(K log(d) K) time cost.

A. The failure probability of TTS

We first analyse success probability of verification func-

tion. As ri-bit hash codes are used at each node v in each

round 1≤i≤d−1 to compare aggregated hash values of its

candidate tags, i.e., tags in the set Aj−1
v =∪j∈Θ(v)A(j)j−1 and

Bj−1
v =∪j∈Θ(v)B(j)j−1. As stated in Lemma 2 in Appendix,

if two sets are nonidentical, the verification function can

output Ai−1
v �=Bi−1

v with probability at least 1− 1
2ri . For the

refinement function, its outputs in each round 0≤i≤d−1 are

the updated candidate tag sets A(j)i and B(j)i for a leaf

j with the input of A(j)i−1 and B(j)i−1. As described in

Sec. III-C, there are A(j)i−1 + B(j)i−1 tags at the leaf j



each generating �i-bit (r0-bit in the round 0) hash code.

According to Lemma 3 in Appendix, we set such �i =
O(b log(|A(j)i−1| + |B(j)i−1|)), similarly for r0, that the

refinement function can succeed for each leaf with probability

as least 1− 1
(|A(j)i−1|+|B(j)i−1|)b .

We make the failure probability of the verification function

and the refinement function equal to the same value pi:
1

2ri
=

1

(|A(j)i−1|+ |B(j)i−1|)b = pi (1)

such that after the round i for every leaf j it holds that A(j)i =
B(j)i with the probability at least 1 − pi if A(j)i ∩ B(j)i �=
∅. The rationale lies in that in each round i, if j is in the

subtree of a node v that passes verification at level i, we know

Ai−1
v =Bi−1

v and thus A(j)i = B(j)i with success probability

at least 1− pi. Otherwise, j is in the subtree of a failed node

v at level i. In this case, the refinement function is executed

for j with success probability at least 1− pi.
Note that as TTS operates, it needs to achieve the increasing

success probability. To this end, in this paper, we configure pi
for round 0 ≤ i ≤ d− 1 as

pi =
1

(log(d−i+α) K)β
, (2)

where α and β are two constants and we will investigate how

to configure them shortly. It is easy to check that the success

probability 1 − pi is proportional to the round number i. In

order to achieve pi, recall (1), we have the hash code sizes as

ri =

{
β log(d−i+α+1) K if 1 ≤ i ≤ d− 1

β log(d+α+1) K if i = 0,
(3)

�i = β log(d−i+α+1) K for 1 ≤ i ≤ d− 1. (4)

Given pi, as each node v at level i>0 has Θ(v)=log(d−i) K
leaves in its subtree (c.f. (9) in Appendix) each succeeding

with probability 1−pi, after round i the success (i.e., Ai
v=Bi

v)

probability for each node v, denoted by qv , can be derived as

qv ≥ 1−Θ(v)pi ≥ 1− log(d−i) K(
log(d−i+α) K

)β
from the union bound over all its leaves.

Iteratively, after round i=d−1, TTS reaches the top of the

tree, i.e., the root, and its success probability (Ad−1=Bd−1)
is thus at least 1− logK

(log(1+α) K)
β . That is, the achieved failure

probability by TTS, denoted by P ∗
fail, satisfies

P ∗
fail ≤

logK(
log(1+α) K

)β . (5)

B. Time cost of TTS

Recall the execution of TTS, its overall expected time cost

consists of two parts: one for the verification and the other for

the refinement. Next, we start to study the first part.

As TTS executes the verification function from round i=1
to the round d−1 at each node of level i with hash code size

ri, the overhead for the verification, denoted by T1, is

T1 =

d−1∑
i=1

|Li| · ri =
d−1∑
i=1

βK log(d−i+α+1) K

log(d−i) K
,

where |Li| is formulated in (8) in Appendix.

For the second part, TTS conducts the refinement function

once in the round 0 but probabilistically in the other d−1
rounds. Specifically, at level i, i.e., the round i, the reader will

carry out the refinement function on each leaf of node v if this

node fails to pass verification. This would happen as long as

node v has one incorrect child. For a leaf j let Vi(j) denote

its unique predecessor node at the level i and v is a child of

Vi(j). The probability of executing the refinement function on

the leaf j in the round i can be calculated as

Pr{Vi(j) does not pass the verification} ≤ δi · (1− qv),

where the inequality holds by a union bound. Moreover, as

there are d rounds and K leaves, we can compute the expected

time cost for the refinement function, denoted by T2, as

T2 ≤
K∑
j=1

(
r0 +

d−1∑
i=1

δi · (1− qv) · ri
)
.

Denote by T the overall time cost of TTS, we thus have

T ≤
d−1∑
i=1

βK log(d−i+α+1) K

log(d−i) K
+O

(
βK log(d+α+1) K

)

+

K∑
j=1

d−1∑
i=1

βδi(log
(d−i) K) log(d−i+α+1) K(
log(d−i+α) K

)β . (6)

With the general formulations of P ∗
fail and T , we now

configure α and β and d such that the failure probability is at

most 1
O(Ka) and the overhead is at most O(K log(d) K).

Recall (2), we can observe that d− i+α cannot be smaller

than zero for all i ∈ [0, d − 1], requiring that α ≥ −1. Now,

let α = −1 and β ≥ 2 and substitute them into (5), we have

P ∗
fail ≤

logK

Kβ
≤ 1

Kβ−1
, (7)

for a large K. Furthermore, substitute them into (6) yields

T = O(K log(d) K),

which confirms our claim on the performance of TTS. Besides,

in this setting, we have the hash code size ri and �i used in

round 1 ≤ i < d are in the same order of magnitude as the

number Θ(v) of leaves of a node v, i.e., O(log(d−i) K).
Next, we would like to show that TTS can also meet the

user-defined requirement on the failure probability. Recall (5),

given the required failure probability Pfail, we have

P ∗
fail ≤ Pfail ⇒ β ≥ log(2) K − log(Pfail)

log(2+α) K
.

In this case, we should study how to set α, β and d
such that the overall time cost of TTS is minimized. Having

known α≥−1 from the previous analysis, we now determine

the upper bound for α. From the definition of the arithmetic

operation log, we know that the allowed maximum value of

α is bounded by the constraint that log(α+2) K≥1. For d,

its minimum value is 1 and its maximum value is the one

satisfying log(d) K≥1. Therefore, the optimal parameter col-

lection, denoted by {α∗, β∗, d∗}, can be obtained by solving

min
α,β,d

T subjected to the constraints above. Note that given a

large K=296, then log(2) K=6.6 and log(4) K=1.4. As the

feasible solution space is small, we could directly search for

the optimum with which the tree structure will be fixed.
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(a) Pfail = 10−2, # of runs: 100
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(b) Pfail = 10−3, # of runs: 1, 000
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(c) Pfail = 10−4, # of runs: 10, 000

Fig. 6. Relationship between theoretical and simulation results under different Pfail. Parameter setting: |X| = 5, 000, |Y | = 10, 000, λ = 0.5.

Discussion on the assumption. In this paper, the existing

techniques [24] [10] [20] are used to decode the collision when

multiple tags respond in the same slot. It has been proven

in their implementations that the reader is able to decode

the signals from concurrent transmission of up to 16 tags.

Theoretically, at most O( logK
log logK ) tags [18] select the same

slot when the number of tags is equal to the frame size K,

so even K = 232, there will be at most 7 tags in a slot and

just one tag in a slot on average. We thus assume that these

methods operate successfully.

V. PERFORMANCE EVALUATION

A. Simulation Setup and Performance Metrics

In the simulation, we use the communication parameters

specified in the EPC global C1G2 standard [6]. In our exper-

iments, we set tag-to-reader transmission rate and reader-to-

tag transmission rate to 100kbps as in [4], accordingly, the

time cost for one-bit transmission is 10−5 sec.. The ratio of

the target tags is defined as λ= |X∩Y |
min{|X|,|Y |} where X is the

set of wanted tags and Y is the set of tags currently present

in the system. Moreover, the parameters used in TTS are set

according to our theoretical analysis. Besides, we also set up

E-STEP with its optimal parameter configuration [16].

The reliability is the paramount metric. In the simulation, a

protocol needs to find all target tags with the required failure

probability: Pr{Z∗ = Z} ≥ 1 − Pfail. As a result, to show

the reliability of TTS, it runs N times if the required failure

probability is 1
N in Sec.V-B1. Another important metric is the

time it takes to meet a particular reliability requirement, which

reflects the protocol efficiency. This is regarded as the primary

metric in Sec.V-B2.

B. Simulation Results

1) TTS investigation: We demonstrate that TTS provides

reliable tag search within bounded average time theoretically

established in our analysis. To this end, we conduct a series

of three experiments varying failure probability Pfail from

10−2 to 10−3 to 10−4, respectively, while fixing the other

parameters as follows: |X|=5, 000, |Y |=10, 000, and the

target tag ratio λ=0.5. Moreover, TTS is executed for 100
times, 1, 000 times and 10, 000 times in the three experiments,

respectively. After each experiment, we record the number of

times of Z∗ �=Z, and a protocol fails to guarantee the required

failure probability if this number exceeds one.

TABLE II
PERFORMANCE INVESTIGATION OF TTS. PARAMETER SETTING:

|X| = 5, 000, |Y | = 10, 000, λ = 0.5

Required Pfail Achieved P ∗
fail d α β

10−2 0% 2 0 3

10−3 0% 3 0 4

10−4 0% 2 -1 2

Table II lists the failure probability of TTS and the derived

optimal parameters used in TTS. It can be observed that the

failure probability of TTS is zero in all three experiments, that

is, TTS is able to find all target tags with the required failure

probability. Moreover, with the increase of the required Pfail,

α becomes from 0 to −1. This verifies our theoretical analysis

in (7) that TTS is able to achieve the failure probability at most
1

Kβ−1 when α = −1. Exactly, here β = 2 and K = 104, so we

obtain 1
Kβ−1 = 10−4. In addition, when Pfail becomes from

10−2 to 10−3, β increases by one while α keeps constant,

suggesting the ability of TTS of adjusting its parameters to

the user-defined requirement. In addition, depth of the tree d
is also tunable to minimise time cost given the required Pfail.

We also record execution time of TTS in each run and obtain

its average value over all runs, which are depicted in Fig. 6(a),

Fig. 6(b) and Fig. 6(c). One thing worth noting is that, the

theoretical T is the upper bound of the expected execution

time. As illustrated in the three figures, the average execution

time calculated from the simulation, referred to as average

T , is upper bounded by the theoretical T derived from our

analysis. And the relative error between them is less than

5%. The results also suggest that the execution time increases

slowly compared to the significant change of the required

failure probability. Specifically, TTS just consumes extra 20%
time to reduce the failure probability from 0.01 to 0.0001.

2) Performance comparison: In this section, we start com-

paring performance of TTS with the state-of-the-art proba-

bilistic tag search E-STEP [16] and the deterministic approach

in [4] that broadcasts IDs of the wanted tags one by one.

First, we compare the time efficiency of three protocols

under different wanted tag population |X|. Given the particular

failure probability Pfail = 10−5, we set the number of the

present tags |Y | = 20, 000 and the target tag ratio λ = 0.5
while changing |X| from 10, 000 to 30, 000 by the step of

5, 000. Fig. 7 depicts the execution time used by each of three

approaches to fulfill the tag search. As shown in the figure,
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Fig. 7. Performance comparison with different |X|:
Pfail = 10−5, |Y | = 20, 000, λ = 0.5.
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Fig. 9. Performance comparison with different λ:
Pfail = 10−4, |X| = 50, 000, |Y | = 60, 000.

TABLE III
PERFORMANCE COMPARISON OF TTS, E-STEP AND DETERMINISTIC

PROTOCOL: |X| = 20, 000, |Y | = 50, 000, λ = 0.5

Pfail 10−4 10−6 10−8 10−10 10−12 10−16

TTS 3.4 3.5 3.5 4.7 4.7 5.6
E-STEP 4.3 6.0 7.8 9.6 11.3 14.9
Deterministic 19.4 19.4 19.4 19.4 19.4 19.4

TTS is the most time-efficient and the change of the wanted

tag population size has no significant impact on its execution

time. Specifically, with the same Pfail, the execution time

of E-STEP is at least twice as much as that of TTS among

all five cases. From a different point of view, this result also

suggests that given a certain amount of searching time, the

failure probability of TTS will be much smaller than E-STEP.

Second, we compare the time efficiency of three approaches

under different present tag population |Y |. Given the particular

Pfail = 10−5, we set the number of the wanted tags |X| =
20, 000 and the target tag ratio λ = 0.5 while changing |Y |
from 10, 000 to 30, 000 by the step of 5, 000. From Fig. 8, we

can observe the similar results that the time efficiency of TTS

is significantly superior to E-STEP.

Third, we compare the time efficiency of three proto-

cols under different target tag ratios λ. Given the particular

Pfail = 10−4, we use the following setting: |X| = 50, 000,

|Y | = 60, 000, and λ = 0.3 : 0.1 : 0.7. The simulation results

are exhibited in Fig. 9. As shown in the figure, TTS still

remarkably outperforms E-STEP, specifically, with the perfor-

mance gain of up to 62%. Moreover, E-STEP experiences a

significant increase in the execution time with the increase of

the target tag ratio. In contrast, TTS performs more stably.

Besides evaluating the impact of |X|, |Y | and λ, we further

compare the performance of three approaches with diverse

failure probabilities Pfail. To this end, we fix |X| = 20, 000,

|Y | = 50, 000 and λ = 0.5 while varying Pfail from 10−4

to 10−12. Table III summarizes the time spent by each of the

three approaches. As illustrated in Table III, TTS achieves the

required failure probability within the least time. Especially

under the smaller Pfail, TTS only consumes less than the

half of the execution time of E-STEP. For a comprehensive

comparison, we conduct another experiment where the setting

above does not change except that |X| is set to 100, 000.

From the results listed in Table IV, we can draw the similar

conclusion that TTS is of greater scalability to reliability

TABLE IV
PERFORMANCE COMPARISON OF TTS, E-STEP AND DETERMINISTIC

PROTOCOL: |X| = 100, 000, |Y | = 50, 000, λ = 0.5

Pfail 10−4 10−6 10−8 10−10 10−12 10−16

TTS 7.4 7.5 7.5 9.8 9.8 12.3
E-STEP 9.7 15.3 18.5 23.2 27.4 40.5
Deterministic 97 97 97 97 97 97

requirement than E-STEP. As a matter of fact, given the

required failure probability at most 1
O(Ka) , as TTS consumes

O(K log(d) K) time compared to the O(K logK) of E-STEP,

the performance gain of TTS over S-STEP will be rather larger

when the requirement on the reliability scales up.

VI. RELATED WORK

Various protocols have been proposed to collect tag IDs in

RFID systems. Existing identification protocols generally can

be classified into two categories: ALOHA-based protocols and

Tree-based protocols. In ALOHA-based identification proto-

cols [22] [12], each tag randomly selects one slot to transmit

its ID. If there is collision, the tag will continue participating

in the next frame until its ID is received successfully. In tree-

based identification protocols [21] [9], the reader encodes all

tag IDs as leaves of a tree and requires tags with matching

masks to transmit their IDs. Although these schemes can be

borrowed to search for tags, they spend too much time sending

tag IDs and are thus inefficient in large-scale systems [4].

Many research efforts have also been devoted to moni-

toring missing tag event and unknown tag event. Missing

tag monitoring protocols aim at probabilistically [17] [5] or

exactly [14] [26] finding out the tags that should exist in the

system but actually are absent. On the other hand, unknown

tag detection [7] and identification [15] are to probabilistically

detect and deterministically identify the tags whose IDs are not

recorded by the system. Opposite to missing and unknown

tag monitoring, the tag search problem focuses on finding a

particular set of tags in interrogation areas.

Several probabilistic approaches have been proposed to

address the tag search problem. The works [25] [4] employ

Bloom filter to encode tag IDs, accelerating the tag search task.

The former [25], named CATS, works on the hypothesis that

the cardinality of the wanted tag set is smaller than that of the

present tag set in the system. It thus may not work when the

assumption fails [4]. Instead of transmitting a long Bloom filter



in CATS, ITSP [4] decomposes it into multiple short filtering

vectors and uses them to filter out ineligible tags iteratively,

which reduces time cost. To accelerate search process, two

most recent works called E-STEP [16] and PLAT [28] exploit

testing slots and non-testing slots to filter out ineligible tags.

While PLAT [28] assumes that the reader knows IDs of all

tags in the system besides that of wanted tags; therefore, it

cannot work in the scenario in the presence of unknown tags

in [25] [4] [16] and this paper. In essence, the existing works

require time cost O(K logK) to achieve failure probability

O( 1
Ka ). Differently, this paper introduces a tree-based tag

search scheme that reduces the time cost to O(K log(d) K).

VII. CONCLUSION

This paper studied the tag search problem in large-scale

RFID systems. We designed a fast and reliable Tree-based Tag

Search (TTS) that exploits an adaptive tree to map tags into its

internal nodes. TTS enables batched verification by verifying

tags at each node from the bottom to the up with the number of

groups decreasing rapidly. We theoretically demonstrated that

TTS can achieve time cost O(K log(d) K) while guaranteeing

required failure probability 1
O(Ka) , providing a significant im-

provement over prior O(K logK). RFID tags are of massive

amount, which are generally orders of magnitude higher than

conventional network devices. Our tree-based design sheds

lights in effectively searching the tags. For the future work,

we are implementing it on the state-of-the-art tags and intend

to further improve its efficiency. Moreover, we are planning

to design a Bloom filter on top of the tree, which may also be

applied in other large-scale networked systems, e.g., stealthy

network activity detection in the Internet.
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APPENDIX

Lemma 1. Given T , let Li denote the set of nodes of the
height 0 ≤ i ≤ d. For an arbitrary node v ∈ T , let Θ(v)
denote the set of all leaves in the subtree of v. It holds for
i-level Li and Θ(v) that:

|Li| =
{
K, if i = 0

K
log(d−i) K

, if 1 ≤ i ≤ d,
(8)

|Θ(v)| =
{
1, if i = 0

log(d−i) K, if 1 ≤ i ≤ d.
(9)

Proof. For Li it holds when i=0 and d since T has one root

and K leaves. As the node degree at the level 1≤i≤d−1 equals

δi, the number of the nodes with height i can be computed

from the top down as
∏d

i′=i+1δi=
K

log(d−i) K
. For Θ(v), v is a

leaf when i = 0, so |Θ(v)| = 1. When 1 ≤ i ≤ d, as each node

has δi children, |Θ(v)| can be obtained from
∏i

i′=1 δi.

Lemma 2. [19] [3] [18] Given a hash function into r bits,
if sets A and B are identical, the aggregated hash value of
A is equal to that of B with probability 1. Otherwise, their
aggregated values are unequal with probability at least 1− 1

2r .

Lemma 3. [18] For any set of u elements, a hash function
into O(b log u) bits for any b > 0 has no hash code collision
for all u elements in this set with probability at least 1− 1

ub .


