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Abstract—We consider the multichannel opportunistic access
problem, in which a user decides, at each time slot, which channel
to access among multiple Gilbert-Elliot channels in order to
maximize his aggregated utility (e.g., the expected transmission
throughput) given that the observation of channel state is error-
prone. The problem can be cast into a restless multiarmed bandit
problem which is proved to be PSPACE-Hard. An alternative ap-
proach, given the problem hardness, is to look for simple channel
access policies. Whittle index policy is a very popular heuristic
for restless bandits, which is provably optimal asymptotically
and has good empirical performance. In the case of imperfect
observation, the traditional approach of computing the Whittle
index policy cannot be applied because the channel state belief
evolution is no more linear, thus rendering the indexability of
our problem open. In this paper, we mathematically establish the
indexability and establish the closed-form Whittle-index, based
on which index policy can be constructed. The major technique
in our analysis is a fixed point based approach which enable us
to divide the belief information space into a series of regions
and then establish a set of periodic structures of the underlying
nonlinear dynamic evolving system, based on which we devise
the linearization scheme for each region to establish indexability
and compute the Whittle index for each region.

Index Terms—Restless bandit; Whittle index; indexability;
fixed point; nonlinear operator

I. INTRODUCTION

A. Background
We consider an opportunistic multichannel communication

system with heterogenous Gilbert-Elliot channels [3], in which
a user is limited to sense and transmit only on one channel
each time due to limitation on sensing capability1. Given that
channel sensing in practice is not perfect, the fundamental
optimization problem we address in this paper is how the
user exploits the imperfect sensing results and the stochastic
properties of channels to maximize its utility (e.g., expected
throughput) by switching among channels opportunistically.

B. Related Works
The opportunistic channel access can be cast into a restless

multiarmed bandit (RMAB) problem, which is proved to be

1The technical analysis in this paper can be extended to address the case
where a user is allowed to sense a fixed number of channels.

PSPACE-hard [1]. To the best of our knowledge, very few
results are reported on the structure of the optimal policy of
a generic RMAB due to its high complexity.

The myopic strategy, due to its simple and tractable struc-
ture, has recently attracted extensive research attention. It
essentially consists of sensing the channels that maximize the
expected immediate reward while ignoring the impact of the
current decision on future reward. Along this research thrust,
the optimality of the myopic policy is partially established
for the homogeneous Gilbert-Elliot channel case under perfect
sensing [1]. In [2], the authors studied the case of hetero-
geneous channels and derived a set of closed-form sufficient
conditions to guarantee the optimality of the myopic policy. In
[1], the authors proposed a sufficient condition framework for
the optimality of myopic policy. In [1], the authors gave the
sufficient conditions for multi-state channels. For the imperfect
sensing Gilbert-Elliot channels, [8] proved the optimality of
the myopic policy for the specifical case of two channels.
In [2, 2, 2], the authors derived closed-form condition to
guarantee the optimality of the myopic policy for arbitrary
number of channels.

Generally speaking, the structure of the optimum access
policy is only characterized for a subset of parameter space
under which the myopic policy is proved optimum. Beyond
this parameter space, we need to turn to a more generic policy,
Whittle index policy, introduced by P. Whittle in [2]. The
Whittle index policy has been a very popular heuristic for
restless bandit, which, while suboptimal in general, is provably
optimal in asymptotic sense [2, 2] and has good empirical
performance. The Whittle index policy and its variants have
been studied extensively in engineering applications, e.g.,
sensor scheduling [1, 1], multi-UAV coordination [1], crawling
web content [9], channel allocation in wireless networks [1, 7],
and job scheduling [1, 2]. More comprehensive treatments of
indexable restless bandits can be found in [4–6].

C. Our Work and Contributions

The central pivot in the Whittle index policy analysis is
to establish the indexability of the problem and compute the



corresponding index. In our problem, for a subset of specific
scenarios characterized by the corresponding parameter spaces
(e.g., [2, 2]), the Whittle index policy degenerates to the
myopic policy. However, beyond those scenarios, the structure
of the index-based policy is still open, which is the focus of
this paper (cf. Table I ).

TABLE I
SUMMARY OF RELATED WORK AND THIS PAPER

parameter domain policy optimality
p11 ⩾ p01, ϵ ⩽ p01(1−p11)

p11(1−p01)
myopic optimal [2]

p11 ⩽ p01, ϵ ⩽ p11(1−p01)
p01(1−p11)

myopic optimal [2]

p
(i)
01 ⩾ p

(i)
11 , ϵi ⩽

(1−p
(i)
11 )·p(i)01

(1−p
(i)
01 )·p(i)11

index this paper

The major technical challenge to establish the indexability
in our problem comes from the imperfect sensing, where
the false alarm rate is involved in the propagation of belief
information and makes the value function no longer linear as
in existing studies. As a result, the traditional approach of
computing the Whittle index cannot be used in this context.
To the best of our knowledge, there does not exist a closed-
form Whittle index for the nonlinear case; only numerical
simulation is conducted under a strict assumption on the
indexability [1].

To address the challenge caused by nonlinearity, we inves-
tigate the fixed points of belief evolution function (which is
non-linear), based on which we establish a set of periodic
structures of the resulting dynamic system. We then use
the derived properties to linearize the value function by a
piecewise approach to prove the Whittle indexability and
derive the closed-form Whittle index. Our results in this
paper thus solves the multi-channel opportunistic scheduling
problem under imperfect channel sensing by establishing its
indexability and constructing the corresponding index policy.
Due to the generality of the problem, our results can be
applied in a wide range of engineering applications where
the underlying optimization problems can be cast into restless
bandits with imperfect sensing of bandit states. Therefore, the
terminology and analysis in this paper should be understood
generically.

II. SYSTEM MODEL

We consider a time-slotted multi-channel opportunistic com-
munication system, in which a user is able to access a set N
of N independent channels, each characterized by a Markov
chain of two states, good (1) and bad (0). The channel state
transition matrix P(i) for channel i (i ∈ N ) is given as follows

P(i) =

[
1− p

(i)
01 p

(i)
01

1− p
(i)
11 p

(i)
11

]
.

We assume that channels go through state transition at the
beginning of each slot t. The system operates in a syn-
chronously time slotted fashion with the time slot indexed by
t (t = 0, 1, · · · ).

Due to hardware constraints and energy cost, the user is
allowed to sense only one of the N channels at each slot t.
We assume that the user makes the channel selection decision
at the beginning of each slot after the channel state transition.
Once a channel is selected, the user detects the channel state
Si(t), which can be considered as a binary hypothesis test:

H0 : Si(t) = 1 (good) vs. H1 : Si(t) = 0 (bad).

The performance of channel i state detection is characterized
by the probability of false alarm ϵi and the probability of miss
detection δi:

ϵi := P{decide H1 | H0 is true },
δi := P{decide H0 | H1 is true }.

Based on the imperfect detection outcome in slot t, the user
determines whether to access channel i for transmission. We
denote the action on channel n made by the user at slot t by
an(t), i.e.,

an(t) =

{
1, if channel n is chosen in slot t,
0, if channel n is not chosen in slot t.

Thus,
∑N

n=1 an(t) = 1 for all t, indicating that exactly one
channel is chosen in each slot.

Since failed transmissions may occur, acknowledgements
(ACKs) are necessary to ensure guaranteed delivery. Specifi-
cally, when the receiver successfully receives a packet from a
channel, it sends an acknowledgement to the transmitter over
the same channel at the end of slot. Otherwise, the receiver
does nothing, i.e., a NAK is defined as the absence of an
ACK, which occurs when the transmitter did not transmit over
this channel or transmitted but the channel is busy in this
slot. We assume that acknowledgements are received without
error since acknowledgements are always transmitted over idle
channels.

Obviously, by imperfectly sensing only one of N channels,
the user cannot observe the state information of the whole
system. Hence, the user has to infer the channel states from
its decision history and observation history so as to make its
future decision. To this end, we define the channel state belief
vector (hereinafter referred to as belief vector for briefness)
w(t) ≜ {ωi(t), i ∈ N}, where 0 ≤ ωi(t) ≤ 1 is the
conditional probability that channel i is in state good (i.e.,
Si(t) = 1) conditioned on the decision history and observation
history.

To ensure that the user and its intended receiver tune to the
same channels in each slot, channel selections should be based
on common observation: K(t) ∈ {0 (NAK), 1 (ACK)} in each
slot rather than the detection outcome at the transmitter.

Given the sensing action {ai(t)}i∈N and the observation
K(t), the belief vector in t+1 slot can be updated recursively
using Bayes Rule as shown in (1):

ωi(t+ 1) =


p
(i)
11 , ai(t) = 1,K(t) = 1

Γi(ωi(t)), ai(t) = 1,K(t) = 0

Ti(ωi(t)), ai(t) = 0

(1)



where,

Ti(ωi(t)) := ωi(t)p
(i)
11 + (1− ωi(t))p

(i)
01 , (2)

φi(ωi(t)) :=
ϵiωi(t)

1− (1− ϵi)ωi(t)
, (3)

Γi(ωi(t)) := Ti(φi(ωi(t))). (4)

We would like to emphasize that the sensing error intro-
duces technical complications in the system dynamics (i.e.,
φi(ωi(t))) due to its nonlinearity. Therefore, the analysis
methods and results [1, 1, 2] in the perfect sensing case where
the belief evolution is linear cannot be applied to the scenario
with sensing error.

III. PROBLEM FORMULATION

In this section, we formulate the optimisation problem of
opportunistic multichannel access faced by the user. Mathe-
matically, let π = {π(t)}t⩾0 denote the sensing policy, with
π(t) defined as a mapping from the belief vector w(t) to the
action of sensing one channel in each slot t:

π(t) : w(t) → {1, 2, · · · , N}, t = 0, 1, · · · . (5)

Let

aπn(t) =

{
1, if channel n is chosen under π(t),
0, if channel n is not chosen under π(t).

(6)

Let Πn := {aπn(t) : t ⩾ 0} be policy space on channel
n under the sensing policy π, then Π = ∪N

n=1Πn is the joint
policy space.

We are interested in the user’s optimization problem to find
the optimal sensing policy π∗ that maximizes the expected
total discounted reward over an infinite horizon. The following
gives the formal definition of the optimal sensing problem:

(OP): max
π∈Π

E

[ ∞∑
t=0

βt
N∑

n=1

(
aπn(t)(1− ϵn)ωn(t)

)]
(7)

s.t.
N∑

n=1

aπn(t) = 1, t = 0, 1, · · · ,∞. (8)

In the following, we decompose Problem (OP) into N
similar subproblems by relaxing the constraint (8),

(SP): max
πn∈Πn

E

[
∞∑
t=0

βt
(
aπn
n (t)(1− ϵn)ωn(t) + ν(1− aπn

n (t))
)]

.

(9)

To solve the original optimisation problem (OP), we first
seek the optimal policy π∗

n for subproblem n (n ∈ N ),
and then construct a feasibly approximation policy π =
(π∗

1 , π
∗
2 , · · · , π∗

N ) for the original problem (P).

IV. TECHNICAL PRELIMINARY: INDEXABILITY AND
WHITTLE INDEX

Let Vβ,ν(ω) be the value function corresponding to the sub-
problem (9), which denotes the maximum discounted reward
accrued from a single-armed bandit process with subsidy ν
when the initial belief state is ω := {ωi(0)}i∈N .

Considering the two possible actions in each slot, we have

Vβ,ν(ω) = max
{
Vβ,ν(ω; a = 0), Vβ,ν(ω; a = 1)

}
, (10)

where
Vβ,ν(ω; a = 0) = ν + βVβ,ν(T (ω)),

Vβ,ν(ω; a = 1) = (1− ϵ)ω + β
[
(1− ϵ)ωVβ,ν(p11)

+ (1− (1− ϵ)ω)Vβ,ν(Γ(ω))
]
.

Vβ,ν(ω; a = 1) denotes the reward obtained by taking action
a in the first slot following by the optimal policy in future
slots, and Vβ,ν(ω; a = 0) denotes the sum of the subsidy ν
obtained in the current slot under the passive action (a = 0)
and the total discounted future reward βVβ,ν(T (ω)).

Remark. In an infinite time horizon, a decision should be
made at each slot, and the different decision leads to different
evolution of belief information ω. Thus, in the following, we
call (10) a dynamic system without introducing ambiguity.

Remark. We would like to point out that Vβ,ν(Γ(ω)) (specif-
ically φ(ω)) brings about the nonlinear belief update of the
dynamic system (10), and leads to the complicated character-
istics of the Whittle index.

The optimal action a∗ for the belief state ω under subsidy
ν is given by

a∗ =

{
1, if Vβ,ν(ω; a = 1) > Vβ,ν(ω; a = 0)

0, otherwise.
(11)

We define the passive set P(ν) under subsidy ν as

P(ν) :=
{
ω : Vβ,ν(ω; a = 1) ⩽ Vβ,ν(ω; a = 0)

}
. (12)

We next introduce some definitions related to the indexa-
bility of our problem.

Definition 1 (Indexability). Problem (9) is indexable if the
passive set P(ν) of the corresponding single-armed bandit
process with subsidy ν monotonically increases from ∅ to the
whole state space [0, 1] as ν increases from −∞ to +∞.

Under the indexability condition, Whittle index is defined
as follows:

Definition 2 (Whittle index [2]). If Problem (9) is indexable,
its Whittle index W (ω) of the state ω is the infimum subsidy
ν such that it is optimal to make the arm passive at ω.
Equivalently, Whittle index is the infimum subsidy ν that
makes the passive and active actions equally rewarding

W (ω) =inf
{
ν : Vβ,ν(ω; a = 1) ⩽ Vβ,ν(ω; a = 0)

}
. (13)



Definition 3 (Threshold Policy). Given a certain ν, there exists
ω∗ (0 ⩽ ω∗ ⩽ 1) such that Vβ,ν(ω

∗; 1) = Vβ,ν(ω
∗; 0). The

threshold policy is defined as follows
1) a∗ = 1 for any ω (ω∗ < ω ⩽ 1 ) while a∗ = 0 for any ω

(0 ⩽ ω < ω∗ ), or
2) a∗ = 0 for any ω (ω∗ < ω ⩽ 1 ) while a∗ = 1 for any ω

(0 ⩽ ω < ω∗ ).

Definition 4. Problem (9) is CMI-indexable if the subsidy
ν computed by the threshold policy is a continuous and
monotonically increasing (CMI) function of ω.

V. SUMMARY OF MAIN RESULTS

In this section, we summarize the main results of our
paper. The detailed analysis and proofs of the results will be
presented in later sections.

Our central result is the establishment of the CMI-
indexability of the opportunistic multichannel access problem,
as stated in the theorem below.

Theorem 1. Given ϵi ⩽ (1−max{p(i)
11 ,p

(i)
01 })·min{p(i)

11 ,p
(i)
01 }

(1−min{p(i)
11 ,p

(i)
01 })·max{p(i)

11 ,p
(i)
01 }

(∀i ∈
N ), Problem (9) is CMI-indexable.

To prove the indexability, we need to prove the continuity
and increasing monotonicity of ν in ω. Thus, we first derive the
closed form ν. We then can easily show that ν is continuous
and monotonically increasing in ω.

Given the indexability result, we proceed to derive the
Whittle index in the following theorem.

Theorem 2. The Whittle index Wβ(ω) for channel i is given
as follow.

1) The case of negatively correlated channels, i.e., p
(i)
11 ⩽

p
(i)
01 : See (20).

2) The case of positively correlated channels, i.e., p
(i)
11 ⩾

p
(i)
01 : See (21).

The following corollary bridges our results with existing
body of works on myopic policy by showing that in a particular
case with stochastically identical channels, the Whittle index-
based policy we derive degenerates to the myopic policy.

Corollary 1. Wβ(ω) is a monotonically non-decreasing func-
tion of ω. As a consequence, the Whittle index policy is
equivalent to the myopic (or greedy) policy for the considered
RMAB with stochastically identical channels.

For the case of optimizing average reward, i.e., β = 1, we
derive the Whittle index W (ω) = limβ→1 Wβ(ω) as follows

Theorem 3. The Whittle index W (ω) for channel i is given
as follow.

1) The case of negatively correlated channels, i.e., p
(i)
11 ⩽

p
(i)
01 : See (22).

2) The case of positively correlated channels, i.e., p
(i)
11 ⩾

p
(i)
01 : See (23).

Based on the Whittle index, we can construct the index-
based access policy for Problem (OP): the user chooses the

channel i∗ = argmaxi∈N Wβ(ωi) for the discounted case and
i∗ = argmaxi∈N W (ωi) for the case of optimizing the average
reward.

The main challenges in obtaining the indexability result
in our problem comes from the nonlinear operator Γi(·),
summarized as below:

1) The nonlinear operator Γi(·) brings about nonlinear prop-
agation of belief information in the evolution of the
dynamic system.

2) The value function Vβ,ν(ω) is also nonlinear and in-
tractable to compute due to the nonlinearity of Γi(·).

To address the above challenges, we analyze the fixed points
of the operators Ti, Γi, as well as their combinations, and di-
vide the belief information space into a series of regions using
the fixed points. We then establish a set of periodic structures
of the underlying nonlinear dynamic evolving system, based
on which we further devise the linearization scheme for each
region.

VI. FIXED POINT ANALYSIS

In this section, we derive the fixed points of the mappings
Ti(·) and Γi(·) and their structural properties. To make our
analysis concise, we omit the channel index i.

Lemma 1 (Fixed point of T (·): p01 ≤ p11). Consider the
case p01 ⩽ p11, the following structural properties of T (ω(t))
hold:
(1) T (ω(t)) is monotonically increasing in ω(t);
(2) p01 ≤ T (ω(t)) ≤ p11, ∀ 0 ≤ ω(t) ≤ 1;
(3) T k(ω(t)) = T (T k−1(ω(t))) monotonically converges to

ω0 := p01

1−(p11−p01)
as k → ∞.

Proof. Noticing that T (ω(t)) can be written as T (ω(t)) =
(p11 − p01)ω(t) + p01, Lemma 1 holds straightforwardly.

Lemma 2 (Fixed point of T (·): p01 > p11). Consider the case
p01 > p11. Denote T 0(ω) = ω and T k(ω) = T (T k−1(ω)),
then T 2k(ω) and T 2k+1(ω) (ω ∈ [p11, p01]) converge, from
opposite directions, to ω0 := p01

1−(p11−p01)
as k → ∞. In

particular, we have
(1) T k(ω) > ω if p11 ⩽ ω < ω0;
(2) T k(ω0) = ω0;
(3) T k(ω) ⩽ ω if ω0 ⩽ ω < p01.

Proof. It is easy to obtain the lemma, noticing T (ω) = (p11−
p01)ω + p01 and −1 < p11 − p01 < 0.

Lemma 3. When ϵ ⩽ (1−max{p11,p01})·min{p11,p01}
(1−min{p11,p01})·max{p11,p01} , then

(1) φ(ω(t)) monotonically increases with ω(t);
(2) φ(ω(t)) ⩽ min{p11, p01}, ∀min{p11, p01} ⩽ ω(t) ⩽

max{p11, p01};
(3) φ(0) = 0, φ(1) = 1.

Proof. According to (3) and (4), it is easy to obtain the results.

Lemma 4. Given p01 > p11. Let Γ(ω) = T (φ(ω)), there
exists ω̄0 ∈ [T (p11), p01] such that
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Fig. 1. Γk(ω) evolution as k (p11 < p01). [U]: ω̄0 ⩽ ω ⩽ p01; [D]:
T (p11) ⩽ ω ⩽ ω̄0. Red line indicates the envelop and greed line indicates
the evolution as k.

(1) Γ(ω) > ω, if T (p11) ⩽ ω < ω̄0;
(2) Γ(ω̄0) = ω̄0;
(3) Γ(ω) < ω, if ω̄0 ⩽ ω < p01.

Lemma 5 (Fixed point of Γ(·): p01 > p11). Let Γ0(ω) = ω
and Γk(ω) = Γ(Γk−1(ω)), Γ2k(ω) and Γ2k+1(ω) (ω ∈
[T (p11), p01]) converge, from opposite directions, to ω̄0 as
k → ∞ (see Figure 1). In particular, we have

(1) Γk(ω) ⩽ ω if ω̄0 ⩽ ω < p01;
(2) Γk(ω̄0) = ω̄0;
(3) Γk(ω) > ω if T (p11) ⩽ ω < ω̄0.

VII. THRESHOLD POLICY AND ADJOINT DYNAMIC
SYSTEM

In this section, we first express the value function by
threshold policy, and then introduce an adjoint dynamic system
to facilitate the analysis on nonlinear dynamics.

A. Threshold Policy

Let L(ω, ω′) be the minimum amount of time required for
a passive arm to transit across ω′ starting from ω, i.e.,

L(ω, ω′) ≜ min
{
k : T k(ω) > ω′

}
. (14)

According to Lemma 1, we have for the case of p11 ⩾ p01

L(ω, ω′) =


0, if ω > ω′⌊
log

ω0−ω′
ω0−ω

p11−p01

⌋
+ 1, if ω ⩽ ω′ < ω0

∞, if ω ⩽ ω′, ω′ ⩾ ω0 ,
(15)

and, for the case of p11 < p01

L(ω, ω′) =


0, if ω > ω′

1, if ω ⩽ ω′ and T (ω) > ω′

∞, if ω ⩽ ω′ and T (ω) ⩽ ω′.

(16)

Under the threshold policy, the arm will be activated if its
belief state crosses a certain threshold ω′. In other words,
starting from an arbitrary belief state ω, the first active action
on the arm is taken after L(ω, ω′) slots.

Based on the structure of threshold policy, Vβ,ν(ω) can be
characterized in terms of Vβ,ν(T t0−1(ω); a = 1) for some t0 ∈
{1, 2, · · · ,∞}, wher t0 = L(ω, ω∗) + 1 is the slot when the
belief ω reaches the threshold ω∗ for the first time. Specially, in
the first L(ω, ω∗) slots, the subsidy ν is obtained in each slot.
In slot t0 = L(ω, ω∗)+1, the belief state reaches the threshold
ω∗ and the arm is activated. The total reward thereafter is
Vβ,ν(T L(ω,ω∗)(ω); a = 1). Taking into account β, we thus
have

Vβ,ν(ω) =
1− βL(ω,ω∗)

1− β
ν

+ βL(ω,ω∗)Vβ,ν(T L(ω,ω∗)(ω); a = 1). (17)

B. Adjoint Dynamic System

In the dynamic system (10), the belief information ω
represents two kinds of information:

• policy information, i.e., action a depends on ω;
• value information, i.e., the reward value of the dynamic

system (or value function) depends on ω.
To better characterize the dynamic evolution of (10), we
separate the two roles of ω by mathematically letting ω
only represent the value while introducing ⌊ω⌉ to indicate
information used to make an action (corresponding to the
policy).

Specifically, we introduce the following adjoint dynamic
system

Vβ,ν(ω; ⌊ω⌉) = max
{
Vβ,ν(ω; ⌊ω, 0⌉), Vβ,ν(ω; ⌊ω, 1⌉)

}
,

(18)
where,
Vβ,ν(ω; ⌊ω, 0⌉) = ν + βVβ,ν(T (ω); ⌊T (ω)⌉),
Vβ,ν(ω; ⌊ω, 1⌉) = (1− ϵ)ω + β

[
(1− ϵ)ωVβ,ν(p11; ⌊p11⌉)

+ (1− (1− ϵ)ω)Vβ,ν(Γ(ω)); ⌊Γ(ω)⌉)
]
.

where, ⌊ω, a⌉ represents making action a (a = 0, 1) given the
policy information ω.

Proposition 1. Given ν, Vβ,ν(ω; a = 1) and Vβ,ν(ω; a = 0)
are piecewise linear and convex in ω.

Proof. We prove the proposition by induction. In slot T , we
have V T

β,ν(ω; a = 0) = ν and V T
β,ν(ω; a = 1) = (1 − ϵ)ω,

which follows V T
β,ν(ω) = max{V T

β,ν(ω; a = 0), V T
β,ν(ω, a =

1)} is piecewise linear and convex in ω.
Assume V t+1

β,ν (ω; a = 1) and V t+1
β,ν (ω; a = 0) are piece-

wise linear and convex in ω, it is easy to show that both



V t
β,ν(ω; a = 1) and V t

β,ν(ω; a = 0) are piecewise linear and
convex in ω according to Eq. (10). Letting T ↗ ∞, we prove
the proposition.

Lemma 6. Vβ,ν(ω; ⌊ω, 1⌉) is decomposable in ω, i.e.,

Vβ,ν(ω; ⌊ω, 1⌉) = (1− ϵ)ω + β[(1− ϵ)ωVβ,ν(p11; ⌊p11⌉)
+ ϵωVβ,ν(p11; ⌊Γ(ω)⌉) + (1− ω)Vβ,ν(p01; ⌊Γ(ω)⌉)].

Proof.

Vβ,ν(ω; ⌊ω, 1⌉)
= (1− ϵ)ω + β[(1− ϵ)ωVβ,ν(p11; ⌊p11⌉)

+ (1− (1− ϵ)ω)Vβ,ν(Γ(ω); ⌊Γ(ω)⌉)]
(a)
= (1− ϵ)ω + β[(1− ϵ)ωVβ,ν(p11; ⌊p11⌉)

+ (1− ω)(1− (1− ϵ)0)Vβ,ν(T (0); ⌊Γ(ω)⌉)
+ ω(1− (1− ϵ)1)Vβ,ν(T (1); ⌊Γ(ω)⌉)]

= (1− ϵ)ω + β[(1− ϵ)ωVβ,ν(p11; ⌊p11⌉)
+ (1− ϵ)(1− ω)Vβ,ν(p01; ⌊Γ(ω)⌉)
+ ϵωVβ,ν(p11; ⌊Γ(ω)⌉)], (19)

where, (a) is due to Proposition 1.

Remark. In (19), for Vβ,ν(p11; ⌊p11⌉) and Vβ,ν(p11; ⌊Γ(ω)⌉),
we can see that though they have the same value information
p11, they have different policy information, i.e., ⌊p11⌉ and
⌊Γ(ω)⌉. Hence, Vβ,ν(p11; ⌊p11⌉) ̸= Vβ,ν(p11; ⌊Γ(ω)⌉) except
that both ⌊p11⌉ and ⌊Γ(ω)⌉ can lead a same action policy for
the dynamic system.

VIII. LINEARIZATION OF VALUE FUNCTION

In this section, we focus on the linearization of value
function Vβ,ν(ω; ⌊ω, 1⌉) for the case of negatively correlated
channels, i.e., p(i)11 < p

(i)
01 , which serves as the basis to compute

the Whittle index. As for the case of p(i)11 ⩾ p
(i)
01 , we omit the

technical details for the limited space. Again, we consider one
channel by dropping channel index i.

In many practical systems, the initial belief ω is set to
ω0 [8]. It can then be checked that min{p01, p11} ⩽ ω ⩽
max{p01, p11}. Moreover, even the initial belief does not
fall in [min{p01, p11},max{p01, p11}], all the belief values
are bounded in the interval from the second slot following
Lemma 1. Hence the following results can be extended by
treating the first slot separately from the future slots. There-
fore, we assume min{p01, p11} ⩽ ω ⩽ max{p01, p11} in the
first slot in our analysis.

We divide the region [p11, p01] into four subregions using
the two fixed points ω0 and ω̄0:

[p11, p01] = [p11, ω0)∪ [ω0, T (p11))∪ [T (p11), ω̄0)∪ [ω̄0, p01].

In the following, we derive the linearized value function for
these subregions, respectively.

A. Region
[
p11, ω0

)
∪
[
ω0, T (p11)

)
Proposition 2. If p11 ⩽ ω∗ < T (p11), it holds that
L(T (φ(ω)), ω∗) = 0 for any ω ∈ [p11, p01], .

Proof. In the case of p11 < p01, φ(ω) monotonically increase
with ω while T (ω) monotonically decreases with ω. Thus,
T (φ(ω)) ⩾ T (p11) > ω∗ for ω ∈ [p11, p01] when 0 ⩽ ϵ ⩽
p11(1−p01)
p01(1−p11)

. Therefore, L(T (φ(ω)), ω∗) = 0.

Lemma 7. When p11 ⩽ ω∗ < T (p11), for any ω ∈ [p11, p01],
the following holds

Vβ,ν(ω; ⌊ω, 1⌉) = (1− ϵ)ω + β[(1− ϵ)ωVβ,ν(p11; ⌊p11⌉)
+ ϵωVβ,ν(p11; ⌊Γ(ω)⌉) + (1− ω)Vβ,ν(p01; ⌊Γ(ω)⌉)],

where

Vβ,ν(p11; ⌊p11⌉)
= Vβ,ν(p11; ⌊p11, 0⌉)
= ν + βVβ,ν(T (p11); ⌊T (p11)⌉)
= ν + β(1− ϵ)T (p11)

+ β2[(1− ϵ)T (p11)Vβ,ν(p11; ⌊p11⌉)
+ (1− (1− ϵ)T (p11))Vβ,ν(Γ(T (p11)); ⌊Γ(T (p11))⌉)]

(e1)
= ν + β(1− ϵ)T (p11)

+ β2[(1− ϵ)T (p11)Vβ,ν(p11; ⌊p11⌉)
+ (1− (1− ϵ)T (p11))Vβ,ν(Γ(T (p11)); ⌊Γ(ω)⌉)]

(e2)
= ν + β(1− ϵ)T (p11)

+ β2[(1− ϵ)T (p11)Vβ,ν(p11; ⌊p11⌉)
+ ϵT (p11)Vβ,ν(p11; ⌊Γ(ω)⌉)
+ (1− T (p11))Vβ,ν(p01; ⌊Γ(ω)⌉)],

Vβ,ν(p11; ⌊Γ(ω)⌉)
= Vβ,ν(p11; ⌊Γ(ω), 1⌉)
(e3)
= (1− ϵ)p11 + β[(1− ϵ)p11Vβ,ν(p11; ⌊p11⌉)

+ ϵp11Vβ,ν(p11; ⌊Γ(ω)⌉)
+ (1− p11)Vβ,ν(p01; ⌊Γ(ω)⌉)],

Vβ,ν(p01; ⌊Γ(ω)⌉)
= Vβ,ν(p01; ⌊Γ(ω), 1⌉)
(e4)
= (1− ϵ)p01 + β[(1− ϵ)p01Vβ,ν(p11; ⌊p11⌉)

+ ϵp01Vβ,ν(p11; ⌊Γ(ω)⌉)
+ (1− p01)Vβ,ν(p01; ⌊Γ(ω)⌉)].

Proof. (e1) follows Proposition 2, (e2), (e3) and (e4) follow
Lemma 6.

B. Region:
[
T (p11), p01

)
Based on Lemma 5, we have the following important

corollary.

Corollary 2. When T (p11) ⩽ ω∗ < p01, we have



(1) When T (p11) ⩽ ω∗ < ω̄0, the first crossing time of the
non-linear belief part Γi(ω∗) (i = 1, 2, · · · ) will be 0 in
the evolving process; that is, L(Γi(ω∗), ω∗) = 0;

(2) When ω̄0 ⩽ ω∗ < p01, the first crossing time of the non-
linear belief part T i(Γ(ω∗)) (i = 0, 1, 2, · · · ) will be ∞
in the evolving process; that is, L(T i(Γ(ω∗)), ω∗) = ∞.

Proof. (1) By Lemma 5, we have that Γi(ω∗) > ω∗ when
T (p11) ⩽ ω∗ < ω̄0, and furthermore, L(Γi(ω∗), ω∗) = 0.
(2) By Lemma 5, ω0 < Γ(ω∗) ⩽ ω∗ when ω̄0 ⩽ ω∗ < p01.
Furthermore, by Lemma 2, we have T i(Γ(ω∗)) ⩽ ω∗, which
means L(T i(Γ(ω∗)), ω∗) = ∞.

Corollary 3. When T (p11) ⩽ ω∗ < ω̄0, we have

Vβ,ν(ω
∗; ⌊ω∗, 1⌉)

= (1− ϵ)ω∗ + β[(1− ϵ)ω∗Vβ,ν(p11, ⌊p11⌉)
+ (1− (1− ϵ)ω∗)Vβ,ν(Γ(ω

∗); ⌊Γ(ω∗)⌉)]
= (1− ϵ)ω∗ + β[(1− ϵ)ω∗Vβ,ν(p11; ⌊p11⌉)

+ ϵω∗Vβ,ν(p11; ⌊Γ(ω∗)⌉)
+ (1− ω∗)Vβ,ν(p01; ⌊Γ(ω∗)⌉)],

where,

Vβ,ν(p11; ⌊p11⌉) =
ν

1− β
,

Vβ,ν(p11; ⌊Γ(ω∗)⌉)
= Vβ,ν(p11; ⌊Γ(ω∗), 1⌉)
= (1− ϵ)p11 + β[(1− ϵ)p11Vβ,ν(p11; ⌊p11⌉)

+ (1− (1− ϵ)p11)Vβ,ν(Γ(p11); ⌊Γ2(ω∗)⌉)]
= (1− ϵ)p11 + β[(1− ϵ)p11Vβ,ν(p11; ⌊p11⌉)

+ (1− (1− ϵ)p11)Vβ,ν(Γ(p11); ⌊Γ(ω∗)⌉)]
= (1− ϵ)p11 + β[(1− ϵ)p11Vβ,ν(p11; ⌊p11⌉)

+ ϵp11Vβ,ν(p11; ⌊Γ(ω∗)⌉)
+ (1− p11)Vβ,ν(p01; ⌊Γ(ω∗)⌉)],

Vβ,ν(p01; ⌊Γ(ω∗)⌉)
= (1− ϵ)p01 + β[(1− ϵ)p01Vβ,ν(p11; ⌊p11⌉)

+ ϵp01Vβ,ν(p11; ⌊Γ(ω∗)⌉)
+ (1− p01)Vβ,ν(p01; ⌊Γ(ω∗)⌉)].

C. Region:
[
ω̄0, p01

)
When ω̄0 ⩽ ω∗ < p01, we have L(T (φ(ω∗)), ω∗) = ∞ by

Corollary 2. Thus,

Vβ,ν(ω
∗; ⌊ω∗, 1⌉)

= (1− ϵ)ω∗ + β[(1− ϵ)ω∗Vβ,ν(p11; ⌊p11⌉)
+ (1− (1− ϵ)ω∗)Vβ,ν(Γ(ω

∗); ⌊Γ(ω∗)⌉)]
= (1− ϵ)ω∗ + β[(1− ϵ)ω∗Vβ,ν(p11; ⌊p11⌉)

+ (1− (1− ϵ)ω∗)
ν

1− β
].

IX. NUMERICAL STUDY

In this section, we evaluate the performance of the Whittle
index policy by comparing with the myopic policy (sensing
the best channel in terms of belief value).
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Fig. 2. N = 3, β = 1, ϵi = 0.01, {(p(i)01 , p
(i)
11 )}3i=1 = {(0.3, 0.7),

(0.4, 0.8), (0.5, 0.7)}.

From Figure 2, we observe that the Whittle index policy
has almost the same performance with the myopic policy.
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Fig. 3. N = 10, β = 1, ϵi = 0.01, {(p(i)01 , p
(i)
11 )}10i=1 = {(0.3, 0.9),

(0.8, 0.1), (0.3, 0.8), (0.1, 0.9), (0.9, 0.1), (0.4, 0.8), (0.5, 0.3), (0.3, 0.3),
(0.3, 0.6), (0.8, 0.1)}.

From Figure 3, we can see that the Whittle index policy
performs a little worse than the myopic policy when T ⩽ 18,
while after that threshold time, performs better. This can
be easily explained as follow: the myopic policy performs
better in the initial period since it only exploits information to
maximize utility but ignores exploring information for future
decision. However, the Whittle index considers the balance
between exploitation and exploration, so it performs better
after the initial period.

X. CONCLUSION

In this paper, we study the Whittle index policy for multi-
channel opportunistic access problem with imperfect observa-
tion. The traditional approach of computing the Whittle index



policy cannot be applied because the channel state belief evo-
lution is no more linear, thus rendering the indexability of our
problem open. To bridge the gap, we mathematically establish
the indexability and establish the closed-form Whittle-index,
based on which index policy can be constructed. The major
technique is our analysis is a fixed point based approach which
enable us to divide the belief information space into a series
of regions and then establish a set of periodic structures of
the underlying nonlinear dynamic evolving system, based on
which we devise the linearization scheme for each region to
establish indexability and compute the Whittle index for each
region.
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