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Abstract—In this paper, we tackle the problem of opportunistic
spectrum access in cognitive radio networks. We consider a large
number of unlicensed Secondary Users (SU) accessing a number
of frequency channels partially occupied by licensed Primary
Users (PU). Each channel is characterized by an unknown
availability probability. We apply evolutionary game theory to
model the spectrum access problem and propose imitation-based
spectrum access policies based on the proportional imitation
rule (PIR) and double imitation (DI) rule. We show that both
policies converge exponentially in time to the Nash Equilibrium
which is also the system optimum. The proposed spectrum access
policies are evaluated by simulations which demonstrate their
convergence to a stable equilibrium state which is also the system
optimum.

I. INTRODUCTION

Cognitive radio [1], with its capability to flexibly configure

its transmission parameters, has emerged in recent years as

a promising paradigm to enable more efficient spectrum uti-

lization. Spectrum access models in cognitive radio networks

can be classified into three categories, namely exclusive use

(or operator sharing), commons and shared use of primary

licensed spectrum [2]. In the last model, unlicensed secondary

users (SUs) are allowed to access the spectrum of licensed

primary users (PUs) in an opportunistic way. In this case, a

well-designed spectrum access mechanism is crucial to achieve

efficient spectrum usage.

In this paper, we focus on the generic model of cogni-

tive networks consisting of several frequency channels, each

characterized by a channel availability probability determined

by the activity of PUs on the channel. In such models, from

the individual SU’s perspective, a challenging problem is to

compete (or coordinate) with other SUs in order to oppor-

tunistically access the unused spectrum of PUs to maximize

its own payoff (e.g., throughput); at the system level, a crucial

research issue is to design efficient spectrum access protocols

achieving optimal spectrum usage.

We tackle the problem of spectrum access in cognitive

radio networks from an evolutionary game theoretic angle.

More specifically, we develop a generic spectrum access policy

based on imitation, a natural behavior rule widely observed

in human society. The proposed spectrum access policy can

converge to the stable system equilibrium in a distributed

fashion relying only on local interactions among SUs. More

specifically, we study the interaction among SUs under the

proportional imitation rule and the more advanced adjusted

proportional imitation rule with double sampling. Under both

imitation rules, each SU strives to improve its individual payoff

by imitating other SUs with higher payoff. Compared with the

replicator dynamic, the most explored dynamic in evolutionary

game theory and its application in wireless networking field,

which mimics the effect of natural selection, imitation dy-

namic captures the spreading of successful strategies through

imitation rather than inheritance, which is more adapted in

games played by human societies (cf. [3] and references

therein). Our work presented in this paper consists of the

first step towards systematically applying imitation dynamic

to address the spectrum access problem in cognitive radio

networks and designing distributed imitation protocols that

lead to an efficient and stable system equilibrium.

The rest of the paper is structured as follows. Section II

presents the system model followed by the formulation of

the spectrum access game. Section III describes the proposed

imitation-based spectrum access policy. In Section IV, exten-

sive simulations are performed to evaluate the performance of

the proposed policy. Section V concludes the paper.

II. SYSTEM MODEL AND SPECTRUM ACCESS GAME

FORMULATION

In this section, we present the system model of our work,

followed by the game formulation of the spectrum access

problem, which serves as the basis of subsequent analysis .

A. System Model

We consider a primary network consisting of a set C of C
frequency channels, each with bandwidth B1. The users in the

primary network are operated in a synchronous time-slotted

fashion. A set N of N SUs tries to opportunistically access

the channels when they are left free by PUs. Let Xi,k be the

1The heterogeneous case with different channel capacities is left for future
work.
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random variable (RV) equal to 1 when slot k of channel i is
free for SU transmission and 0 otherwise2. We assume that the

process {Xi,k} is stationary and independent for each i and
k. We assume that at each time slot, channel i is free with

probability µi, i.e., E[Xi,k] = µi. The channel availability

probabilities µ , {µi} are a priori not known by SUs. We

assume perfect sensing at the SUs, i.e., any transmission of

a PU on a channel is perfectly sensed by SUs sensing that

channel and thus no collision occurs between PUs and SUs.

An important direction of our future work is to address the

case of imperfect sensing.

In our work, each SU j is a rational decision maker, striking

to maximize the throughput it can achieve, denoted as Tj ,

which can be expressed as a function of µi and ni, where i
is the channel which j chooses, ni is the number of SUs on

channel i. More formally, the expected value of Tj can be

written as:

E[Tj ] = f(µi, ni).

In order to perform a closed-form analysis, we focus on the

scenario where the channel capacity is evenly shared among

all SUs on the channel when it is free, i.e.,

E[Tj ] = f(µi, ni) = Bµi/ni,

which corresponds to the case of the TDMA-based MAC layer.

B. Spectrum Access Game Formulation

To study the interactions among autonomous SUs and to

derive distributed channel access algorithms, we formulate the

channel selection problem as a spectrum access game where

the players are the SUs. Each player j stays on a channel i
to opportunistically exploit the unused spectrum of the PUs

to maximize its expected throughput. The game is defined

formally as follows:

Definition 1. The spectrum access game G is a 3-tuple (N ,

C, {Uj}), where N is the player set, C is the strategy set of

each player. Each player j chooses its strategy to maximize

its normalized utility function Uj defined as Uj = E[Tj ]/B =
µi/ni.

Using the related theory on congestion games, we can

characterize the Nash equilibrium (NE) in the spectrum access

game G in the case of a countably infinite players set of

cardinality N .

Theorem 1. In the asymptotic case where N is large, G
admits a unique NE. At the NE, there are x∗

iN SUs staying

with channel i, where x∗
i = µi

∑

l∈C
µl
.

Proof: Given the form of SUs’ utility function, it follows

from [4] that the spectrum access game is a congestion game.

Moreover, in the asymptotic case approximating the game G
by a game with a continuous set of users, denote x , {xi, i ∈
C}, we can write the potential function of the congestion game

as follows:

P (x) ,
∑

i∈C

∫ xiN

ǫ0

µi

t
dt,

2Throughout this paper, we use i to refer to the channel index, k to refer
to the time-slot index and j the index of the SUs.

where ǫ0 > 0 is a small constant introduced to avoid the non-

integral point of µi/t at 0. We can verify that for a SU j
staying on channel i, it holds that :

∂P (x)

∂xi

= E[Uj(µi, xiN)].

To derive the NE of G, we seek the maximum of the

potential function P (x). To this end, we develop P (x) as

P (x) =
∑

i∈C

µi

N
(log xi − log ǫ0).

To find the maximum of P (x), we solve the following

optimization problem

max
x

P (x) s.t.
∑

i∈C

xi = 1 and xi > 0, ∀i ∈ C,

which has a unique solution because the KKT conditions are

necessary and sufficient (P (x) is concave and the constraint

is linear). After some straightforward algebraic operations, we

can find the maximum x
∗ , {x∗

i } as follows:

x∗
i =

µi
∑

l∈C
µl

∀i ∈ C.

The maximum x
∗ is also the unique NE of G.

It can be noted that the above equilibrium derived in Theo-

rem 1 is also a Wardrop equilibrium [5], of which we observe

two desirable properties: (1) the NE is optimal from the system

perspective as the total throughput of the network achieves its

optimum at the NE; (2) the NE ensures that the spectrum

resource is shared fairly among SUs. In the sequel analysis,

we develop efficient spectrum access algorithms based on local

imitation to converge to the unique NE in a distributed fashion

without the a priori knowledge on µ.

III. IMITATION-BASED SPECTRUM ACCESS POLICY

In this section we develop the imitation-based policy for

spectrum access in cognitive networks and study the resulting

system dynamics as well as the equilibrium state. As a widely

observed behavior rule, imitation [6] captures the behavior of

a rational player that mimics the action(s) of other players

with higher payoff in order to improve its own payoff. The

induced imitation dynamic models the spreading of successful

strategies under imitation. In the sequel analysis, we firstly

rely on the proportional imitation rule (PIR) and develop the

spectrum access policy based on PIR. We then extend our

efforts to a more advanced imitation strategy called adjusted

proportional imitation rule based on double sampling or double

imitation (DI) rule that yields better system performance. We

conclude the section by presenting the integrated imitation-

based spectrum access policy .

A. Spectrum Access Based on Proportional Imitation

This subsection presents the spectrum access policy based

on the proportional imitation rule [6]. As detailed in Al-

gorithm 1, the core idea of the proposed spectrum access

mechanism is as follows: at each iteration, each SU uniformly

randomly selects another SU; if the payoff of the selected SU

is higher than its own payoff, the SU imitates the strategy

of the selected SU at the next iteration with a probability

proportional to the payoff difference.
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Algorithm 1 PIR-based spectrum access policy: executed at

each SU j for each iteration

1: Initialization: set the imitation rate σ and the imitation

threshold ǫU
2: Randomly select a SU j′

3: if Uj < Uj′ − ǫU then

4: Switch to the channel of where j′ stays with probability

p = σ(Uj′ − Uj)
5: end if

It is shown in [3] that the proportional imitation rule

generates a population dynamic described by the following

set of differential equations:

ẋi = σxi(Vi − V ) i ∈ C, (1)

where Vi denotes the expected payoff of the SUs on channel

i, V ,
∑

i∈C
Vi denotes the expected payoff of all SUs in

the network and σ is the imitation rate. One way of setting σ
is to set σ = 1/(ω − α), where ω and α are two exogenous

parameters such that Uj ∈ [α, ω] for each SU j. Injecting
Vi = µi/(xiN) into the differential equations, (1) becomes:

ẋi

σ
=

µi

N
− xi

∑

l∈C

µl

N
.

This equation can be easily solved as:

xi(t) = Ke−(
∑

l∈C

µl
N )σt +

µi
∑

l∈C
µl

, (2)

where K = xi(0)−
µi

∑

l∈C
µl
.

As the major result of this subsection, the following theorem

states the convergence of Algorithm 1 to the unique NE of

the spectrum access game derived in Section II-B. The proof,

of which the detail is omitted here, follows from (2) and

Theorem 1.

Theorem 2. The proposed spectrum access policy based on

proportional imitation rule generates a dynamic that converges

exponentially in time to the NE of the spectrum access game

G.

B. Spectrum Access Based on Double Imitation

In this subsection, we turn to a more advanced imitation

rule, the proportional imitation rule with double sampling [7].

Under this imitation rule, each SU randomly samples two SUs

and imitates them with a certain probability determined by

the utility difference. The spectrum access policy based on

the double imitation is detailed in Algorithm 2, in which each

SUs randomly samples two other SUs j1 and j2 (without loss

of generality, assume that j1 and j2 operate on channel i1 and

i2 respectively, with corresponding utilities Uj1 ≤ Uj2 ) and

updates the probabilities of switching to channels i1 and i2,
denoted as pj1 and pj2 respectively.

The double imitation rule generates an aggregate monotone

dynamic [7], [8], which is defined as follows:

ẋi =
xi

ω − α

[

1 +
ω − V

ω − α

]

(Vi − V ) ∀i ∈ C

Injecting Vi = µi/(xiN) into the differential equations, we

have:

ẋi =
V

ω − α

(

1 +
ω − V

ω − α

)

−
V

ω − α

(

1 +
ω − V

ω − α

)

xi,

Algorithm 2 DISAP: executed at each SU j settling on

channel i for each iteration

1: Initialization: Let i be the channel on which SU j is

settling.

Let Uj be the payoff of SU j on channel i.
Set the parameters ω, α and σ = 1/(ω − α).
Define [A]+ , max{0, A} and Q(U) , 2− U−α

ω−α
.

2: Randomly sample two SUs j1 and j2.
Let i1 (resp. i2) be the channel on which SU j1 (resp. j2)
is settling.

Let Uj1 (resp. Uj2 ) be the payoff of SU j1 (resp. j2) on
channel i1 (resp. i2).
Suppose without loss of generality that Uj1 ≤ Uj2 .

3: if |{i, i1, i2}| = 1, i.e., i = i1 = i2 then

4: Stay on the same channel.

5: else if |{i, i1, i2}| = 2 then

6: if i = i1, i 6= i2 and Uj ≤ Uj2 then

7: pj2 = σ
2
Q(Uj)(Uj2 − Uj).

Switch to channel i2 w.p. pj2 and stay on the same

channel w.p. 1− pj2 .
8: else if i1 = i2, i 6= i1 and Uj ≤ Uj1 = Uj2 then

9: pj1 = σ
2
(Q(Uj1) +Q(Uj))(Uj1 − Uj).

Switch to channel i1 w.p. pj1 and stay on the same

channel w.p. 1− pj1 .
10: end if

11: else if |{i, i1, i2}| = 3 then

12: if Uj ≤ Uj1 ≤ Uj2 then

13: pj1 = σ
2
[Q(Uj)(Uj1 − Uj2) +Q(Uj2)(Uj1 − Uj)]

+
.

pj2 = σ
2
[Q(Uj1)(Uj2 − Uj) +Q(Uj2)(Uj1 − Uj)] −

pj1 .
Switch to channel i1 w.p. pj1 , to channel i2 w.p. pj2
and stay on the same channel i w.p. 1− pj1 − pj2 .

14: else if Uj1 ≤ Uj ≤ Uj2 then

15: pj2 = σ
2
[Q(Uj1)(Uj2 − Uj) +Q(Uj2)(Uj1 − Uj)]

+
.

Switch to channel i2 w.p. pj2 and stay on the same

channel w.p. 1− pj2 .
16: end if

17: else

18: Stay on the same channel.

19: end if

whose solution is

xi(t) = Ke
− V

ω−α

(

1+
ω−V
ω−α

)

t
+

µi
∑

l∈C
µl

, (3)

where V =
∑

l∈C
µl/N and K = xi(0)−

µi
∑

l∈C
µl
.

The following theorem stating the major result in this

subsection follows immediately.

Theorem 3. The proposed spectrum access policy based on

double imitation genrates a dynamic that converges exponen-

tially in time to the NE of the spectrum access game G.

Algorithm 3 Integrated imitation-based spectrum access pol-

icy (ISAP): executed as each SU

1: Initialization: Set ǫt
2: At each iteration t
3: With probability 1− ǫt perform imitation (PIR or DI)

4: With probability ǫt switch to a random channel
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C. Imitation with Exploration

In this subsection, we integrate the exploration into the

proposed spectrum access policy which allows each SU to

exploit all possible channels. Integrating the exploration can

avoid the case where some channels have no SUs operating on

them, making the imitation fail to work. Algorithm 3 details

the integrated imitation-based spectrum access policy. At each

iteration t, each SU exploits a new channel with a small

probability ǫt and performs imitation with probability 1− ǫt.

IV. PERFORMANCE EVALUATION

In this section we conduct extensive simulations to evaluate

the performance of the proposed imitation-based spectrum

access policies (ISAP).

A. Simulation Setting

We simulate a cognitive radio network of N = 50 SU and

C = 3 channels, whose mean availabilities (assumed constant)

are expressed by the vector µ = [0.3, 0.5, 0.8]. Both the

proportional imitation and the double imitation rules applied in

Algorithm 3 are investigated. In all simulations we set the hori-

zon (simulation time) equal to 3·104 time slots and the learning

guide variable ǫ equal to max{ǫmin, 1−erf ( b·t
horizon

)}, where
erf is the error function, b is a constant dependent on the

horizon, and ǫmin is a very small value (e.g. 10−4) used in

simulations to avoid dead-lock situations.

B. Learning and Convergence

Fig. 1 and Fig. 2 display the results of ISAP using PIR

and DI, respectively. In particular the convergence trends in

terms of number of SUs per channel and average utility per

user per channel are depicted. Note that the small variation

of the trajectories in both figures from the converged curve is

due to the probabilistic nature of the SUs’ strategy and has

only very limited impact on the system as a whole. The noise

during the early phase is caused by the fact that SUs gradually

learn the channel availabilities. We notice that in both cases

convergence is rapidly achieved after the learning phase and all

SUs’ payoff stabilizes at a converged value, which shows that

the proposed spectrum access policies ensure fairness among

SUs. Consequently, the channels with higher availabilities are

chosen by more individuals. This can easily be verified (Fig. 1

for PIR and Fig. 2 for DI) that after convergence the major

part of population settles permanently in channel 3, i.e. the

channel with highest availability.

C. Convergence Speed

We now focus on convergence speed. Unfortunately, it is

difficult to observe it on simulation results because of the noise

introduced by the learning process. We thereby concentrate

upon the replicators/aggregate monotone dynamics equations

(2) and (3). Fig. 4 shows the number of SUs on channel 3

as a function of time. Here it’s evident how aggregate mono-

tone dynamic (DI) outperforms replicators dynamic (PIR) in

convergence speed. By observing the 100th time slot on the

x-axis for instance, one can notice that aggregate monotone

dynamics have come to a complete convergence for both the

considered values of ω, while replicators are still embroiled

in the convergence phase.

D. Switching Cost

We now turn to the analysis of the switching cost, i.e., the

global number of channel switches. Due to the drastic cost of

changing frequencies in current wireless devices in terms of

delay, packet loss and protocol overhead, an efficient channel

access policy should avoid frequently channel switching, un-

less necessarily. Fig. 5 shows the switching cost as a function

of time for PIR and DI-based spectrum access policies and

for different values of ω (α is set to 0). We observe that PIR

outperforms DI in terms of switching cost for a given ω.
Moreover, we report that in both replicator and aggregate

monotone dynamics the underlying dynamics of PIR and DI-

based spectrum access policies, the switching cost depends

on ω. More specifically, increasing ω reduces the trend of the

switching cost on the long term (in the stability region). On the

other hand, increasing ω also decreases the convergence speed

as illustrated in Fig. 4. This indeed impacts the trajectories

generated by the system of differential equations describing

the dynamics, but has no effect on its final outcome (for a

reasonable large t). Despite this trend, DI still remains faster

than PIR for a fixed ω. Hence, ω should be carefully tuned to

strike a balance between switching cost and convergence rate.

V. CONCLUSION AND FURTHER WORK

In this paper, we have analyzed the problem of opportunistic

spectrum access from the evolutionary game theoretic angle

(a tool widely applied in biology and economy but rarely

investigated systematically in the wireless networking field),

more specifically, using imitation-based rules. We proposed

two imitation-based spectrum access policies based on the

proportional imitation rule (PIR) and the adjusted proportional

imitation rule with double sampling or double imitation (DI),

both of which are proved to converge exponentially to the

Nash Equilibrium which is also the system optimum.

Following the first step of studying imitation-based spec-

trum access policies presented in this paper, we plan to explore

the more practical scenario where SUs are limited to imitate

only cognitive radios transmitting on the same channel. At the

current stage, we have developed an adapted algorithm whose

convergence is demonstrated by simulations. Our research plan

is to derive the dynamic of the adapted algorithm, to show

analytically its convergence.
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Fig. 1. PIR-ISAP: average per SU utility for different channels (left) and SUs distribution (right) as a function of time
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Fig. 2. DI-ISAP: average per SU utility for different channels (left) and SUs distribution (right) as a function of time
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Fig. 3. Three main phases of DI-ISAP over 7 · 103 slots
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