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Abstract—Frame Slotted Aloha (FSA) protocol has been widely
applied in Radio Frequency Identification (RFID) systems as the
de facto standard in tag identification. However, very limited work
has been done on the stability of FSA despite its fundamental
importance both on the theoretical characterisation of FSA
performance and its effective operation in practical systems. In
order to bridge this gap, we devote this paper to investigating
the stability properties of FSA by focusing on two physical layer
models of practical importance, the models with single packet
reception and multipacket reception capabilities. Technically, we
model the FSA system backlog as a Markov chain with its states
being backlog size at the beginning of each frame. The objective is
to analyze the ergodicity of the Markov chain and demonstrate its
properties in different regions, particularly the instability region.
By employing drift analysis, we obtain the closed-form conditions
for the stability of FSA and show that the stability region is
maximised when the frame length equals the backlog size in
the single packet reception model and when the ratio of the
backlog size to frame length equals in an order of magnitude
the maximum multipacket reception capacity in the multipacket
reception model. Furthermore, to characterise system behavior
in the instability region, we mathematically demonstrate the
existence of transience of the backlog Markov chain.

I. INTRODUCTION

A. Context and Motivation
Since the introduction of Aloha protocol in 1970 [1], a

variety of such protocols have been proposed to improve its

performance, such as Slotted Aloha (SA) [16] and Frame

Slotted Aloha (FSA) [12]. SA is a well known random access

scheme where the time of the channel is divided into identical

slots of duration equal to the packet transmission time and the

users contend to access the server with a predefined slot-access

probability. As a variant of SA, FSA divides time-slots into

frames and a user is allowed to transmit only a single packet

per frame in a randomly chosen time-slot.
Due to their effectiveness to tackle collisions in wireless

networks, Aloha-based protocols have been applied extensive-

ly to various networked systems ranging from the traditional

satellite networks [12], wireless LANs [24] to the emerging

Machine-to-Machine (M2M) communications [27]. Specifi-

cally, in radio frequency identification (RFID) systems, FSA

plays a fundamental role in the identification of tags [28], [29]

and is standardized in the EPCGlobal Class-1 Generation-2

(C1G2) RFID standard [4]. In RFID systems, all tags transmit

in the first frame in the selected slot respectively, but only

tags experiencing no collisions are identified while the other

tags referred to as backlogged nodes (or simply backlogs),

retransmit in the subsequent frames until all of them are

successfully identified.
Given the paramount importance of the stability for systems

operating on top of Aloha-like protocols, a large body of stud-

ies have been devoted to stability analysis in a slotted collision

channel [21], [17], [14] where a transmission is successful if

and only if just a single user transmits in the selected slot,

referred to as single packet reception (SPR). Differently with

SPR, the emerging multipacket reception (MPR) technologies

in wireless networks, such as Code Division Multiple Access

(CDMA) and Multiple-Input and Multiple-Output (MIMO),

make it possible to receive multiple packets in a time-slot

simultaneously, which remarkably boosts system performance.

More recently, the application of FSA in RFID systems

has received considerable research attention. However, very

limited work has been done on the stability of FSA despite

its fundamental importance both on the theoretical charac-

terisation of FSA performance and its effective operation in

practical systems. Motivated by the above observation, we

argue that a systematic study on the stability properties of FSA

incorporating the MPR capability is called for in order to lay

the theoretical foundations for the design and optimization of

FSA-based communication systems.

B. Summary of Contributions

In this paper, we investigate the stability properties of FSA

with SPR and MPR capabilities. The main contributions of

this paper are articulated as follows:

• Firstly, we model the packet transmission process in a

frame as the bins and balls problem [8] and derive the

number of successfully received packets under both SPR

and MPR models.

• Secondly, we formulate a homogeneous Markov chain to

characterize the number of the backlogged packets and

derive the one-step transition probability.

• Thirdly, by employing drift analysis, we obtain the

closed-form conditions for the stability of FSA and derive

conditions maximising the stability regions for both SPR

and MPR models.

• Finally, to characterise system behavior in the instability

region, we mathematically demonstrate the existence of

transience of the backlog Markov chain.

Our work demonstrates that the stability region is max-

imised when the frame length equals the backlog size in the

SPR model and when the ratio of the backlog size to frame

length equals in an order of magnitude the maximum multi-

packet reception capacity in the MPR model. In addition, it is

also shown that FSA-MPR outperforms FSA-SPR remarkably

in terms of the stability region size.

C. Paper Organisation

The remainder of the paper is organised as follows. Section

II gives a brief overview of related work and compares our
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results with existing results. In Section III, we present the

system model, including random access model, traffic model

and packet success probability. In Section IV, we summary

the main result of this paper. Then the detailed proofs on the

stability properties of FSA-SPR and FSA-MPR are given in

Section V and Section VI, respectively. Finally, we conclude

our paper in Section VII.

II. RELATED WORK

Aloha-based protocols are basic schemes for random medi-

um access and are applied extensively in many communication

systems. As a central property, the stability of Aloha protocols

has received a lot of research attention, which we briefly

review in this section.

Stability of slotted Aloha. Tsybakov and Mikhailov [23]

initiated the stability analysis of finite-user slotted Aloha. They

found sufficient conditions for stability of the queues in the

system using the principle of stochastic dominance and derived

the stability region for two users explicitly. For the case of

more than two users, the inner bounds to the stability region

were shown in [15]. Subsequently, Szpankowski [22] found

necessary and sufficient conditions for the stability under

a fixed transmission probability vector for three-user case.

However, the derived conditions are not closed-form, meaning

the difficulty on verifying them. Following the ideas of [22],

Borst et al. derived the necessary and sufficient conditions for

the stability of systems with interacting queues [3]. We would

like to point out that all the above stability analysis results

were derived for the SPR model.

Stability of slotted Aloha with MPR. The first attempt at

analyzing stability properties of SA with MPR was made by

Ghez et al. in [6], [7] in an infinite-user single-buffer model.

They drew a conclusion that the system could be stabilized

under the symmetrical MPR model with a non-zero probability

that all packets were transmitted successfully. Afterwards, Sant

and Sharma [18] studied a special case of the symmetrical

MPR model for finite-user with an infinite buffer. They derived

sufficient conditions on arrival rate for stability of the system

under the stationary ergodic arrival process. Although the work

aforementioned analyzed the stability of system without MPR

or/and with MPR, they are mostly, if not all, focused on SA

protocol, while our focus is FSA with both SPR and MPR.

Performance analysis of FSA. There exist several studies

on the performance of FSA. Wieselthier and Anthony [26]

introduced an combinational technique to analyse performance

of FSA-MPR for the case of finite users. Schoute [19] inves-

tigated dynamic FSA and obtained the expected number of

time-slots needed until the backlog becomes zero. Recently,

the optimal frame setting for dynamic FSA was proved math-

ematically in [2]. However, these works did not address the

stability of FSA, which is of fundamental importance.

In summary, only very limited work has been done on the

stability of FSA despite its fundamental importance both on

the theoretical characterisation of FSA performance and its

effective operation in practical systems. In order to bridge

this gap, we devote this paper to investigating the stability

properties of FSA under both SPR and MPR models.

III. SYSTEM MODEL

In this section, we introduce our system model which will

be used throughout the rest of this paper.

A. Random access model in FSA

We consider a system of infinite identical users operating

on one frequency channel. In one slot, a node can complete a

packet transmission. FSA organises time-slots with each frame

containing a number of consecutive time-slots. Each user is

allowed to randomly and independently choose a time-slot to

send his packet at most once per frame.

A packet suffers a collision if more than one packet is

transmitted simultaneously in the same time-slot with SPR and

if more than M packets are transmitted simultaneously with

MPR, where M quantifies the MPR capacity. In our analysis,

we do not distinguish packets, i.e., both newly generated

packets and backlogs in the current frame are transmitted in the

subsequent frame with probability 1. For notation convenience,

we use FSA-SPR and FSA-MPR to denote the FSA system

operating with SPR and MPR, respectively.

B. Traffic model

Let random variable Ni denote the total number of new

arrivals during frame i and denote by Ail the number of

new arrivals in time-slot l in frame i where l = 1, 2, · · · , L.

Assume that (Ail) are independent and identically distributed

random variables with probability distribution:

P{Ail = u} = Λu(u ≥ 0) (1)

such that the expected number of arrivals per time-slot Λ =∑∞
1 uΛu is finite.

Then as Ni =
∑L

l=1 Ail, the distribution of Ni, defined as

{λn}n≥0, is

λn = P{Ni = n} = P

{
L∑

l=1

Ail = n

}

=
∑

∑L
l=1 ul=n

∏
1≤l≤L

Λul
, (2)

As a consequence, the expected number of arrivals during a

frame, denoted as λ, is λ = LΛ.

C. Packet success probability

The process of randomly and independently choosing a

time-slot in a frame to transmit packets can be cast into a class

of problems that are known as occupancy problems, or bins

and balls problem [8]. Specifically, consider the setting where

a number of balls are randomly and independently placed into

a number of bins, the classic occupance problem studies the

maximum load of an individual bin.

In our context, time-slots and packets to be transmitted in

a frame can be cast into bins and balls, respectively. Given

h packets being sent in frame i and the frame length L, the

number x0 of packets sent in one time-slot, referred as to

occupancy number, is binomially distributed with parameters

h and 1
L :

Bh, 1
L
(x0) =

(
h

x0

)
(
1

L
)x0(1− 1

L
)h−x0 . (3)
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Applying the distribution of equation (3) to all L slots in the

frame, we can get the expected value b(x0) of the number of

time-slots with occupance number x in a frame as follows:

b(x0) = L ·Bh, 1
L
(x0) = L

(
h

x0

)
(
1

L
)x0(1− 1

L
)h−x0 . (4)

We further derive the probability that a packet is transmitted

successfully under both SPR and MPR.

Packet success probability of FSA-SPR
In FSA-SPR, the number of successfully received packets

equals that of time-slots with occupance number x0 = 1.

Following the result of [25], we can obtain the probability

ξSPR
hk that under SPR there exist exactly k successful packets

among h transmitted packets in the frame as follows:

ξSPR
hk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Lk)(
h
k)k!G(L−k,h−k)

Lh , 0 < k < min(h, L)
(Lh)h!
Lh , k = h ≤ L

0, k > min(h, L)

0, k = L < h

(5)

where

G(V,w) = V w +

w∑
t=1

(−1)t
t−1∏
j=0

[(w − j)(V − j)](V − t)w−t 1

t!

with V � L− k and w � h− k.

Consequently, the expected number of successfully received

packets in the frame in FSA-SPR, denoted as rSPR
h , is

rSPR
h =

min(h,L)∑
k=1

kξSPR
hk = b(1). (6)

Packet success probability of FSA-MPR
In FSA-MPR, the number of successfully received packets

in a frame is the sum of packets in time-slots with occupance

number 1 ≤ x0 ≤ M . Here, we provide the formulation of the

probability ξMPR
hk that under MPR exact k packets are received

successfully among h transmitted packets in the frame. Let

occupancy numbers xl stand for the number of packets in the

lth time-slot, l = 1, 2, · · · , L. As a result, we have
L∑

l=1

xl = h (7)

which describes a possible configuration of occupancy num-

bers. Let Z be the set of all possible configurations of

occupancy numbers. Denote by Za ∈ Z the configuration

with the occupancy numbers xZa
1 , · · · , xZa

L satisfying (7) and∑L
l=1 x

Za

l Yl = k where Yl denotes the indicator function as

Yl =

{
1 1 ≤ xZa

l ≤ M,

0 otherwise.

We thus obtain P (Za) =
h!

xZa
1 !xZa

2 !···xZa
L !

L−h.

Therefore, the probability ξMPR
hk can be written as

ξMPR
hk =

∑
Za∈Z

P (Za). (8)

Consequently, we can derive the expected number of suc-

cessfully received packets in the frame in FSA-MPR as

rMPR
h =

h∑
k=1

kξMPR
hk

= L

M∑
x0=1

x0

(
h

x0

)
(
1

L
)x0(1− 1

L
)h−x0 . (9)

Note that the parameter ξhk used in the rest of paper can

stand for ξSPR
hk in FSA-SPR as well as ξMPR

hk in FSA-MPR.

IV. MAIN RESULTS

To streamline the presentation, we summarize the main

results in this section and give the detailed proof and analysis

in the subsequent sections that follow.

Aiming at studying the stability of FSA, we decompose our

global objective into the following three questions, all of which

are of fundamental importance both on the theoretical charac-

terisation of FSA performance and its effective operation in

practical systems:

• Q1: Under what condition(s) is FSA stable?

• Q2: When is the stability region maximised?

• Q3: How does FSA behave in the instability region?

Before answering the questions, we first introduce the

formal definition of stability employed by Ghez et al. in [6].

Define by random variable Xi the number of backlogged

packets in the system at the start of frame i. The discrete-time

process (Xi)i≥0 can be seen as a homogeneous Markov chain.

Definition 1. A FSA system is stable if (Xi)i≥0 is ergodic
and unstable otherwise.

By Definition 1, we can transform the study of stability of

FSA into investigating the ergodicity of the backlog Markov

chain. The rationality of this transformation is two-fold. One

interpretation is the property of ergodicity that there exists

a unique stationary distribution of a Markov chain if it is

ergodic. The other can be interpreted from the nature of

ergodicity that each state of the Markov chain can recur in

finite time with probability 1.

We then establish the following results characterizing the

stability region and demonstrating the behavior of the Markov

chain in nonergodicity regions under both SPR and MPR.

A. Results for FSA-SPR

Theorem 1. Under FSA-SPR, consider an irreducible and
aperiodic backlog Markov chain (Xi)i≥0 with nonnegative
integers. Denote by h the number of backlogged packets in
frame i and α � h

L , for h → ∞, we have 1

1) The system is always stable for all arrival distributions if
Λ < αe−α and L = Θ(h). Specially, the stability region2

is maximised when α = 1.

2) The system is unstable for all arrival distributions under
each of the following three conditions: (a) L = o(h); (b)
L = O(h); (c) L = Θ(h) and Λ > αe−α.

Remark 1. Theorem 1 answers the first two questions and
can be interpreted as follows:

1For two variables X, Y, we use the following asymptotic notations:

• X = o(Y )∗ if X lnX
Y

= 0, as Y → ∞;

• X = o(Y ) if X
Y

= 0, as Y → ∞;

• X = O(Y ) if X
Y

= ∞, as Y → ∞;

• X = Θ(Y ) if θ1 ≤ X
Y

≤ θ2, as Y → ∞, where θ2 ≥ θ1 > 0.

2The ergodicity region of a Markov chain in this paper is referred to as
stability region.
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• When L = o(h), i.e., the backlog size h is far larger than
the frame length L, a packet experiences collision with
high probability (w.h.p.), thus increasing the backlog size
and destabilising the system;

• When L = O(h), i.e., the backlog size is far smaller
than the frame length, a packet is transmitted success-
fully w.h.p.. However, the expected number of successful
packets is still significantly less than that of new arrivals
in the frame. The system is thus unstable.

• When L = Θ(h), i.e., the backlog size has the same order
of magnitude with the frame length, the system is stable
when the backlog can be reduced gradually, i.e., when
the expected arrival rate is less than the successful rate.

It is well known that an irreducible aperiodic Markov chain

falls into one of three mutually exclusive classes: positive

recurrent, null recurrent and transient. So, our next step after

deriving the stability conditions is to show whether the backlog

Markov chain in the instability region is transient or recurrent,

which answers the third question. To facilitate the demonstra-

tion, we focus on the Poisson arrival processes. However, our

analysis can be extended to other arrival processes.

Theorem 2. With the same notations as in Theorem 1 under
Poisson arrivals, (Xi)i≥0 is always transient in the instability
region, i.e., under each of the following three conditions: (1)
L = o(h)∗; (2) L = Θ(h) and Λ > αe−α; (3) L = O(h).

Remark 2. If a state of a Markov chain is transient, then the
probability of returning to itself for the first time in a finite
time is less than 1. Hence, Theorem 2 implies that once out
of the stability region, the system is not guaranteed to return
to stable state in a finite time.

B. Results for FSA-MPR

Theorem 3. Consider an FSA-MPR system where a receiver
can decode at most M simultaneously transmitted packets.
Using the same notations as in Theorem 1, we have

1) The system is always stable for all arrival distributions if
Λ <

∑M
x0=1 e

−α αx0

(x0−1)! and L = Θ(h). Specially, let α∗

denote the value of α that maximises the stability region,
it holds that α∗ = Θ(M).

2) The system is unstable for all arrival distributions under
each of the following conditions: (1) L = o(h); (2) L =
O(h); (3) L = Θ(h) and Λ >

∑M
x0=1 e

−α αx0

(x0−1)! .

Remark 3. Comparing the results of Theorem 3 to Theo-
rem 1, we can quantify the performance gap between FSA-
SPR and FSA-MPR in terms of stability. For example, when
α = 1, the stability region is maximised in FSA-SPR with
ΛSPR < e−1, while the stability region in FSA-MPR is
ΛMPR < e−1

∑M
x0=1

1
(x0−1)! . Note that for M > 2, it holds

that

1 + 1 +
1

2
<

M∑
x0=1

1

(x0 − 1)!
< 1 + 1 +

M∑
x0=1

1

x0(x0 + 1)

< 2 +

(
M∑

x0=1

1

x0
− 1

x0 + 1

)
= 3− 1

M + 1
.

The stability region of FSA-MPR when α = 1 is thus between
2.5 and 3 times the maximum stability region of FSA-SPR.
And hence the maximum stability region of FSA-MPR achieved
when α∗ = Θ(M) is far larger than that of FSA-SPR.

Theorem 4. With the same notations as in Theorem 3 under
Poisson arrivals, (Xi)i≥0 is transient under each of the
following three conditions: (1) L = o(h)∗ (2) L = Θ(h) and
Λ > α; (3) L = O(h).

Remark 4. Theorem 4 demonstrates that despite the stability
gain of FSA-MPR over FSA-SPR, MPR cannot make any
difference in the behavior of FSA in the unstable region.

V. STABILITY ANALYSIS OF FRAME SLOTTED ALOHA

WITH SINGLE PACKET RECEPTION

In this section, we will analyse the stability of FSA-SPA

and prove Theorem 1 and 2.

A. Characterising backlog Markov chain

As mentioned in Sec. IV, we characterize the number of the

backlogged packets in the system at the beginning of frame i
as a homogeneous Markov chain (Xi)i≥0. We now calculate

the one-step transition probability as a function of ξhk and

{λn}n≥0. Defining Phs = P{Xi+1 = s|Xi = h}, we can

derive the one-step transition probability as follows:

• For h = 0: {
P00 = λ0,

P0s = λs, s ≥ 1,

• For h ≥ 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ph,h−s =

min(h,L)−s∑
n=0

λnξh,n+s, 1 ≤ s ≤ min(h, L),

Ph,s = λ0ξh,0 +

min(h,L)∑
n=1

λnξhn, s = h,

Ph,h+s =

min(h,L)∑
n=0

λn+sξhn, s ≥ 1.

(10)

The rationale for the calculation of the transition probability

is explained as follows:

• When h = 0, i.e., there are no backlogs in the frame, the

backlog size remains zero if no new packets arrive and

increases by s if s new packets arrive in the frame.

• When h > 0, we have three possibilities, corresponding

to the cases where the backlog size decreases, remains

unchanged and increases, respectively:

– The state 1 ≤ s ≤ min(h, L) corresponds to the

case where the backlog size decreases by s when

n ≤ min(h, L)−s new packets arrive but n+s packets

are received successfully.

– The backlog size remains unchanged if either of two

following events happens: (a) no new packets are

generated and all the retransmitted backlogged packets

fail; (b) n ≤ min(h, L) new packets arrive but there

are also n successfully received packets.
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– The backlog size increases when the number of suc-

cessful packets is less than that of new arrivals.

In order to establish the ergodicity of the backlog Markov

chain (Xi)i≥0, it is necessary to ensure (Xi)i≥0 is irreducible

and aperiodic. To this end, we conclude this subsection by pro-

viding the sufficient conditions on {λn} for the irreducibility

and the aperiodicity of (Xi)i≥0 as follows:

0 < λn < 1, ∀ n ≥ 0. (11)

We would like to point out that most of traffic models can

satisfy (11). Throughout the paper, it is assumed that (11)

holds and hence (Xi)i≥0 is irreducible and aperiodic.

B. Stability analysis

Recalling Definition 1, to study the stability of FSA, we

need to analyse the ergodicity of the backlog Markov chain

(Xi)i≥0. We first define the drift and then introduce two

auxiliary lemmas which will be useful in the ergodicity

demonstration.

Definition 2. The drift Dh of the backlog Markov chain
(Xi)i≥0 at state Xi = h where h ≥ 0 is defined as

Dh = E[Xi+1 −Xi|Xi = h]. (12)

Lemma 1 ([13]). Given an irreducible and aperiodic Markov
chain (Xi)i≥0, (Xi)i≥0 is ergodic if

1) the state space is nonnegative integers with the transition
probability matrix P = {Phs},

2) |Dh| < ∞, ∀ h,
3) lim suph→∞Dh < 0.

Lemma 2 ([9]). Under the assumptions of Lemma 1, (Xi)i≥0

is not ergodic, if there exist some integer Q ≥ 0 and some
constants B ≥ 0, c ∈ [0, 1] such that

1) Dh > 0 for all h ≥ Q,
2) φh −∑s Phsφ

h ≥ −B(1− φ) for all h ≥ Q, φ ∈ [c, 1].

Armed with Lemma 1 and Lemma 2, we further prove

Theorem 1.

Proof of Theorem 1: In the proof, we first explicitly for-

mulate the drift defined by (12) and then study the ergodicity

of Markov chain based on drift analysis.

Denote by random variable Ci the number of successful

transmissions in frame i, we have

Xi+1 −Xi = Ni − Ci.

Recall (12), it then follows that

Dh = E[Ni − Ci|Xi = h] = λ− E[Ci|Xi]. (13)

Since all new arrivals and backlogs in frame i − 1 are

retransmitted in frame i, we have

P{Ci = k|Xi = h} = ξSPR
hk , 0 ≤ k ≤ min(h, L).

Recall (6), we have

E[Ci = k|Xi = h] = rSPR
h . (14)

Following (13) and (14), we obtain the value of the drift as

follows:
Dh = λ− rSPR

h . (15)

After formulating the drift, we then proceed by two steps.

Step 1: L = Θ(h) and Λ < αe−α.

In this step, we intend to corroborate that the conditions in

Lemma 1 can be satisfied if L = Θ(h) and Λ < αe−α. We

first show that |Dh| is finite. This is true since

|Dh| = |λ− rSPR
h | < max{|λ|, |rSPR

h |}

< max{λ,
min(h,L)∑

k=1

kξSPR
hk } < max{λ, h, L}. (16)

We then derive the limit of Dh as

lim
h→∞

Dh = λ− lim
h→∞

rSPR
h = L

{
Λ−

lim
h→∞

(
h

1

)
1

L

[
1− 1

L

]h−1}
= L(Λ− αe−α), (17)

where α � h
L . It thus holds that

lim
h→∞

Dh < 0,

when L = Θ(h) and Λ < αe−α.

It then follows from Lemma 1 that (Xi)i≥0 is ergodic. Spe-

cially, when α = 1, the system stability region is maximized,

i.e., Λ < e−1.

Step 2: L = o(h) or L = O(h) or L = Θ(h) and Λ >
αe−α.

In this step, we prove the instability of (Xi)i≥0 by applying

Lemma 2. Taking into consideration the impact of different

relation between L and h on the limit of Dh. With (17), the

following results hold for h → ∞:

• Λ− limα→∞ αe−α = Λ > 0, when L = o(h),
• Λ− limα→0 αe

−α = Λ > 0, when L = O(h),
• Λ− αe−α > 0, when L = Θ(h) and Λ > αe−α.

Consequently, we have lim
h→∞

Dh > 0, which proves the first

condition in Lemma 2.

Next, we will show that the second condition is also

satisfied. Referring to [20], The key step here is to show that

the downward part of the drift at state Xi = h (h ≥ 0), defined

as dh− , is lower-bounded.

From the one-step transition probabilities (10) we can

reformulate the drift of state Xi = h as

Dh = −
min(h,L)∑

s=1

sPh,h−s +

∞∑
s=1

sPh,h+s, (18)

and we thus get

dh− = −
min(h,L)∑

s=1

sPh,h−s. (19)

After some algebraic operations, we further get

dh− = −
min(h,L)∑

n=0

λn

min(h,L)−n∑
s=0

sξh,n+s

≥ −
min(h,L)∑

n=0

λn

min(h,L)−n∑
s=0

(s+ n)ξh,n+s

> −
min(h,L)∑

n=0

λn

min(h,L)∑
s=0

sξh,s

> −
min(h,L)∑

n=0

λnrh > −min(h, L) (20)

It then holds that dh− is lower-bounded, which completes

the proof of Step 2 and also the proof of Theorem 1.
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C. System behavior in instability region
It follows from Theorem 1 that the system is unstable in the

following three conditions: L = o(h); L = O(h); and L =
Θ(h) but Λ > αe−α. In this section, we further investigate the

system behavior in the instability region, i.e., when (Xi)i≥0

is nonergodic. The key results are given in Theorem 2.
Before proving Theorem 2, we first introduce the following

lemma [10] on the conditions for the transience of a Markov

chain.

Lemma 3 ([10]). Let (Xi)i≥0 be an irreducible and aperi-
odic Markov chain with the nonnegative integers as its state
space and one-step transition probability matrix P = {Phs}.
(Xi)i≥0 is transient if and only if there exists a sequence
{yh}h≥0 such that

1) yh (h ≥ 0) is bounded,
2) for some h ≥ N , yh < y0, y1, · · · , yN−1,
3) for some integer N > 0,

∑∞
s=0 ysPhs ≤ yh, ∀ h ≥ N .

Armed with Lemma 3, we now prove Theorem 2.
Proof of Theorem 2: The key to prove Theorem 2 is to

show the existence of a sequence satisfying the properties in

Lemma 3, so we first construct the following sequence (21)

and then prove that it satisfies the required conditions.

yh =
1

(h+ 1)θ
, θ ∈ (0, 1). (21)

It can be easily checked that {yi} satisfies the first two

properties in Lemma 3.
Next, We distinguish three cases in the rest of proof.
Case 1: L = o(h)∗.
In this case, we first derive an equivalent condition on

ξhk shown in the following lemma for the third property in

Lemma 3. The proof is detailed in Appendix A.

Lemma 4. If limk→∞ k2 suph≥k ξhk = 0, then (Xi)i≥0 is
always transient for L = o(h)∗.

Lemma 4 provides another approach to prove the transience

of (Xi)i≥0 in the instability region, i.e., whether ξhk is of the

property that limk→∞ k2 suph≥k ξhk = 0 when L = o(h)∗.

To this end, we introduce the following lemma by which an

approximate result on ξSPR
hk can be derived.

Lemma 5 ([5]). Given h packets, each packet is sent in
a slot picked randomly among L time-slots in the frame
i. If ρj = L e−h/L

j! ( hL )
j remains bounded for h, L → ∞,

then the probability P (mj) of finding exactly mj time-slots
with j packets can be approximated by the following Poisson
distribution with the parameter ρj ,

P (mj) = e−ρ
j
ρ

j
mj

mj !
. (22)

We next show that Lemma 5 is applicable to FSA-SPR when

L = o(h)∗ for a large enough h. This is true for

0 ≤ ρj ≤ hj

j!Lj−1ehε ≤ hj

j!Lj−1
· (� 1

ε 	j)!
(hε)�

1
ε 	j

≤ (� 1
ε 	j)!

j!Lj−1
, (23)

meaning that ρj is bounded if j is finite.
For FSA-SPR, the probability ξSPR

hk is equivalent to the

probability P (mj = k) when j = 1, we thus have

ξSPR
hk = e−ρ1

ρk
1

k!
, (24)

where ρ1 ≤ �1
ε
	!.

Using the inequality nk

k! ≤ (nek )k yields

0 ≤ ξSPR
hk ≤ e−ρ1(

ρ
1
e

k
)k,

which leads to 0 ≤ k2ξSPR
hk ≤ e−ρ1k2(

ρ
1
e

k )k.

Furthermore, since eρ1 ≤ e� 1
ε 	! is constant, we have

limk→∞ e−ρ1k2(
ρ1e

k )k = 0, which means ξSPR
hk in FSA-SPR

satisfies the property that limk→∞ k2 suph≥k ξ
SPR
hk = 0 when

L = o(h)∗. The first case on the transience of (Xi)i≥0 is thus

proved.

Case 2: L = Θ(h) and Λ > αe−α.
In this case, we directly prove that yi satisfies the third

property in Lemma 3 by algebraic operations. The key steps

we need here are to obtain upper bounds of ξSPR
hk and the

arrival rate in a new way. To this end, we first recomputed

ξSPR
hk as follows when L = Θ(h):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξSPR
hk =

(Lk)k!(L−k)h−k

Lh − ( L
k+1)(k+1)!(L−k−1)h−k−1

Lh

≤ (Lk)k!
Lk

(
(1− k

L )
h−k − (1− k+1

L )h−k
)

≤ (Lk)k!
Lk ≤ (1− k/2

L )k/2, k < min(h, L),

ξSPR
hh =

(Lh)h!
Lh ≤ (1− h/2

L )h/2

≤ (1− α/2)h/2, k = h ≤ L.

(25)

The rationale behind the above inequalities is as follows:

Given h transmitted packets, the probability of exactly k
successful packets equals the absolute value of the difference

between the probability of at least k successful packets and

that of at least k + 1 successful packets.

Next, we introduce a lemma to bound the probability

distribution of the arrival rate. When the number of new

arrivals per slot Ail is Poisson distributed with the mean Λ, the

number of new arrivals per frame Ni (Ail and Ni is formally

defined in Sec. III.) is also a Poisson random variable with the

mean λ = LΛ > he−α.

Lemma 6 ([11]). Given a Poisson distributed variable X with
the mean μ, it holds that

Pr[X ≤ x] ≤ e−μ(eμ)x

xx
, ∀ x < μ.

Applying Lemma 6, we have

P{Ni ≤ he−α} ≤ e−λ(eλ)
h
eα

( h
eα )

h
eα

≤ e−
h
eα ( LΛ

he−α −1)

(
LΛ

he−α

) h
eα

≤ 1

a
h
eα

, (26)

where a � he−α

LΛ · e LΛ

he−α −1 > 1, following the fact that ex >
1 + x, for ∀ x > 0.

Armed with (25) and (26), we prove that the third property

in Lemma 3 is also satisfied when L = Θ(h) by considering

different values of L.

(1) h ≤ L.
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By employing the sequence {yh}h≥0, we have

∞∑
s=0

ysPhs =


 h
eα �∑
s=0

ysPhs +

h∑
s=
 h

eα �+1

ysPhs +

∞∑
s=h+1

ysPhs

≤

 h
eα �∑
s=0

s∑
n=0

λn + yh+1

+

h∑
s=
 h

eα �+1

ys

s∑
n=0

λn(1− n+ h− s

2L
)(n+h−s)/2

≤
 h
eα �+ 1

a

h
eα � + yh+1 +

h∑
s=
 h

eα �+1

ys

s∑
n=0

λn(1− n

2L
)

n
2

≤
 h
eα �+ 1

a

h
eα � + yh+1 +

h∑
s=
 h

eα �+1

ys
( 
 h

eα �∑
n=0

λn(1− n

2L
)

n
2

+

s∑
n=
 h

eα �+1

λn(1− n

2L
)

n
2

)

≤
 h
eα �+ 1

a

h
eα � +

h∑
s=
 h

eα �+1

ys
( 
 h

eα �∑
n=0

λn + (1−
h
eα

2L
)

h
2eα
)
+ yh+1

≤
 h
eα �+ 1

a

h
eα � +

h− 
 h
eα �

( h
eα + 2)θ

( 1

a
h
eα

+ (1− α

2eα
)

h
2eα
)
+ yh+1

≤ 1

(h+ 1)θ
, as h → ∞, (27)

where the last inequality holds because

• 
 h
eα �+1

a� h
eα

� +
h−
 h

eα �
( h
eα +2)θ

(
1

a
h
eα

+ (1 − α
2eα )

h
2eα
) ∼ Θ( h

ahe−α
0

)

where a0 = max

(
a, 1√

1− α
2eα

)
> 1,

• yh−yh+1 = 1
(h+1)θ

(1−(1− 1
h+2 )

θ) ≥ θ
(h+1)θ(h+2)

where

we use the fact that (1 − 1
h+2 )

θ ≤ 1 − θ
h+2 following

Taylor’s theorem.

(2) he−α < L < h.
With the same reasoning as (27) and noticing the fact that

at most L− 1 packets are successfully received when L < h,

we have
∞∑
s=0

ysPhs =

h−L−1∑
s=0

ysPhs +

h∑
s=h−L

ysPhs +

∞∑
s=h+1

ysPhs

≤yh+1 +

h∑
s=h−L

ys

L+s−h∑
n=0

λn(1− n+ h− s

2L
)(n+h−s)/2

≤yh+1 +

h∑
s=h−L

ys

L∑
n=0

λn(1− n

2L
)

n
2

≤yh+1 +

h∑
s=h−L

ys
( 
 h

eα �∑
n=0

λn +

L∑
n=
 h

eα �+1

(1− n

2L
)

n
2

)

≤ L

(h− L+ 1)θ
( 1

a
h
eα

+ (1− α

2eα
)

h
2eα
)
+ yh+1

≤ 1

(h+ 1)θ
, as h → ∞. (28)

(3) L ≤ he−α.

With the same reasoning as (27) and (28), we have
∞∑
s=0

ysPhs =

h−L−1∑
s=0

ysPhs +

h∑
s=h−L

ysPhs +

∞∑
s=h+1

ysPhs

≤yh+1 +

h∑
s=h−L

ys

L+s−h∑
n=0

λn(1− n+ h− s

2L
)(n+h−s)/2

≤yh+1 +

h∑
s=h−L

ys

L∑
n=0

λn ≤ L

(h− L+ 1)θ
· 1

a
h
eα

+ yh+1

≤ 1

(h+ 1)θ
, as h → ∞. (29)

Consequently, the third property in Lemma 3 holds, which

completes the proof of the transience of (Xi)i≥0 for Case 2.

Next, we proceed with the proof for the third case.

Case 3: L = O(h).
When L = O(h), it is easy to see that the expected number

of new arrivals per frame λ = LΛ � h. Since Ni is Poisson

distributed as mentioned in Case 2 above, by employing (26),

we also have
P{Ni ≤ h} ≤ 1

ah1
, (30)

where a1 � h
LΛ · eLΛ

h −1 � 1, following the fact that ex >
1 + x, for ∀ x > 0.

We now prove the transience of (Xi)i≥0 when L = O(h).
To that end, by combining (21) and (30), for h large enough,

we have
∞∑
s=0

ysPhs =

h∑
s=0

ysPhs +

∞∑
s=h+1

ysPhs

≤
h∑

s=0

1

(s+ 1)θ

s∑
n=0

λn +
1

(h+ 2)θ
≤

h∑
s=0

s∑
n=0

λn +
1

(h+ 2)θ

≤h+ 1

a1h
+

1

(h+ 2)θ
≤ 1

(h+ 1)θ
, as h → ∞. (31)

where the last inequality is true following the same reasoning

as (27).

Consequently, it follows Lemma 3 that the backlog Markov

chain (Xi)i≥0 is also transient when L = O(h), which

completes the proof of Theorem 2.

VI. STABILITY ANALYSIS OF FRAME SLOTTED ALOHA

SYSTEM WITH MULTIPACKET RECEPTION

In this section, we study stability properties of FSA-MPR

where the receiver can correctly receive multiple packets trans-

mitted simultaneously. This MPR capability can be achieved

through MIMO or CDMA. Specifically, we exploit MPR-M
model that only up to M simultaneous packets can be decoded

successfully at the receiver, which differs FSA-MPR from

FSA-SPR. The value of M is fixed and is known beforehand.

Note that FSA-SPR investigated previously is a special case

of MPR-M with M = 1, meaning the only difference between

FSA-MPR and FSA-SPR is the packet success probability.

Hence, with the packet success probability of FSA-MPR,

we can develop the analysis on the stability properties of

FSA-MPR using similar ideas in the FSA-SPR case. We first

establish conditions for the stability of FSA-MPR and further

analyse the system behavior in instability region subsequently.
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A. Stability analysis

We employ Lemma 1 and Lemma 2 as mathematical tools to

study the stability properties of FSA-MPR, more specifically,

in the proof of Theorem 3.

Proof of Theorem 3: When h is large, with Poisson

approximation, (9) can be approximated as follows:

rMPR
h = L

M∑
x0=1

e−α αx0

(x0 − 1)!
= Lα

M−1∑
x0=0

e−αα
x0

x0!
≤ Lα

(32)

where α � h
L . And we define Φ(α) �

∑M
x0=1 e

−α αx0

(x0−1)! in

the rest of this paper.

We then develop our proof in three steps.

Step 1: L = Θ(h) and Λ <
∑M

x=1 e
−α αx

(x−1)! .
According to (16) and (32), the drift at state h of (Xi)i≥0

in FSA-MPR is finite as shown in the following inequality:

|Dh| < max(λ, rMPR
h ) < max{λ, h}.

which demonstrates the second conditions in Lemma 1 for the

ergodicity of (Xi)i≥0.

Furthermore, when L = Θ(h), if Λ < Φ(α), we have

lim
h→∞

Dh = L

(
Λ−

M∑
x0=1

e−α αx0

(x0 − 1)!

)
< 0.

It then follows from Lemma 1 that (Xi)i≥0 is ergodic.

Step 2: stability region maximiser α∗.
In this step, we show that α∗ = Θ(M). Since the proof

consists mainly of algebraic operations of function optimiza-

tion, we state the following lemma proving Step 2 and detail

its proof in Appendix B.

Lemma 7. Let α∗ denote the value of α that maximises the
stability region, it holds that α∗ = Θ(M)

Step 3: L = o(h) or L = O(h) or L = Θ(h) and Λ >∑M
x=1 e

−α αx0

(x0−1)! .
In this step, we prove the instability by applying Lemma 2.

According to the analysis on the impact of different relation

between L and h in the second step proof of Theorem 1, we

know that limh→∞ Dh > 0, if the conditions in the second

part of Theorem 3 are satisfied.

In addition, similar to (20), we can derive the lower-bounded

downward part of drift at state Xi = h in FSA-MPR as

dh− > −M min(h, L),

which proves the instability of FSA-MPR following Lemma

2 and completes the proof of Theorem 3.

B. System behavior in instability region

It follows from Theorem 3 that the system is unstable

under the following three conditions: L = o(h); L = O(h);
L = Θ(h) but Λ >

∑M
x0=1 e

−α αx0

(x0−1)! . In this subsection,

we further investigate the system behavior in the instability

region, i.e., when (Xi)i≥0 is nonergodic. The key results are

given in Theorem 4, whose proof is detailed as follows.

Proof of Theorem 4: We prove the theorem in three cases

as the proof of Theorem 2.

Case 1: L = o(h)∗.

Recall Lemma 4, we can demonstrate the transience of

(Xi)i≥0 by proving limk→∞ k2 suph≥k ξ
MPR
hk = 0 in FSA-

MPR. To this end, we first derive ξMPR
hk .

In (23), we have shown that ρj is bounded when L =
o(h1−ε) for j = 1, 2, · · · ,M , so the probability of finding

exactly mj time-slots with j packets in FSA-MPR can also be

approximated by the Poisson distribution with the parameter

ρj , following from Lemma 5 .

Consequently, we can derive the probability that all h pack-

ets fail to be received, i.e., there are no slots with 1 ≤ j ≤ M
packets, as follows:

ξMPR
h0 = e−(ρ1+ρ2+···+ρ

M
). (33)

Further, we can get the following inequalities:

ξMPR
hk ≤ 1− e−(ρ1+ρ2+···+ρ

M
) ≤ 1− e−Mρ

M , 1 ≤ k < L,

where we use the fact that the probability of exact k ≥ 1
successfully received packets among h packets is less than

that of at least one packet received successfully in the first

inequality. And the second inequality above follows from the

fact that when L = o(h1−ε), it holds that

ρ
M

> ρ
M−1

> · · · > ρ2 > ρ1.

As a result, we have

0 ≤ lim
k→∞

k2 sup
h≥k

ξMPR
hk = lim

k→∞
k2(1− e−MρM )

≤ lim
h→∞

h2(1− e−MρM ) ≤ lim
h→∞

eMρM − 1

(1/h2)

≤ lim
h→∞

(M + 3)(M + 2)(M + 1)ML3

2eh/L
≤ 0

based on the L’Hospital’s rule and the fact that ρ
M

→ 0 at an

exponential rate as h → ∞.

Thus, according to Lemma 4, the backlog Markov chain

(Xi)i≥0 is transient when L = o(h1−ε).
Case 2: L = Θ(h) and Λ > α.
In this case, we have λ = LΛ > h. Using similar reasoning

as (31), we have :
∞∑
s=0

ysPhs ≤ h+ 1

ah2
+

1

(h+ 2)θ
≤ 1

(h+ 1)θ
, as h → ∞,

where a2 = α
Λe

Λ
α−1 > 1.

Thus when L = Θ(h) and Λ > α, (Xi)i≥0 is also transient.

Case 3: L = O(h).
In the analysis of FSA-SPR system, we have proven that

when L=O(h), the Markov chain (Xi)i≥0 is always transient,

independent of ξhk. Noticing that ξhk is the only difference

between FSA-SPR and FSA-MPR, it thus also holds that

(Xi)i≥0 is transient under FSA-MPR when L = O(h).

VII. CONCLUSION

In this paper, we have studied the stability of FSA-SPR and

FSA-MPR by modeling the system backlog as a Markov chain.

By employing drift analysis, we have obtained the closed-form

conditions for the stability of FSA and shown that the stability

region is maximised when the frame length equals the backlog

size in FSA-SPR and when the ratio of the backlog size

to frame length equals in order of magnitude the maximum

multipacket reception capacity in FSA-MPR. Furthermore, to

characterise system behavior in the instable region, we have
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mathematically demonstrated the existence of transience of the

Markov chain. Our results provide theoretical guidelines on the

design of stable FSA-based protocols in practical applications

such as RFID and M2M systems.
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APPENDIX A

PROOF OF LEMMA 4

Proof: Recall the definition of transition probability, we

can get the following equivalent:∑
s

ysPhs ≤ yh ⇐⇒
min(h,L)∑

s=1

(yh−s − yh)Ph,h−s

+

∞∑
s=1

(yh+s − yh)Ph,h+s ≤ 0.

Define f ′(h) and g′(h) as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ′(h) = (h+ 1)θ
∑min(h,L)

s=1 ( 1
(h+1−s)θ

− 1
(h+1)θ

)

·∑min(h,L)−s
n=0 λnξh,n+s,

g′(h) = (h+ 1)θ
∑∞

s=1(
1

(h+1+s)θ
− 1

(h+1)θ
)

·∑min(h,L)
n=0 λn+sξh,n,

(34)

we have
∑

s ysPhs ≤ yh ⇐⇒ f ′(h) + g′(h) ≤ 0.
Furthermore, recall (18), we have

Dh = −
min(h,L)∑

s=1

sPh,h−s +

∞∑
s=1

sPh,h+s = f(h) + g(h),

where f(h) and g(h) are defined as{
f(h) =

∑min(h,L)
s=1 s

∑min(h,L)−s
n=0 λnξh,n+s,

g(h) =
∑∞

s=1 s
∑min(h,L)

n=0 λn+sξh,n.
(35)

It is noted that in the proof of Theorem 1, we have show that

limh→∞ Dh ≥ 0 in the nonergodicity region. Consequently,

(Xi)i≥0 is transient if the following equation holds:

lim
h→∞

[f ′(h) + g′(h) + θDh] = 0. (36)

Noticing that Dh = f(h)+g(h), we prove (36) by showing

that: (1) limh→∞[f ′(h) + θf(h)] = 0; (2) limh→∞[g′(h) +
θg(h)] = 0.

We first prove limh→∞[f ′(h) + θf(h)] = 0.
From (34) and (35), we get

f ′(h) + θf(h) =(h+ 1)

min(h,L)∑
s=1

[
(

h+ 1

h+ 1− s
)θ − 1

− θs

h+ 1

]
·
min(h,L)−s∑

n=0

λnξh,n+s, (37)

which is nonnegative since

(
h+ 1

h+ 1− s
)θ − 1− θs

h+ 1
> 0, ∀1 ≤ s ≤ h.

Define τk = suph≥k ξhk, we have

0 ≤ f ′(h) + θf(h)

≤ (h+ 1)

min(h,L)∑
s=1

[
(

h+ 1

h+ 1− s
)θ − 1− θs

h+ 1

] h∑
n=0

λnτn+s

≤ (h+ 1)

∞∑
n=0

λn

h∑
s=1

[
(

h+ 1

h+ 1− s
)θ − 1− θs

h+ 1

]
τn+s,
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which can also be written as

f ′(h) + θf(h) ≤ z1(h) + z2(h) (38)

with z1(h) and z2(h) defined as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z1(h) = (h+ 1)
∑∞

n=0

∑
h+1
2 �

s=1

[
( h+1
h+1−s )

θ − 1− θs
h+1

]
·λnτn+s,

z2(h) = (h+ 1)
∑∞

n=0

∑h
s=
h+3

2 �
[
( h+1
h+1−s )

θ − 1

− θs
h+1

]
· λnτn+s.

Next we show that z1(h) and z2(h) go to zero independent-

ly. Given 0 < v ≤ h, define mh(v) as

mh(v) =
h+ 1

v2

[
(

h+ 1

h+ 1− v
)θ − 1

]
− θ

v

which is positive and nondecreasing in v for h ≥ 1, we get

mh

(

h+ 1

2
�
)

≤ 1

h+ 1
[4(2θ − 1)− 2θ] � A

h+ 1
,

where A is a positive constant only depending on θ. Thus,

z1(h) =

∞∑
n=0

λn


h+1
2 �∑

s=1

s2mh(s)τn+s

≤ A

h+ 1

∞∑
n=0

λn


h+1
2 �∑

s=1

s2τn+s

≤ A

h+ 1

∞∑
n=0

λn

n+
h+1
2 �∑

s=1

s2τn+s.

If the condition limk→∞ k2 suph≥k ξhk = 0 holds, i.e.,

limk→∞k2τk = 0, then it holds that limn→∞ 1
n

∑n
k=1 k

2τk =
0. Consequently, for ∀ ε∗ > 0, we can choose h large enough

such that
∑n

k=1 k
2τk < nε∗ for n ≥ 
h+1

2 �. It thus holds that

z1(h) ≤ ε∗
A

h+ 1

∞∑
n=0

λn(n+
h+ 1

2
) = ε∗A

( λ

h+ 1
+

1

2

)→ 0.

On the other hand, if h is large enough such that for ∀ s ≥

(h+ 3)/2�, it holds that τk < ε∗/k2, and we have

z2(h) ≤ε∗
∞∑

n=0

λn

h∑
s=
h+3

2 �

[
(

h+ 1

h+ 1− s
)θ − 1− θs

h+ 1

] h+ 1

(n+ s)2

≤ε∗
∞∑

n=0

λn

h∑
s=
h+3

2 �

[
(

h+ 1

h+ 1− s
)θ − 1− θs

h+ 1

] h+ 1

(
h+3
2 �)2

≤ 4ε∗

h+ 1

h∑
s=
h+3

2 �

[
(

h+ 1

h+ 1− s
)θ − 1− θs

h+ 1

]

≤2θ(1 + θ)ε∗

h+ 1

h∑
k=
h+3

2 �
(

s

h+ 1
)2 ≤ θ(1 + θ)ε∗,

where we use the following inequalities for v ≥ 0 and 0 <
θ < 1

0 ≤ 1

(1 + v)θ
− 1 + θv ≤ θ(1 + θ)

v2

2
. (39)

Therefore, it holds that limh→∞[f ′(h) + θf(h)] = 0.

We then prove limh→∞[g′(h) + θg(h)] = 0.

From (34) and (35), we get

g′(h) + θg(h) = (h+ 1)

∞∑
s=1

[
(

h+ 1

h+ 1 + s
)θ − 1 +

θs

h+ 1

]

·
min(h,L)∑

n=0

λn+sξh,n.

Since
[
( h+1
h+1+s )

θ − 1 + θs
h+1

]
≥ 0, after some algebraic

operations, we have

g′(h) + θg(h) ≤(h+ 1)

∞∑
n=1

λn

n∑
s=1

[
(

h+ 1

h+ 1 + s
)θ − 1

+
θs

h+ 1

]
· ξh,n−s

Using the inequalities (39), we have

0 ≤g′(h) + θg(h)

≤θ
(θ + 1)

2
(h+ 1)

N∑
n=1

λn

n∑
s=1

s2

(h+ 1)2
ξh,n−s

+ θ(h+ 1)

∞∑
n=N+1

λn

n∑
s=1

s

h+ 1
ξh,n−s

≤ 1

h+ 1

N∑
n=1

n2λn +

∞∑
n=N+1

nλn.

For ∀ε∗>0, we first choose N such that
∑∞

n=N+1 nλn<ε∗/2;

then choose h large enough so that 1
h+1

∑N
n=1 n

2λn < ε∗/2;

we have limh→∞[g′(h)+ θg(h)] = 0 at last, which completes

the proof of the second part and also Lemma 4.

APPENDIX B

PROOF OF LEMMA 7

Proof: We write Φ(α) as

Φ(α) = e−α
M∑
i=1

αi

(i− 1)!
,

whose derivative can be calculated as

Φ′(α) = e−α

[
M−1∑
i=0

αi

i!
− αM

(M − 1)!

]
. (40)

We distinguish two cases to look for α∗.

• Case 1: α ≥ M .

Since it holds that N ! ≤ NN−1 for ∀N ∈ N, we can get

Φ′(α) <
e−α

(M − 1)!
·
(

M∑
i=1

MM−iαi−1 − αM

)

<
e−α

(M − 1)!
· (MαM−1 − αM

)
< 0,

meaning that Φ(α) monotonously decreases when α≥M .

• Case 2: α ≤ M−1
e .

Substituting the inequality N ! ≥ (Ne )
N into (40) yields

Φ′(α) ≥ e−α

(M − 1)!
·
[
(
M − 1

e
)M−1 + α(

M − 1

e
)M−1

−αM
] ≥ e−α

(M − 1)!
· (αM−1 + αM − αM

)
> 0,

meaning that Φ(α) monotonously increases as α≤M−1
e .

Combining the analysis in both cases, we have proved that

α∗ maximising Φ(α) falls into the interval [M−1
e ,M ], i.e.,

α∗ = Θ(M).
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