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Stabilizing Frame Slotted Aloha Based IoT
Systems: A Geometric Ergodicity Perspective
Jihong Yu, Pengfei Zhang, Lin Chen, Jiangchuan Liu, Rongrong Zhang, Kehao Wang, Jianping An

Abstract—The explosive deployment of the Internet of things
(IoT) brings a massive number of light-weight and energy-limited
IoT devices, challenging stable wireless access. Energy-efficient,
Frame Slotted Aloha (FSA) recently emerged as a promising
MAC protocol for large-scale IoT systems such as Machine to
Machine (M2M) and Radio Frequency Identification (RFID).
Yet the stability of FSA and how to stabilize it, despite of its
fundamental importance on the effective operation in practical
systems, have not been systematically addressed. In order to
bridge this gap, we devote this paper to designing stable FSA-
based access protocol (SFP) to stabilize IoT systems. We first
design an additive active node population estimation scheme and
use the estimate to set frame size and participation probability for
throughput optimization. We then carry out theoretical analysis
demonstrating the stability of SFP in the sense of geometric
ergodicity of Markov chain derived from dynamics of the active
node population and its estimate. Our central theoretical result
is a set of closed-form conditions on the stability of SFP. We
further conduct extensive simulations whose results confirm our
theoretical analysis and demonstrate the effectiveness of SFP.

Index Terms—IoT, massive access, Frame Slotted Aloha.

I. INTRODUCTION

IoT systems like M2M [10] and RFID [2], [19] have
attracted considerable research attention due to their ability of
ubiquitous sensing and low energy consumption. Compared
to the traditional human-centric communication paradigm, an
IoT system needs to accommodate a massive number of inter-
connected nodes in many cases. In such densely deployed
scenarios, how to enable the system operating around a stable
equilibrium is a pivotal challenge for any IoT wireless access
protocol. Motivated by this challenge, we embark in this paper
on a comprehensive study on the stability of wireless access
in IoT systems. To make our analysis practically applicable,
we instantiate our framework by focusing on Frame Slotted
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Aloha (FSA), which is regarded as the de facto MAC protocol
to coordinate massive access in M2M communications [13],
[5] and RFID systems [17], [18]. Especially, FSA plays a fun-
damental role in node identification and is standardized in the
EPCGlobal Class-1 Generation-2 (C1G2) RFID standard [3].

Architecturally, an FSA-based communication system con-
sists of two types of devices: a Coordinator that configures
system parameters and controls communications, and a large
number of nodes that communicate with the Coordinator. FSA
organizes multiple consecutive time slots into a frame. At the
beginning of a frame, the coordinator broadcasts the system
parameters such as frame size and participation probability. If
a node has a packet, referred to as active node, it will decide
whether to send the packet with the received participation
probability. Note that each active node is allowed to transmit
only a single packet per frame in a randomly chosen time slot.

Due to its wide applications, a large body of studies have
been devoted to performance analysis of FSA in both static
and dynamic systems. However, very limited work has been
done on the stabilization of FSA in dynamic systems with
the presence of new traffic despite its fundamental importance
both on the theoretical characterisation of FSA performance
and its effective operation in practice. The existing works
[11][1][5] considering static systems without new arrivals
mainly derive the optimal frame size and throughput. In
dynamic systems, the works [15] [16] analyze the throughput
and stability conditions of FSA, respectively, but they do
not study how to stabilize FSA with presence of unknown
number of active nodes and how node population estimation
influences the stability (c.f. Table I summarizing limitations of
the existing works and c.f. Sec.VI on detailed related works).
Therefore, we argue that a systematic study on the FSA
stabilization is called for so as to lay theoretical foundations
for design and optimization of FSA based IoT systems.

Technically, there are two main challenges in designing
unified stable FSA protocol:

1) System dynamics with unknown new traffic arrivals: The
Coordinator must know the number of active nodes in
the system to configure FSA parameters for throughput
maximization and stability. Practical systems, however,
experience system dynamics, such as new traffic arrivals
due to triggered events. In such dynamic systems, the
Coordinator cannot know node population a priori. Most
of existing protocols either assume the known node popu-
lation [1] or study the scenarios without new arrivals [5].
Therefore, designing a unified FSA stabilization frame-
work for dynamic systems with unknown node population
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TABLE I
SUMMARY OF EXISTING WORKS ON FSA.

Existing New Unknown Stability
works arrivals population guarantee

[20], [21], [1], [5] × × ×
[15], [13] × ×

[11] × ×
[16] ×

Our work: SFP

is a first technical cornerstone in designing effective FSA-
based access protocols.

2) Frame-based measurement and control: FSA operates in
a frame-after-frame pattern, making its stabilization more
challenging. Specifically, the Coordinator can learn the
states of the slots in the frame. In order to accurately
track the node population the statistic characteristics of
multiple slots needs to be derived. This is different from
traditional methods based on slot-level feedback (e.g.,
empty, successful, collision) [9] [4] for Slotted Aloha,
making them inapplicable for FSA. It is then crucial
to choose the appropriate frame-level feedback to learn
system dynamics.

Motivated by the above challenges, we design a stable
FSA-based access protocol (SFP) which works on top of
FSA by integrating nodes’ transmissions and node population
estimation to stabilize FSA and achieve maximum throughput.
With SFP, the Coordinator can obtain a bitmap from the nodes’
transmissions at the end of a frame and then can leverage
the number of empty slots and an additive estimation scheme
to evaluate the change of the active node population and to
update parameters in order to stabilize the protocol. The main
contributions of this paper are articulated as follows:
• We propose the first FSA-based access control protocol

for dynamic systems with proven stability. The protocol
can estimate the number of nodes and use the estimate
to configure frame size and participation probability such
that throughput is maximized and stability is guaranteed.

• We analytically demonstrate that our proposed protocol
SFP can be stabilized in the sense of ergodicity of Markov
chain under two conditions: (1) the parameters of SFP are
tuned by the parameter configuration rule (c.f. Sec. IV-C);
(2) the normalized arrival rate is smaller than 1/e.

• We develop an additive estimator for node population
estimation in FSA based dynamic systems with proven
performance in terms of accuracy and convergence.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce generic model of FSA-based
IoT systems and formulate its stability from the perspective
of geometric ergodicity.

A. FSA based Random Access

We consider a system of identical nodes with buffer capacity
of one packet and operating on one frequency channel. A
node has backlog will not generate new data while a random
number of the remaining nodes generate a packet following
the traffic model introduced shortly. FSA organizes a number

of consecutive time slots to form a frame. At each frame,
each node independently selects a slot at random to send its
packet at most once per frame. Backlogs and new arrivals
in the current frame will be sent in the following frame.
Note that if a node sends its packet successfully, it will keep
silent until new data arrives. More specifically, in an FSA-
based communication system, the Coordinator, such as base
station/gateway in M2M systems and reader in RFID systems,
queries nodes in frame t with frame size ft and participation
probability pt. We denote the number of slots in frame t by
ft. With these parameters, each active node has a probability
of pt to take part in this frame. If determining to participate,
it selects a slot in the frame uniformly at random to transmit
its packet. We assume that the length of a slot is long enough
for one packet transmission.

As each node responds independently, a slot may experience
three states depending on the number of nodes responding in
this slot. If none of nodes replies, this slot is referred to as
empty slot; if only one node replies in this slot, it is called a
successful slot; if multiple nodes reply in this slot, it is called
a collision slot. When a frame ends, the Coordinator can get
states of all slots in this frame.

In FSA-based systems, the Coordinator controls the random
access by adaptively adjusting the frame size ft and/or the par-
ticipation probability pt. At the end of frame t, the Coordinator
determines the frame size and the participation probability for
frame t+1 based on the access outcomes in current frame. The
objective is to maximize throughput that is the average number
of success packets in a unit time, which can be accomplished
if it is true for the number of active nodes Wt and the frame
size ft and the participation probability pt that ft/pt = Wt.
The Coordinator, however, has no knowledge of Wt and has
to predict it from the access outcomes in the previous frame
and use its estimate Ŵt to configure the parameters.

Traffic Model: We consider a dynamic system where the
number of nodes that need to send message changes. These
nodes are referred to as active node. And the change may be
resulted from activation/sleep depending on whether certain
events are triggered. Let random variable At denote the total
number of new arrivals during frame t and denote by Atl
the number of new arrivals in time slot l in frame t where
l = 1, 2, · · · , ft. Assume that (Atl)1≤l≤ft are independent and
identically distributed random variables, which is exponential-
type1 with probability distribution P{Atl = ul} = λul(u ≥ 0)
such that the expected number of new arrivals per time slot
λ=
∑∞

1 ulλul is finite. Then as At=
∑ft
l=1Atl, the expected

number of arrivals during a frame is ftλ.

B. Problem Definition

In this paper, our objective is to design a stable FSA-
based protocol while proving its stability. This protocol would
provide an estimator for the Coordinator to estimate the active
node population and use it to set frame size and participation
probability such that the throughput is maximized.

1The definition of exponential type for a random variable is stated in
Lemma 4. The exponential-type random variables are common, such as
Poisson distribution, Normal distribution, and Hyperexponential distribution.
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Fig. 1. Drift in the Markov Process. The value of Wt and Ŵt would converge
to a compact set while their ratio fluctuates around 1.

Since Wt+1 and its estimate Ŵt+1 only depend on the
information from frame t, namely Wt, Ŵt and all slot states
of this frame, the discrete-time system dynamics (Wt)t≥0 and
estimation process (Ŵt)t≥0 perform as a Markov chain on a
countable state space Zt = (Wt, Ŵt). The problem we solve is
to guarantee the stability of the proposed FSA-based protocol.
Following definition of stability in Slotted Aloha [12], we
define the stability of FSA-based protocols as follows.

Definition 1. An FSA-based protocol is stable if Markov chain
(Zt)t≥0 is geometrically ergodic.

Remark: By Definition 1, we can transform the study of
stability of a control scheme into investigating the geometrical
ergodicity of Markov chain. The rationality of this trans-
formation is two-fold. One interpretation is the property of
geometrical ergodicity that there exists an unique stationary
distribution of a Markov chain if it is ergodic. The other can
be interpreted from the nature of geometrical ergodicity that
recurrent time of the chain to a finite set is exponential-type.

We use Fig. 1 to illustrate geometrical ergodicity of Zt.
The arrows denote the mean one-step change of (Wt, Ŵt),
referred as drift. We can interpret geometrical ergodicity as
follows: First, Ŵt would track the change of Wt so that their
ratio keeps around 1. Second, once the value of Wt increases,
the drift would decrease pushing Wt+1 towards the finite set,
e.g., the square in the figure, and the speed is exponential.

Overview of Proposed Solution: The main technical part
is two-fold: FSA-based protocol and its stability analysis. 1)
The protocol contains FSA mechanism and a node population
estimator. We first study the statistical characteristics of the
number of empty and successful slots in a frame, enabling
that the Coordinator can learn a combination of frame size and
participation probability that maximizes throughput. With such
settings, the Coordinator can predict the expected number of
empty slots. If the difference between this predicted value and
the measured one exceeds a threshold, the Coordinator learns
an inaccurate estimate and will correct it. 2) The stability is
proven in three steps: we model the Markov chain of system
states (Wt, Ŵt); we investigate the properties of one-frame
drift; we analyze multi-frame Lyapunov drift to prove the er-
godicity of the Markov chain. The derived stability conditions
provide guideline on protocol parameter configuration.

III. SFP: STABLE FSA-BASED PROTOCOL

In this section, we present a stable FSA-based protocol,
referred to as SFP, which contains FSA mechanism and a node
population estimator with proven parameter configuration. We

first formulate the statistical characteristics of FSA and use
them to design the node population estimator. We then prove
the stability of SFP and investigate parameter configuration to
guarantee the stability.

A. Statistical Characteristics of FSA
In contrast to traditional Slotted Aloha, FSA organizes the

access in frames and its access outcomes that are useful for
estimation in FSA are not states of one slot, but the statistics
of states of all slots, such as the number of empty slots and
success slots, in the whole frame.

Let nt and n̂t denote the value of Wt and Ŵt, re-
spectively, i.e., the number of nodes transmitting packets
in frame t and its estimate. Given the frame size ft and
the participation probability pt, we calculate in Lemma 1 the
probability that a slot in frame t is bt where bt = 0 or 1 stands
for an empty slot or a successful slot, respectively.

Lemma 1. Let nt nodes each uniformly select a slot among ft
slots at random and transmit in the chosen slot with probability
pt. Let qt(bt) be the probability that a slot in frame t is bt.
For a large nt, it holds that

qt(bt) =

{
(1− pt

ft
)nt ≈ e−

ntpt
ft , if bt = 0

ntpt
ft

(1− pt
ft

)nt−1 ≈ ntpt
ft
e−

ntpt
ft , if bt = 1.

(1)

Proof. The event that a node does not reply in a given slot of
a frame happens when this node does not participate in this
frame or it participates but does not choose this slot to reply.
The probability of the former part is 1− pt while that of the
latter is pt(1 − 1

ft
). As a result, this event happens with the

probability of 1− pt
ft

. Since the event of an empty slot happens
when all nodes do not choose it, we have qt(0) ≈ entpt/ft for
a large nt. On the other hand, a given slot is a successful slot
if there is only one node replying in this slot, which occurs
with the probability of ntptfte

−ntptft for a large nt.

Having calculated the probability of an empty slot, we
proceed to study its statistical properties.

Lemma 2. Denote the number of empty slots in frame t by
Yt, it holds that if nt and ft

pt
are large enough and ntpt

ft
<∞,

Yt ∼ N [µt, σ
2
t ] (2)

µt = fte
−ntptft , σ2

t = fte
−ntptft (1− e−

ntpt
ft ). (3)

Proof. The proof consists of two parts: calculating the expec-
tation and variance of Yt and proving the normal distribution.
We first compute µt and σ2

t . To this end, we use Xt(i) to
indicate whether a slot i in the frame t is an empty slot.

Xt(i) =

{
1, if slot i is bt = 0

0, otherwise.

The number of empty slots in the whole frame, defined as
Yt, can be calculated as Yt =

∑ft
i=1Xt(i). As each slot i in

the frame t has probability qt(0) of being an empty slot, we
can compute the expectation of Yt as

µt = E
[ ft∑
i=1

Xt(i)
]

=

ft∑
i=1

E [Xt(i)] = fte
−ntptft . (4)
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We next compute the variance of Yt from general expression
for variance of sum of multiple random variables that

σ2
t =

ft∑
i=1

Var [Xt(i)] + 2

ft∑
j=2

∑
∀i<j

Cov[Xt(i), Xt(j)].

Since Var [Xt(i)] = E
[
X2
t (i)

]
− E[Xt(i)]

2, we have

Var [Xt(i)] = e−
ntpt
ft − e−

2ntpt
ft = e−

ntpt
ft (1− e−

ntpt
ft ). (5)

Recall (4), as it holds for i 6= j that E[Xt(i)Xt(j)] = e−
2ntpt
ft ,

we have Cov[Xt(i), Xt(j)] = 0. As a result,

σ2
t = fte

−ntptft (1− e−
ntpt
ft ), (6)

implying the independence among slots in large-scale systems.
As a slot is empty with probability of pt(0) independent

from the others, Yt follows Binomial distribution B(ft, pt(0))
which can be approximated to a Normal distribution [8]. This
completes the proof of the lemma.

Similarly, denote by St the number of successful slots in
frame t, we observe that St also follows Binomial distribution
B(ft, qt(1)) with the expectation and variance as follows

E[St] = ntpte
−ntptft (7)

V ar[St] = ntpte
−ntptft (1− ntpt

ft
e−

ntpt
ft ) (8)

B. Framework of Node Population Estimator

As a successful slot, i.e., bt = 1, means that a node sends its
message to the Coordinator successfully in the frame t, qt(1)
implies the throughput in this frame. Consequently, we tune ft
and pt so that qt(1) can be maximized, which happens when
ft
pt

= nt. Yet the Coordinator does not know nt a prior, so
we use the estimated value n̂t and set ft

pt
= n̂t. We set ft to

a constant and vary pt such that this equation is established,
which will be analyzed shortly. Hereafter, we define ntpt

ft
=

nt
n̂t

= ρt, which means the average number of nodes replying
in a slot of frame t.

At the beginning of frame t, the Coordinator broadcasts
frame size ft and participation probability pt, and can measure
the actual number of empty slots at the end of the frame.
With the setting ft

pt
=n̂t, the number of observed empty slots

is expected to concentrate around its expectation µt|ρt=1 if
the estimated value n̂t is accurate. In contrast, if n̂t is larger
than nt, there will be more empty slots than µt|ρt=1. This
can be interpreted as follows: Under the constraint of ft

pt
=n̂t

for a constant ft, a greater n̂t makes pt lower, decreasing the
probability pt/ft of nodes replying in a slot and thus leading to
more empty slots on average. Similarly, if n̂t < nt, the number
of observed empty slots should be smaller than µt|ρt=1. In a
different perspective, µt|ρt=1 can be regarded as ground truth
used to determine the relationship of nt and n̂t, as the empty
slot probability is monotonous with nt.

Motivated by the above observation, we design the active
node population estimator that exploits the relationship of the
number of empty slots observed by the Coordinator and the
ground truth µt|ρt=1. Let β1 and β2 be constants used to

control the confidence interval and the adjusting frequency
with 0 < β2 ≤ 1 ≤ β1. The estimate Ŵt is updated as follows:

Ŵt+1 =


max{1, Ŵt − a1}, if Yt > β1µt|ρt=1

Ŵt, if Yt ∈ [β2, β1]µt|ρt=1

Ŵt + a2, if Yt < β2µt|ρt=1,

(9)

where positive numbers a1 and a2 control the update step
size. At frame t the Coordinator initially sets ft and pt to
establish ft

pt
= n̂t using the estimate Ŵt obtained at the end of

the previous frame. When frame t finishes, the Coordinator can
measure the actual number of empty slots in this frame, and
can adjust the estimate Ŵt following the rule in (9) through
comparing the measured number of empty slots with µt|ρt=1.
In particular, the estimator can be interpreted as follows:

1) If the estimate is accurate, i.e. n̂t ≈ nt and ρt ≈ 1, then
it holds for the mean of Yt that µt|ρt=1 ≈ ft

e following
(3), where e is natural constant.

2) If the number of observed empty slots is more than
β1µt|ρt=1, it indicates a higher value of n̂t = ft

pt
, that is,

Ŵt is overestimated. The Coordinator will thus decrease
the estimate by a1.

3) If the number of observed empty slots is smaller than
β2µt|ρt=1, it indicates that Ŵt is underestimated. The
Coordinator will thus increase the estimate by a2.

4) If Yt falls into the interval [β2µt|ρt=1, β1µt|ρt=1] that is
around µt|ρt=1, it suggests the estimate is felicitous, so
the estimate stays unchanged.

Following the rule of the estimator, the estimate Ŵt would
converge to the actual value of Wt with proper a1, a2, β1 and
β2. The key challenge lies in setting them to guarantee the
stability of SFP. In the following, we first present how to set
a1 and a2, and leave the others for the next section.

C. Setting a1 and a2
The parameters a1 and a2 control the update step size and

are crucial to guarantee the convergence of the estimator and
the stability of SFP. Here, we design a1 and a2 by analyzing
the drift of Ŵt. To stabilize FSA-based systems, Ŵt needs
to drift towards the number of actual nodes. As we focus
on large-scale systems, Wt and Ŵt are large enough so that
max{1, Ŵt − a1} in (9) can be approximated as Ŵt − a1.

Recall the update rule of the estimator in (9), the estimate
evolves depending on Wt, Ŵt, and ft. When Wt = nt and its
estimate Ŵt = n̂t, let µ∗t , µt|ρt=1 = ft

e , the drift of estimate
Ŵt, defined by D̂, can be formulated as

D̂(nt, n̂t, ft) = E[Ŵt+1 − Ŵt|Wt = nt, Ŵt = n̂t]

=
−a1√
2πσ

∫ ∞
β1µ∗

e
−(yt−µ)2

2σ2 dyt +
a2√
2πσ

∫ β2µ
∗

−∞
e
−(yt−µ)2

2σ2 dyt.

Setting u = yt−µ
σ yields after algebraic operations

g(ρt, ft) , D̂(nt, n̂t, ft) = −a1 +
a1√
2π

∫ φ1(ρt,ft)

−∞
e
−u2

2 du

+
a2√
2π

∫ φ2(ρt,ft)

−∞
e
−u2

2 du, (10)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 08,2020 at 14:15:44 UTC from IEEE Xplore.  Restrictions apply. 



0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.3018795, IEEE Journal
on Selected Areas in Communications

5

where we make the following definitions

φ1(ρt, ft) =
β1µ

∗
t − µt
σ

=
f

1
2
t

(
β1e
−1 − e−ρt

)(
e−ρt(1− e−ρt)

) 1
2

(11)

φ2(ρt, ft) =
β2µ

∗
t − µt
σ

=
f

1
2
t

(
β2e
−1 − e−ρt

)(
e−ρt(1− e−ρt)

) 1
2

. (12)

It can be observed from (10) that the drift of the estimate Ŵt

varies with ρt and ft. Although the expression of ρt contains
ft, we can set such pt that the value of pt

ft
does not vary

with ft, and the variation of ft thus has no impact on the
value of ρt. As a result, the impacts of ρt and ft on g(ρt, ft)
are independent mutually. That is to say, we can set ft to
a constant while varying pt to decouple their impacts. The
design of ft will be addressed in the next section.

Since we seek to estimate Wt accurately, the value of ρt
should be kept in the neighborhood of the optimal value ρ∗t =
1. Meanwhile we also need to guarantee the convergence of
the estimator, that is to say, Ŵt does not change on average,
we thus should ensure that g(ρt, ft)|ρt=1 = 0, namely,

-a1 +
a1√
2π

∫ φ1(1,ft)

−∞
e
−u2

2 du+
a2√
2π

∫ φ2(1,ft)

−∞
e
−u2

2 du = 0.

In order to make the equation above established, a1 and a2
need to satisfy the following condition:

a1
a2

=

∫ φ2(1,ft)

−∞ e
−u2

2 du∫∞
φ1(1,ft)

e
−u2

2 du
. (13)

Therefore, we configure a1 and a2 as follows:

a1 = γ

∫ φ2(1,ft)

−∞
e
−u2

2 du (14)

a2 = γ

∫ ∞
φ1(1,ft)

e
−u2

2 du, (15)

where γ > 0 is the linear factor that controls the adjusting
rate, we will evaluate its impact in Sec.V. With the selected
a1 and a2, the estimator is able to guarantee that g(1, ft) = 0.
Hence, such a configuration provides a necessary condition to
accurately track the number of active nodes.

Next, we further state the property of g(ρt, ft) in the follow-
ing theorem indicating the estimate Ŵt will drift towards and
will keep stable around its true value Wt when ρt = Wt

Ŵt
≈ 1.

Theorem 1. Given a1 and a2 formulated in (14) and (15), if
0 < β2 ≤ 1 ≤ β1 < e, then it holds for the drift g(ρt, ft) of
the estimator that:

1) g(ρt, ft) is a strictly increasing function of ρt.
2) g(ρt, ft) > 0 when ρt > 1; g(ρt, ft) < 0 when ρt < 1.

Proof. Theorem 1 can be proven by calculating the derivative
of g(ρt, ft) with respect to ρt. Since the impacts of ρt and ft
on g(ρt, ft) are independent mutually, we use g(ρt), φ1(ρt),
and φ2(ρt) in the rest of the paper for simplicity. Following
from the property of the integral, we have

g′(ρt) =
a1√
2π
e−

φ1(ρt)
2

2 φ′1(ρt) +
a2√
2π
e−

φ2(ρt)
2

2 φ′2(ρt)
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Fig. 2. Impact of ρt on the estimate drift: ρt = 1 is the unique root of
g(ρt, ft) = 0.

As shown in g′(ρt), it is adequate to prove both φ′1(ρt) > 0
and φ′2(ρt) > 0 for the monotonic increase of g(ρt).

Step 1: we prove φ′1(ρt) > 0.
Rewrite φ1(ρt) as φ1(ρt) =

√
ft(β1e

ρt−1−1)√
eρt−1 , and we have

φ′1(ρt) =
√
ft

(
β1e

ρt−1

(eρt − 1)
1
2

− (β1e
ρt−1 − 1)

2(eρt − 1)
3
2

)
.

After some algebraic operations, we further get

φ′1(ρt) =
√
fte

ρt(eρt − 1)−
3
2

(
1

2
+
β1e

ρt

2e
− β1

e

)
. (16)

For
√
fte

ρt(eρt − 1)−
3
2 > 0, it is adequate to show 1

2 +
β1e

ρt

2e −
β1

e > 0. As eρt ≥ 1 when ρt ≥ 0, it is true that

1

2
+
β1e

ρt

2e
− β1

e
≥ 1

2
− β1

2e
.

Hence, if β1 < e, then φ′1(ρt) > 0 is established.
Step 2: we prove φ′2(ρ) > 0.
Similarly, we rewrite φ2(ρ) as φ2(ρt) =

√
ft(β2e

ρt−1−1)√
eρt−1 . As

the only difference between φ2(ρt) and φ1(ρt) is the value
of β1 and β2, they have similar derivative. That is to say, if
1
2 −

β2

2e > 0, then φ′2(ρt) > 0 holds. Recall that we specify
β2 ≤ β1 in the estimator, β1 < e also establishes φ′2(ρt) > 0.

We now can conclude that g(ρt) is a strictly increasing
function of ρt. As a consequence, g(ρt) > g(1) = 0 when
ρt > 1 and g(ρt) < g(1) = 0 when ρt < 1.

The results stated in Theorem 1 reveal that ρt = 1 is the
unique root of g(ρt, ft) = 0. That is to say, if the estimator
is accurate, Ŵt would drift toward to the true value Wt,
eventually yielding ρt = 1. In order to understand better the
behavior of g(ρt, ft), we also illustrate the impact of ρt on
the drift in Fig. 2, which confirms our theoretical results.

IV. STABILITY ANALYSIS OF SFP

In this section, we study the stability of SFP by employing
drift analysis. Theoretically, we build a two-state Markov chain
and analyze its geometrical ergodicity.

A. Markov Chain Formulation

As there are two key states evolving with time: the number
of active nodes Wt and its estimate Ŵt, we define a sequence
Zt = (Wt, Ŵt). Consider the overall new arrivals and the
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successful transmission in frame t, the dynamics of Ŵt and
Wt can be formulated as (9) and (17)

Wt+1 = max{0,Wt +At − St}. (17)

We can observe from (9) and (17) that the distribution of
Zt+1 depends only on Zt, meaning that the sequence Zt
is a Markov chain on a countable state space SZ . Having
formulated the state dynamics, we next calculate the one-step
state transition probability P = {Pntk Pn̂tk′}. The transition
probability Pn̂tk′ of Ŵt can be calculated from (9) as

Pn̂tk′ =


∫∞
φ1(ρt)

e
−u2

2√
2π
du, if k′ = max(1, n̂t − a1),∫ φ1(ρt)

φ2(ρt)
e
−u2

2√
2π
du, if k′ = n̂t,∫ φ2(ρt)

−∞
e
−u2

2√
2π
du, if k′ = n̂t + a2.

(18)

As shown in (17), Wt depends on both the number of
arrivals and that of the successful transmissions. Let λi define
the probability of having i arrivals and let ξnti define the
probability of having i successful transmissions in frame t.
For different value of At and St, Wt+1 may decrease, remain
unchanged and increase. Hence, the transition probability of
Wt can be formulated as

Pntk|nt=0 =

{
λ0, k = 0

λk, k ≥ 1,

Pntk|nt≥1 =


∑k
i=0 λiξnt,i+nt−k, 0 ≤ k < nt,

λ0ξnt,0 +
∑nt
i=1 λiξnti, k = nt,∑nt

i=0 λi+k−ntξnti, k ≥ nt + 1,

(19)

where ξnt,i =
(
ft
i

)
qit(1)(1− qt(1))ft−i. To show the stability

of SFP, we need to prove the existence of steady distribution
for each initial state of the formulated Markov chain (Zt)t≥0.
As stated in Definition 1, this is equivalent to demonstrating
the geometric ergodicity of (Zt)t≥0.

Before the formal stability analysis, we first introduce three
auxiliary lemmas that will be used in the subsequent analysis.

Lemma 3 ([7]). A Markov chain on a countable state space
(Zt) is geometrically ergodic if it is irreducible and aperiodic,
and has such a state z that the stopping time τ=min{t > 0 :
Zt = z} is exponential-type for any initial state Z0.

Lemma 4 ([7]). Let {Vt} be a sequence of random variables
adapted to an increasing family {Ft}t≥0 of σ-algebras. If
there exist such d > 0 and D that

E[ed|Vt+1−Vt||Ft] ≤ D,∀t ≥ 0, (20)

then it holds that {Vt,Ft} is exponential-type.

Lemma 5 ([7]). Under the same notations of Lemma 4, given
an deterministic V0 and that {Vt,Ft} is exponential-type, if it
holds for some ε > 0, c > 0 that 2

E[Vt+1 − Vt + ε;Vt > c|Ft] ≤ 0,∀t ≥ 0, (21)

2If Y is a random variable and A is an event, the notation E[Y ;A|F ]
stands for E[Y IA|F ], where IA is the indicator function of the event A.
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Fig. 3. Impact of ρt on the derivative of h(ρt).

the stopping time τ = min{t ≥ 0 : Vt ≤ c} is then
exponential-type for each value of V0.

These lemmas indicate that the ergodicity of Zt can be
established if we can find a Vt adapted to σ-field Ft generated
by Zt such that the lemmas above hold.

B. Stability Analysis

The main result described in Theorem 2 reveals the geomet-
ric ergodicity of (Zt)t≥0, which means the exponential-type
stopping time for any initial state.

Theorem 2. Given a1 and a2 as in (14) and (15) and 0 <
β2 ≤ 1 ≤ β1 ≤ e/2, if λ < e−1 and there exists a combination
of β1,β2,ft,γ establishing (37), then Markov chain (Zt)t≥0 is
geometrically ergodic.

Proof. The core idea underlaying the proof of the theorem is
to employ the properties of the Markov chain (Zt)t≥0 to build
a Lyapunov function with a negative drift. The skeleton of the
proof can be summarized as follows:
• First, we prove the irreducibility and aperiodicity of

Markov chain Zt = (Wt, Ŵ t)t≥0.
• Second, we study the properties of one-frame drift of

(Zt)t≥0 which are used to prove the stability.
• Third, we develop drift analysis on constructed Lyapunov

function to show that the J-frame drift is negative for
some integer J , which is sufficient to ensure the geomet-
ric ergodicity of (Zt)t≥0.

Step 1: Irreducibility and aperiodicity of (Ŵt)t≥0. Given
the value of Wt and Ŵt, from (18) and (19), it is obvious
that (Zt)t≥0 is irreducible and aperiodic according to their
individual definitions if 0 < λi < 1 for ∀ ≥ 0. We would like
to explain that most of traffic models can satisfy such a λi.
Hence, the proof in this step follows from here.

Step 2: Properties of drifts. In order to evaluate the sta-
bility of SFP, we study the expected change of Zt from frame
t to frame t + 1. The convergence of the estimation error is
crucial for the stability of a scheme. Denote by W̃t = Ŵt−Wt

the estimation error of the active node population estimator.
Besides the drift of the estimator D̂(nt, n̂t, ft), we further
define drifts of Wt and W̃t as:

D(nt, n̂t, ft) = E[Wt+1 −Wt|Zt = {nt, n̂t, ft}], (22)

D̃(nt, n̂t, ft) = E[W̃t+1 − W̃t|Zt = {nt, n̂t, ft}]
= D̂(nt, n̂t, ft)−D(nt, n̂t, ft). (23)
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Recall the evolution of Wt shown in (17), we have

D(nt, n̂t, ft) = E[At − St] = ft(λ− ρte−ρt). (24)

Hence, with (10) D̃(nt, n̂t, ft) can be formulated as

D̃(nt,n̂t, ft) = −a1 +
a1√
2π

∫ φ1(ρt)

−∞
e
−u2

2 du

+
a2√
2π

∫ φ2(ρt)

−∞
e
−u2

2 du− ft(λ− ρte−ρt). (25)

With the formula of D̃(nt, n̂t, ft), we proceed to investigate
its properties that are stated in the lemma below. Let ρ∗t be
the root of h(ρt) , D̃(nt, n̂t, ft) = 0, the proof is detailed
in Appendix A. In order to understand behavior of h(ρt), in
addition to theoretical analysis, we also illustrate in Fig. 3
its derivative when ρt ≥ 1 with ft = f = 100 : 3200 and
(β1 = 1.05, β2 = 0.93, γ = 25), showing that h(ρt) increases
at first and then decreases to lim

ρt→∞
h(ρt). This also verifies the

theoretical results. Moreover, we can also observe that a longer
frame will lead to a smaller ρt that satisfies h′(ρt = ρt) > 0
and h′(ρt > ρt) < 0.

Lemma 6. There exist β1,β2,ft,γ in (14) and (15) establish-
ing (37) such that h(ρt) satisfies that

• h(ρt) is increasing when ρt ≤ 1;
• h(ρt) ≥ h(1) when ρt > 1.
• for ∀λ ∈ (0, e−1), there exists a unique ρt ∈ (0, 1) such

that h(ρt) = 0.
• if λ ∈ (0, e−1) and h(ρ∗t ) = 0, then λ < ρ∗t e

−ρ∗t .

Step 3: Stability analysis based on Lyapunov function.
Recall the nature of h(ρt) as the drift of estimate error which
primarily depends on ρt = nt

n̂t
for large values of n̂ or n.

Thus, given any ζ ∈ (0, 1) and an integer M > 0, with the
assumption that nt ≥ M holds for the rest of this paper, we
partition state space into the following regions:
Gζ,M = {(nt, n̂t) : nt ≥M∪n̂t ≥M, ntn̂t ∈ [ρ∗t -ζ, 1 + ζ]},
R+
ζ,M =

{
(nt, n̂t) : nt ≥M, ntn̂t > 1 + ζ

}
,

R−ζ,M =
{

(nt, n̂t) : n̂t ≥M, ntn̂t < ρ∗t − ζ
}
,

QM =
{

(nt, n̂t) : nt < M, n̂t < M
}
,

and let Rζ,M = R+
ζ,M ∪R

−
ζ,M .

Referring to the property of h(ρt) stated in Lemma 6, we
can derive the following results whose proof is presented in
Appendix B. Lemma 7 can be interpreted as follows: Once
exceeding a threshold, the deviation of the estimate Ŵt from
Wt is expected to decrease, which guarantees the stability.

Lemma 7. There exist ζ ∈ (0, 15 ), δ > 0 and an integer
M > 0 such that

D(nt, n̂t) ≤ −δ, ∀ (nt, n̂t) ∈ G+
5ζ,M , (26)

D̃(nt, n̂t) ≥ δ, ∀ (nt, n̂t) ∈ R+
ζ,M , (27)

D̃(nt, n̂t) ≤ −δ, ∀ (nt, n̂t) ∈ R−ζ,M . (28)

Now, we initiate the drift analysis. We fix ζ, δ and M such
that (26), (27) and (28) hold. Motivated by Lemmas 4 and 5,
we choose the following Lyapunov function,

V (nt, n̂t) = max
{
nt,

1 + 3ζ

3ζ
(nt-n̂t),

(ρ∗t -3ζ)(n̂t-nt)
1-ρ∗t + 3ζ

}

=


nt, if (nt, n̂t) ∈ G3ζ,M ,
1 + 3ζ

3ζ
(nt − n̂t), if (nt, n̂t) ∈ R+

3ζ,M ,

ρ∗t − 3ζ

1− ρ∗t + 3ζ
(n̂t − nt), if (nt, n̂t) ∈ R−3ζ,M .

(29)

for two reasons: First, it is exponential-type. As |Ŵt+1− Ŵt|
≤max{a1, a2} and |Wt+1−Wt| < max{At, ft}, then we have
|V (nt+1, n̂t+1) − V (nt, n̂t)| ≤ 1+3ζ

3ζ · max{a1, a2, At, ft},
yielding that V (nt, n̂t) is exponential-type since At is. Second,
V can take best advantage of the drift properties proven in
Lemma 7. For example, when Zt = (nt, n̂t) belongs to G2ζ,M ,
then Zt+1 = (nt+1, n̂t+1) falls into G3ζ,M , and the one-frame
drift E[V (nt+1, n̂t+1)− V (nt, n̂t)|Zt = (nt, n̂t)] is negative.
Similar results can also hold for R4ζ,M .

Yet Zt+1 may jump to a different region when Zt is close
to the boundary between adjacent regions. Fortunately, we can
prove the negativity of J-frame drift of V , which is adequate
to prove geometric ergodicity. To that end, the key is to prove

E[V (nt+1, n̂t+1)− V (nt, n̂t)|(nt, n̂t) /∈ QM+J2 ] ≤ −ε, (30)

for a large enough J and some ε > 0. To that end, we define
a random variable τJ by

τJ = min{s ≥ t :
t+s∑
k=t

Ak ≥ J}, (31)

where Ak is the number of new arrivals at frame k. Similar
to [12], the proof consists of two parts: considering unlikely
event τJ ≤ J and likely event τJ > J . We start with the
unlikely event. Following Chernoff bound, we can obtain two
results:

lim
J→∞

JP (τJ ≤ J) = 0, (32)

lim
J→∞

E
[
m1J +m2

t+J∑
k=t

Ak; τJ ≤ J
]

= 0, (33)

where m1 and m2 are arbitrary given constants. Thus

|V (nt+1, n̂t+1)− V (nt, n̂t)| ≤
1 + 3ζ

3ζ
{a1 + a2 +At + ft}

≤ 1 + 3ζ

3ζ
(a1 + a2 + ft)J +

1 + 3ζ

3ζ

t+J∑
k=t

Ak → 0, (34)

following from (33) when J is large enough.
We next consider likely event. Specifically, we conduct

drift analysis in the five cases when the state space are
divided into five region: G2ζ,M+J2 , R+

4ζ,M+J2 , R−4ζ,M+J2 ,
G5ζ,M+J2 ∩ R+

ζ,M+J2 , G5ζ,M+J2 ∩ R−ζ,M+J2 . Following the
approach in [12], we can prove that (30) holds in any cases
for large enough J . Since the one-frame drift is negative if
Zt+1 falls into a subspace of that contains Zt, according to
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Fig. 4. The impact of the estimator parameters on SFP performance.

the properties stated in Lemma 7, we mainly consider the more
complicated cases, namely the last two cases, that is to say,
the subcases: ρt ∈ (1 + 2γ, 1 + 4γ] and ρt ∈ (β− 4γ, β− 2γ].
As the properties in these two region are identical, we only
show the proof of the first subcase.

Consider ρt ∈ (1 + 2γ, 1 + 4γ], we have V (nt, n̂t) =
max{nt, 1+3γ

3γ (nt − n̂t)}. Since V (nt+J , n̂t+J) falls into
G5ζ,M+J2 ∩ R+

ζ,M+J2 after J frames, it is true that
V (nt+J , n̂t+J) = max{nt+J , 1+3γ

3γ (nt+J − n̂t+J)}.
In addition, W̃t = Wt − Ŵt, we thus have

E[V (nt+J , n̂t+J)− V (nt, n̂t); τ > J |(nt, n̂t)]

≤ E[−Jδ
2

; τ > J ] + E[max{0, nt+J − nt +
Jδ

2
; τ > J}]

+ E[max{0,−1 + 3γ

3γ
(ñt+J − ñt) +

Jδ

2
}; τ > J ].

The inequality (30) holds in this subcase if we can show the
right hand side is negative. To that end, we start with the study
of the second item. Denote by Rk=Wt+k−Wt+kδ/2, we have
|Rk+1−Rk|=|Wt+k+1−Wt+k+δ/2|≤ft+At+k+δ/2. Since
At+k is exponential-type, {Rk,Ft+k} is also exponential-type
where Ft+k is σ-field generated by {Ws, Ŵs, As−1 : s ≤
k + t}. Hence, E[max{0, nt+J − nt + Jδ

2 ; τ > J}] ≤ B
according to Proposition 2.2 in [12], where B is a constant
independent of J . Similarly, the third item is also smaller than
B. At last, the first item is equal to −P (τJ > J)Jδ/2 →
−Jδ/2 for a large enough J following (32). Finally, setting
ε = −Jδ/2 + 2B < 0 yields desired negative J-frame drift.

To conclude the proof, we set such a constant Θ = (M +

J2) max{1, 1+3γ
3γ ,

ρ∗t−3γ
1−ρ∗t+γ

} that the condition in (30) holds if
V (nt, n̂t) > Θ. Therefore, the stopping time τ = min{t ≥
0 : Vt ≤ Θ} is exponential-type for any initial state following
Lemma 5, and thus the Markov chain (Zt)t≥0 is geometrically
ergodic, concluding the proof of Theorem 2.

C. Parameter Configuration Rule

We conclude this section by explaining how to configure the
parameters in SFP, containing the parameters of FSA and the
active node population estimator. This rule and the estimator
and FSA mechanism together constitute SFP.

1) Selection of β1 and β2: The more they concentrate around
1, the more accurate the estimate is at the cost of more
frequent update and greater fluctuation. Hence, we pick
moderate values for them that satisfy Theorem 2, for
instance, β1 = 1.05, β2 = 0.93 in the simulation.

2) Selection of ft and γ: In this paper, ft is set to a constant
over time which maximizes ρt in (36) while establishing
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Fig. 5. Performance evaluation with 5, 000 initial nodes under different ft.

the nonnegativity of (37) and ensuring a2 > ft together
with γ. Given ft and the value of the estimate n̂t, we
have the participation probability pt set to ft

n̂t
.

As a result, we can obtain all parameters in SFP which
guarantee the main results of this paper.

V. SIMULATION RESULTS

In this section, we verify the performance of SFP. In order to
confirm the tracking ability of SFP, the number of new arrivals
per slot follows Poisson distribution with the expectation of
0.3 by default. The simulation settings follow the rule stated
in Sec.IV-C, meeting the requirements of Theorem 1 and
Theorem 2. The experiment lasts for 1, 000 frames.

Parameter Selection. We study the impact of β1, β2 and γ
on SFP stability in terms of the number of backlogged nodes
with the expected arrival rate per slot λ varied. The initial
number of the nodes is 500, and the initial estimate and the
constant frame size are set to 1 and 200, respectively. The
participation probability is pt=min{1, ft/n̂t}.

First, we fix γ=5ft. As shown in Fig. 4(a) and 4(c), only
when both β1 and β2 are much closer to 1, SFP performs
best. Otherwise, the convergence time sharply increases. The
reason lies in that the former outputs more accurate estimate
and thus more appropriate pt for the throughput maximization.
In addition, the impact of β1 is more than β2 when the estimate
in the beginning is far smaller than the true value. This can be
interpreted as follows: In the beginning, the estimate is much
smaller than the true value, so we need to increase Ŵt with a
step size of a2. Recall that a2 depends on β1 in (15), a smaller
β1− 1 yields a bigger a2 and thus the speed that the estimate
approaches the true is faster.

Given β1 = 1.05 and β2 = 0.93, we evaluate the impact
of γ with its value set to ft, 5ft, 10ft, respectively. We can
observe from Fig. 4(b) and 4(d) that SFP with γ = 5ft per-
forms best. This can be interpreted as follows: The estimator
with a small γ, e.g. γ = ft, cannot adjust the estimate to its
true value promptly while a big one, e.g. γ = 10ft, results in
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Fig. 6. Evolution of Lyapunov function V (nt, n̂t) with 5,000 initial nodes.
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Fig. 7. Performance evaluation with 10, 000 initial nodes under different ft.

an overlarge adjustment range and thus inaccurate estimate. In
addition, Fig. 4 implies that the fewer new arrivals make the
system more stable.

Performance Evaluation. Motivated by the observations
above, we set β1 = 1.05, β2 = 0.93 and γ = 5ft, and vary
ft = 100, 400 to further evaluate SFP through two groups of
simulations in terms of estimation accuracy and throughput.
When ft = 100, we obtain a1 = 149 and a2 = 176; a1 = 286
and a2 = 446 when ft = 400. In the first group of simulations,
the initial number of the nodes is set to 5, 000. We record the
estimation process and throughput in the duration, as depicted
in Fig. 5(a) and Fig. 5(b). As shown in the figures, SFP does
well in tracking the dynamics of node population and can
achieve the throughput close to the optimal e−1. In addition,
we observe that the smaller frame size ft = 100 leads to more
accurate estimation and thus higher stationary throughput. This
can be interpreted as follows: when ρt > 1, a smaller frame
size results in a smaller update step sizes a1 and a2, thus it
takes more frames for SFP to reach true number of nodes,
but SFP experiences lighter fluctuations in steady state, for
instance, after the 200th frame.

In the experiment, we also record the differences of
the Lyapunov functions for two consecutive frames, i.e.,
V (nt+1, n̂t+1)−V (nt, n̂t), and depict them in Fig. 6. It can be
observed from the subfigures that difference will drop sharply
once deviating far from zero towards the positive direction.
This matches the analytical result on the negative J-frame
drift of V (nt, n̂t) under SFP, which confirms the stability of
SFP from another angle.

In order to examine the performance of SFP in larger
system, we make the system scale up to 10, 000, and depict
the results in Fig. 7(a) and Fig. 7(b). From the figures, we can
observe that the conclusion drawn from Fig. 5 remains true
here. Comparing Fig. 7 with Fig. 5, we can find that SFP with
longer frame performs better in larger systems. In contrast, the
number of the remaining backlogged nodes for ft = 100 here
is significantly bigger than that in Fig. 5.

We finally evaluate the performance of SFP with different
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Fig. 8. Performance evaluation with 5, 000 initial nodes under different λ.

arrival rates. As shown in Fig. 8(a) where λ changes from 0.1
to 0.4, the system is instable at λ = 0.4 when the condition
λ < e−1 of Theorem 2 is not satisfied. In contrast, the system
is more stable under a smaller λ for λ < e−1. Different from
the impact of λ on the stability, it almost has no impact on
the throughput, which can be observed from Fig. 8(b), because
the throughput only depends on the protocol parameters.

VI. RELATED WORK

In this section, we briefly review the related work. Glob-
ally speaking, the main research thrust in analyzing FSA
is characterizing the performance of FSA-based systems in
terms of delay, throughput and stability. However, none of the
prior works provides a comprehensive treatment on the FSA
stabilization in dynamic systems with new traffic arrivals and
unknown node population.

Schoute [11] studied FSA with frame size configured
dynamically and derived the expected time taken to send
all backlogs. Wieselthier et al. [15] conducted performance
analysis of FSA with multi-packet reception ability for small
systems through a combinatorial technique. The optimal frame
size setting for FSA was investigated in [20], [21], [1] with the
assumption that the system is static and the number of nodes is
known. The works above neither address the stability of FSA
nor work for communication systems with the new arrivals
despite of their fundamental and practical importance.

Gallego et al. analyzed throughput and time efficiency of
reservation dynamic FSA for M2M communication systems
with/without energy harvesting [13], [14]. Recently, George et
al. [6], [5] investigated performance of M2M data collection
systems using FSA as MAC protocol, and derived closed-
form expressions for system throughput, packet delay, and
energy efficiency. However, these works assumed either no new
arrivals or known number of nodes. Moreover, they did not
address stability of FSA. The sufficient conditions for the FSA
stability were proven in our prior work [16]. Yet this paper did
not design an estimator that can stabilize FSA theoretically
and thus left the impact of the estimator on stability of an
FSA-based protocol unaddressed, which is the focus of our
paper. We would like to emphasize that unified design and
analysis in our work is more challenging.

In summary, the stability and stabilization of FSA-based
protocols are largely unaddressed, particularly for dynamic
systems with new arrivals and unknown node population. In
this regard, our work consists of a first step toward establishing
a systematical framework that fills this void.
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VII. CONCLUSION

In this paper, we have studied the problem of the design
and stabilization of an FSA-based protocol with the presence
of new arrivals and unknown node population. This problem
has been addressed in two parts. First, we have proposed a
stable protocol SFP that contains FSA mechanism and a node
population estimator. Second, we have proven the stability of
SFP by modeling dynamics of the node population and its
estimate as a Markov chain and demonstrating its geometric
ergodicity. The closed-form conditions on parameters of SFP
have been derived for the stabilization when the average arrival
rate should be smaller than e−1. We have conducted experi-
ments whose results match with the theoretical analysis. This
paper presents the first work on stable FSA-based protocol for
dynamic IoT systems like M2M and RFID with guaranteed
stability theoretically.

APPENDIX A
PROOF OF LEMMA 6

Proof. To prove this lemma, we calculate the derivative of
h(ρt) = D̃.

(1) We start with the proof of the first property. Because
it holds for ∀ρt > 0 that φ1′(ρt) > 0 and φ1

′(ρt) > 0, it
is easy to check that the first item in the right hand of the
following h′(ρt) is non-negative if ρt ≤ 1. As a result, h(ρt)
is monotonically increasing for ρt ≤ 1.

h′(ρt) =ft(1− ρt)e−ρt +
a1√
2π
e−

φ1(ρt)
2

2 φ1
′(ρt)

+
a2√
2π
e−

φ2(ρt)
2

2 φ2
′(ρt) (35)

(2) We prove the second property. Yet it is too complicated
to study whether h′(ρt) > 0 for all ρt > 1. We conduct the
proof in two steps. First, we show h′(ρt) > 0 when ρt falls
into [1, ρt] where ρt ≤ 2. To that end, algebraically we get:

−φ1(ρt)
2

2 = − ft(
β1
e e

ρt−1)2

2(eρt−1) ≥ − ft(
β1
e e

ρt−1)2

2(eρt−1)
−φ2(ρt)

2

2 ≥ −max{ ft(
β2
e e

ρt−1)2

2(eρt−1) , ft(β2−1)2
2(e−1) }

for ρt ≥ 1. we also have:{
φ1
′(ρt) =

√
fte

ρt(eρt − 1)−
3
2

(
1
2 + β1e

ρt

2e −
β1

e

)
>
√
ftβ1

2
√
e

φ2
′(ρt) =

√
fte

ρt(eρt − 1)−
3
2

(
1
2 + β2e

ρt

2e −
β2

e

)
>
√
ftβ2

2
√
e

if β1 ≤ e
2 . Accordingly, it is sufficient to prove that

ft(ρt − 1)e−ρt ≤ a2β2
√
ft

2
√

2eπ
e
−max{

ft(
β2
e
eρt−1)2

2(eρt−1)
,
ft(β2−1)2

2(e−1)
}

+
a1β1
√
ft

2
√

2eπ
e
−
ft(

β1
e
eρt−1)2

2(eρt−1) , (36)

for 1 ≤ ρt ≤ ρt, where the right hand side increases when
ρt ≤ 2. Therefore, given a1, a2, β1, β2 and ft, we can obtain
such ρt that h(ρt) is monotonically increasing for 1 ≤ ρt ≤ ρt.

To get more accurate ρt, we can search for the first ρt =
ρt that results in h′(ρt) ≥ 0 and h′(ρt > ρt) < 0 because
h′(ρt) > 0 for ρt ≤ 1 and h(ρt) is continuous. Following the
properties of Normal distribution and the fact that both g(ρt)

and ft(λ−ρte−ρt) are monotonically increasing when ρt ≥ 1,
it is adequate to search in the region [1, 10] when g(ρt) will
converge to a2. h(ρt) is thus increasing in [1, ρt].

With such ρt, we compare h(ρt) with h(1) for ρt > ρt:

h(ρt)− h(1) = g(ρt)− ft(e−1 − ρte−ρt) (37)

> − a1√
2π

∫ ∞
φ1(ρt)

e
−u2

2 du+
a2√
2π

∫ φ2(ρt)

−∞
e
−u2

2 du− ft
e
.

Hence, setting a1, a2, β1, β2 and ft to guarantee nonnegativity
of the above inequality yields that h(ρt) ≥ h(1).

(3) We then prove the third property. Due to the fact that
h(ρt)→−ftλ<0 when ρt→0, and h(ρt > 1)≥ h(1)=ft(e

−1−
λ) > 0, solutions to h(ρt) = 0 fall into (0, 1) where h(ρt)
increases monotonically, there thus exists a unique solution.

(4) Finally, given λ ∈ (0, e−1), we have g(ρ∗t ) < 0 because
of the solution ρ∗t < 1. As h(ρ∗t ) = 0, it holds that −ft(λ −
ρ∗t e
−ρ∗t ) > 0, meaning λ < ρ∗t e

−ρ∗t .

APPENDIX B
PROOF OF LEMMA 7

Proof. For (nt, n̂t) ∈ G+
5ζ,M where ρ∗t − 5ζ ≤ ρt = n

n̂ ≤
1 + 5ζ, recall that λ− ρte−ρt < 0 when ρt = 1 and ρt = ρ∗t ,
and it is continuous and increasing monotonically in the range
[ρ∗t , 1], there thus exist some γ and δ such that D(nt, n̂t) ≤ −δ
for all ρt ∈ [ρ∗t − 5γ, 1 + 5γ].

If (nt, n̂t) ∈ R+
ζ,M where ρt = nt

n̂t
> 1 + ζ > 1, we have

h(ρt) ≥ h(1) > 0 which indicates that D̃(nt, n̂t) = h(ρt) ≥ δ
for all ρt > 1 + γ. If (nt, n̂t) ∈ R−ζ,M where ρt = nt

n̂t
<

ρ∗t − ζ < ρ∗t , we have h(ρt) ≤ h(ρ∗t − ζ) < 0, which indicates
that h(ρt ≤ ρ∗t − ζ) ≤ −δ.
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