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Abstract—We consider an underlay cognitive radio (CR) com-
munication system in which a cognitive secondary user (SU)
can access multiple primary spectrum channels only when its
interference to the primary users (PU) is limited. To identify and
exploit instantaneous transmission opportunities, the SU probes a
subset of primary channels by overhearing the primary feedback
signals so as to learn the primary receiver’s channel condition
and the interference tolerance level, then chooses appropriate
power to transmit its data. In such context, the SU cannot probe
all the channels for its limited number of receiving antennas,
then a crucial optimization problem faced by the SU is to probe
which channel(s) in order to maximize the long-term throughput
given the past probing history. In this paper, we tackle this
optimization problem by casting it into a restless multi-armed
bandit (RMAB) problem that is of fundamental importance
in decision theory. Given the specific and practical constraints
posed by the problem, we analyze the myopic probing policy
which consists of probing the best channels based on the past
observation.We perform an analytical study on the optimality of
the developed myopic probing policy. Specifically, for a family of
generic and practically important utility functions, we establish
the closed-form conditions to guarantee the optimality of the
myopic probing policy, and also illustrate our analytical results
via simulations on several typical network scenarios.

Index Terms—Cognitive radio, opportunistic spectrum access,
network feedback, restless multi-armed bandit problem

I. INTRODUCTION

A. OSA in Underlay Cognitive Radio Systems

Due to the rapid growth of wireless communications in
recent years, so far almost all the exploitable spectrum bands
have been allocated for various wireless applications in d-
ifferent regions. Meanwhile, significant under-utilization of
licensed spectrum bands at a given time or a given location
has been widely observed. To increase spectrum utilization
efficiency, the idea of cognitive radio (CR) has been proposed,
whose core idea is opportunistic spectrum access (OSA) where
unlicensed secondary users (SU) can utilize the spectrum when
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the licensed primary users (PU) are not using it (the overlay
CR approach [1], [2], [3], [4]) or the interference generated by
the SUs to the traffic of PUs is limited under certain threshold
(the underlay CR approach [5], [6], [7]).

In our work, we focus on an underlay CR communication
system composed of a set of primary channels where PU
transmitting packets continuously1. An SU, equipped with one
or multiple receiving and transmitting antennas, can transmit
its data packets on one or a subset of the primary channels
opportunistically when the interference it generates to PUs
is limited. In order to exploit instantaneous transmission
opportunities in such underlay CR network, the SU should
learn the instantaneous channel information of the primary
channel(s). To this end, it probes a subset of primary channels
by overhearing the feedback signals on them so as to learn
the primary receiver’s channel condition and the interfer-
ence tolerance level, and then chooses appropriate power to
transmit its data. Note that today most practical wireless
communication systems have built-in receiver feedback such
as the transmission power level control signals in the IS-95
cellular systems, the ACK/NACK feedback packets in WiFi
and the CQI-CDI messages in 4G wireless systems. Under
such context, since the number of channels probed by the SU
is usually limited (by the number of receiving and transmitting
antennas), a crucial optimization problem is which channel(s)
to probe in order to maximize the long-term utility (e.g.,
expected throughput), given the past observations.

B. Restless Multi-Armed Bandit Formulation

To formulate the problem posed above, we model each
primary channel as an i.i.d. two-state discrete-time Markov
chain. The state good corresponds to the situation with high
signal to interference and noise ratio (SINR) while the state
bad represents the low SINR situation due to fading or high
background noise. The SU seeks a set of primary channels to
probe by exploiting past observations and the knowledge of
the stochastic properties of the channels with the objective of
maximizing its long-term utility (e.g., expected throughput).
Mathematically, the considered channel probing problem can
be cast into the restless multi-armed bandit (RMAB) problem
of fundamental importance in decision theory.

1We adopt a worst-case assumption that PUs transmit all the time which
is commonly used in analyzing underlay CR systems. In other words, our
analysis does not rely on detection and exploitation of spectrum white space,
which is the case of overlay CR systems widely investigated recently.
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In the classic RMAB problem, a player chooses k out of N
arms, each evolving as a Markov chain, to activate each time
and receives a reward determined by the states of the activated
arms. The objective is to maximize the long-run reward over
an infinite horizon by choosing which k arms to activate each
time. If only the activated arms change their states, the problem
is degenerated to the multi-armed bandit (MAB) problem [8].

The MAB problem is solved by Gittins by showing that
the optimal policy has an index structure [8], [9]. However,
the RMAB problem is proved to be PSPACE-Hard [10].
Hence, a natural alternative is to seek a simple myopic policy
maximizing the short-term reward. However, the optimality
of a myopic policy is not always guaranteed. In our work,
given the specific and practical constraints posed by the
channel probing problem, we analyze the myopic probing
policy which consists of probing the best channels based on
the past observations. Especially, for a family of generic utility
functions, we establish the closed-form conditions to guarantee
the optimality of the myopic probing policy.

C. Related Work

Recently there are two major thrusts in the study of the
myopic policy of the RMAB problem. Since the optimality of
the myopic policy is not generally guaranteed, the first research
thrust is to study how far it is to the optimal and design
approximation algorithms as well as heuristic policies. The
works [11], [12], [13] follow this line of research. Specifically,
a simple myopic policy, also called greedy policy, is developed
in [11] that yields a factor 2 approximation of the optimal
policy for a subclass of scenarios referred to as Monotone
bandits. The other thrust, more application-oriented, consists
of establishing the optimality of the myopic policy in some
specific application scenarios, particularly in the context of
OSA. The works [14], [15], [16], [17], [18] belong to this
category by focusing on specific forms of reward functions.
Especially, Zhao et al. [14] established the structure of the
myopic sensing policy, analyzed the performance, and partly
obtained the optimality for the case of i.i.d. channels. Ahmad
and Liu et al. [15] derived the optimality of the myopic sensing
policy for the positively correlated i.i.d. channels when the
SU is limited to access one channel (i.e., k = 1) each time,
and further extended the optimality to the case of sensing
multiple i.i.d. channels (k > 1) [16] for the scenario where
the SU gets one unit of reward for each channel sensed
good. Liu and Zhao et al. [17] proved the optimality of the
myopic policy for the case of two channels with a particular
utility function and conjectured it for arbitrary N . In our
previous work [19], [20], [18], we first showed that the myopic
policy is not optimal generally [19], then focused on a family
of regular functions [20], and extended i.i.d. channels to non
i.i.d. ones [18], and derived closed-form conditions under
which the myopic sensing policy is ensured to be optimal.

Related works on exploiting primary control feedback are
presented in [21], [22], [23], [24], [25]. Specifically, the
authors [21] introduced an information-theoretic model of this
basic observation and developed a generic strategy where the
SU monitors the PU’s effective packet rate by listening to

ARQs and only transmits when that rate is above a threshold.
That is, the work [21] is focused on the problem when to
transmit while our work presented in this paper addresses
the problem which channel(s) to probe and transmit. The
authors [22] studied the myopic channel probing policy for the
similar scenario proposed, but only established its optimality
in the particular case of probing one channel (k = 1) each
time. In our previous work [23], we established the optimality
of myopic policy for the case of probing N−1 of N channels
each time and analyzed the performance of the myopic probing
policy by domination theory. However, this work studies the
generic case of arbitrary k and also derives more strong
conditions on the optimality by dropping one of the non-
trivial conditions of [22]. From the angle of renewal theory,
[24] studied the discovery of spectrum opportunities and the
delay in finding an available channel, while [25] studied the
interference to PU from the dynamic access of SU in the
context of unknown primary behavior.

Compared with the previous work [18], our work treats a
different scenario where the major technical difficulty lies in
the non-linearity of the belief value update function, as detailed
in Section II, and consequently a novel analysis is proposed
to establish the closed-form condition on the optimality of
the myopic channel probing policy and does not lose the
optimality for the reward function with linear combination
of the states of the selected channels. But in [18], part of
the optimality is sacrificed, as stated in Section VII of [18],
in order to cover the heterogeneous channels. The technical
difference from [26] is that the belief vector is divided into
‘value belief vector’ and ‘policy belief vector’, which reflects
the essence of decomposability. From the viewpoint of the
RMAB problem, the optimality condition derived in this paper
can be degenerated to those obtained in the literature [14],
[15], [16], [17], [26] by relaxing some constraints.

The rest of the paper is organized as follows: Section II
formulates the model and establishes the myopic channel
probing policy. Section III studies the optimality of the myopic
channel probing policy. Section IV illustrates the analytical
results via a set of extensive simulation study on several typical
network scenarios. The paper is concluded by Section V.

II. PROBLEM FORMULATION

In this section, we describe the system model of the
spectrum access in underlay CR model, based on which we
formulate the RMAB-based channel probing problem and
derive the myopic channel probing policy.

A. System Model

Primary System
As outlined in the Introduction, we consider a slotted multi-

channel underlay CR communication system composed of N
primary channels, each evolving as an i.i.d. Markov chain of
two states, good (1) and bad (0), corresponding to the situation
with high (low, respectively) SINR as shown in Fig. 1. The
channel state transition matrix P is given as follows

P =

[
p11 1− p11

p01 1− p01

]
.
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Fig. 1. Markov Channel Model

In our work, we focus on the positively correlated channel
setting (i.e., p11 > p01) which corresponds to the realistic
scenarios where the channel states are observed to evolve
gradually over time.

On the primary traffic, we adopt the commonly used worst-
case assumption that primary users transmit all the time on
each channels with the primary transmitter and receiver on
channel i denoted as PTx i and PRx i, respectively.

Let S(t) , [S1(t), · · · , SN (t)] denote the channel state
vector where Si(t) ∈ {0 (bad), 1 (good)} is the state of
channel i in slot t. We define outage as data-packet decoding
failure at PRx i. We denote the probability of the outage event
as a function of the channel state Si(t):
Os(i) , Pr(decoding failure | Si(t) = s), s ∈ {1, 0}, i ∈ N .
It can be straightforwardly noted that 0 ≤ O0(i) < O1(i) ≤
1, ∀i ∈ N . In our analysis, we focus on the case where Os(i)
is independent w.r.t. i, and denote Os as the system outage
probability. Each PRx i sends an acknowledgement (ACK)
to the corresponding PTx i on channel i at the end of each
slot if the packet is successfully decoded. Thus the absence
of an acknowledgement (denoted as negative ACK or NACK)
signifies that the outage event happens on channel i at slot t.
Underlay Secondary System

We consider an SU, equipped with k (1 ≤ k < N ) receiving
and transmitting antennas (denoted as STx and RTx), can
transmit its data packets on k channels opportunistically when
the interference that it generates to PUs is limited. In order
to exploit instantaneous transmission opportunities, the SU
probes k primary channels by overhearing the feedback signals
on them so as to learn the primary receivers channel condition
and the interference tolerance level before deciding whether it
can transmit its data on the probed channels.

Specifically, when the SU decides to probe channel i, it ex-
ploits the primary feedbacks by overhearing the ACK/NACK
packets to estimate the primary channel condition. We denote
the set of channels probed by the SU at slot t as A(t)
(|A(t)| = k). The observation of a probed channel i in slot
t is defined as Ki(t) ∈ {0 (NACK), 1 (ACK)}. Throughout
our analysis we assume that the SU can perfectly overhear
the ACK/NACK packets on channel i once it decides to probe
channel i. This is a reasonable assumption as the ACK/NACK
packets are usually transmitted in a more robust way at lower
data rate. We leave the generic case of imperfect overhearing
for future investigation.

B. Optimal Channel Probing Problem Formulation and My-
opic Probing Policy

Since the SU can only probe k channel each slot, the
channel state vector S(t) is only partially observable to the

SU for its decision. In this regard, we define the channel state
belief vector Ω(t) , {ωi(t), i ∈ N} (referred to as belief
vector) to denote the estimation at the SU on the channel
state for next slot, where ωi(t) is the estimated conditional
probability that the primary channel i ∈ N is in good state
(Si(t) = 1) given all the past observations and decisions of
the SU. Given the belief vector Ω(t) and the probed channel
set A(t), the belief vector can be updated recursively based
on the primary feedback observation {Ki(t) : i ∈ A(t)} using
the following Bayes rule (1).

ωi(t+ 1) =


T (φ(ωi(t))), i ∈ A(t),Ki(t) = 1

T (ϕ(ωi(t))), i ∈ A(t),Ki(t) = 0

T (ωi(t)), i 6∈ A(t),

(1)

where, the operators φ(·), ϕ(·) and T (·) are defined as follows:

φ(x) ,
(1−O1)x

(1−O1)x+ (1−O0)(1− x)
,

ϕ(x) ,
O1x

O1x+O0(1− x)
,

T (x) , (p11 − p01)x+ p01.

Note that the numerator and denominator of φ(x) (ϕ(x))
represents the probability of successful decoding (decoding
failure) with Si(t) = 1 and that of successful decoding (de-
coding failure), respectively. T (x) is the Markovian evolving
rule.

Remark. We emphasize that the mapping from ωi(t) to ωi(t+
1) is not linear (cf. the first and second lines of equation (1)),
and depends not only on the channel evolution but also on
the observation outcome. As will be shown later, this non-
linearity makes the analysis on the optimal channel probing
policy much more involved and calls for an original study.

A channel probing policy π is defined as a sequence of
mappings π = [π1, π2, · · · , πT ] where πt maps the belief
vector Ω(t) to the action A(t) (i.e., the set of channels to
probe) in each slot t: i.e.,

πt : Ω(t) 7→ A(t), |A(t)| = k.

In such underlay CR paradigm, we are interested in the
SU’s optimization problem to find the optimal policy π∗ that
maximizes the expected accumulated discounted reward over
a finite time horizon:

π∗ = argmax
π

E

[
T∑
t=1

βt−1R(πt(Ω(t)))

∣∣∣∣∣Ω(1)

]
(2)

where R(πt(Ω(t))) is the reward in slot t under the policy
πt with the initial belief vector Ω(1)2, 0 ≤ β ≤ 1 is the
discount factor characterizing the feature that future reward
is less valuable than immediate reward. By treating the belief
value of each channel as the state of each arm of a bandit, the
SU’s optimization problem can be cast into a RMAB problem.

To get more insight on the structure of the optimization
problem (2) and the complexity to solve it, we derive the
dynamic programming formulation of (2) as follows:
VT (Ω(T )) = max

A(T )
E
[
R(πt(Ω(T )))

]
,

2If no information on the initial system state is available, each entry of
Ω(1) can be set to the stationary distribution ω0 = p01

1+p01−p11
.
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Vt(Ω(t)) = max
A(t)

E
[
R(πt(Ω(t)))

+ β
∑
E⊆A(t)

∏
i∈E

[1−O1ωj(t)−O0(1− ωj(t))]

·
∏

j∈A(t)\E

[O1ωi(t) +O0(1− ωi(t))]Vt+1(Ω(t+ 1))
]
.

where, Vt(Ω(t)) is the value function corresponding to the
maximal expected reward from time slot t to T (1 ≤ t ≤ T )
and Ω(t+ 1) follows the evolution described in (1) given that
the channels in the subset E are observed in good state and
the channels in A(t)\E are observed in bad state.

Theoretically, the optimal policy of (2) can be obtained
by solving the above dynamic programming. It is infeasible,
however, due to the impact of the current action on the future
reward and the unaccountable space of the belief vector, and
in fact obtaining the optimal solution directly from the above
recursive equations is computationally prohibitive. Hence, a
natural alternative is to seek a simple myopic policy maxi-
mizing the immediate reward which is easy to compute and
implement, formally defined as follows:

Definition 1 (Myopic Channel Probing Policy). Let
F (ΩA(t)) , E[R(πt(Ω(t)))] denote the expected immediate
reward obtained in slot t under the policy πt with ΩA(t) ,
{ωi(t) : i ∈ A(t)}, the myopic channel probing policy consists
of probing the k channels that maximizes F (ΩA(t)), i.e.,
A(t) = argmaxA(t)⊆N F (ΩA(t)).

To make our analysis more generic, we focus on a class
of practically important reward functions F (ΩA(t)), termed
as regular functions defined in [18]. More specifically, the
expected immediate reward function F (ΩA(t)) studied in
this paper is assumed to be symmetrical, monotonically non-
decreasing and decomposable, as characterized by the three
axioms in [18]. Under this condition, the myopic channel
probing policy consists of choosing the k channels with the
largest belief value. In the following sections we study the
optimality of the myopic channel probing policy with the
particularities posed by the underlay CR systems presented
previously.

III. ANALYSIS ON OPTIMALITY OF MYOPIC CHANNEL
PROBING POLICY

The goal of this section is to establish the closed-form
condition under which the myopic channel probing policy,
despite of its simple structure, achieves the system optimum.
To facilitate the presentation and analysis, we first state the
notations and parameters. We then define the auxiliary function
and adjugate auxiliary function and study their structural
properties which pave the way of the optimality analysis. The
core result on the optimality of the myopic channel probing
policy is then presented, followed by a discussion to illustrate
the results in a concrete network scenario.

A. Notations

For the convenience of presentation, we first state the
notations and parameters employed in the following analysis.

1) N (k) , {1, · · · , k} denotes the first k channels in N ;
2) Given E ⊆M ⊆ N ,

CEM ,
∏
i∈E

[1−O1ωj(t)−O0(1− ωj(t))]×∏
j∈M(t)\E

[O1ωi(t) +O0(1− ωi(t))],

ĈEM ,
∏
i∈E

[1−O1ω̂j(t)−O0(1− ω̂j(t))]×∏
j∈M(t)\E

[O1ω̂i(t) +O0(1− ω̂i(t))].

CEM (ĈEM) denotes the expected probability that the chan-
nels in E are observed good, whereas those inM\E bad,
given that the channels in M are observed;

3) Given E ⊆ M ⊆ N , Φ(E) , [T (φ(ω̂i(t))), i ∈ E ]
characterizes the updated belief values of the channels
in E if they are observed in the good state; Φl(E) ,
[T (φ(ω̂i(t))), i ∈ E , i < l] characterizes the updated
belief values of the channels in E if they are observed
in the good state with the channel index smaller than l;
Φm(E) , [T (φ(ω̂i(t))), i ∈ E ,m ≤ i] characterizes the
updated belief values of the channels in E if they are
observed in the good state with the channel index larger
than m; Φl

m(E) , [T (φ(ω̂i(t))), i ∈ E ,m ≤ i < l];
4) Υm

l , [T (ω̂i(t)), l ≤ i ≤ m] is the updated belief values
of the channels between l and m if they are not observed;

5) Given E ⊆ M ⊆ N , Ψ(M, E) , [T (ϕ(ω̂i(t))), i ∈
M \ E ] characterizes the updated belief values of the
channels in M\ E if they are observed in the bad state;
Ψl(M, E) , [T (ϕ(ω̂i(t))), i ∈ M \ E , i < l] character-
izes the updated belief values of the channels in M\ E
if they are observed in the bad state with the channel
index smaller than l; Ψm(M, E) , [T (ϕ(ω̂i(t))), i ∈
M\ E ,m ≤ i] characterizes the updated belief values of
the channels in M \ E if they are observed in the bad
state with the channel index larger than m; Ψl

m(M, E) ,
[T (ϕ(ω̂i(t))), i ∈M \ E ,m ≤ i < l];

6) Let ω̂−i , {ω̂j : j ∈ A, j 6= i} and
∆max , max

ω̂−i∈[0,1]k−1
{F (1, ω̂−i)− F (0, ω̂−i)},

∆min , min
ω̂−i∈[0,1]k−1

{F (1, ω̂−i)− F (0, ω̂−i)},

7) Ω̇ = (ω̇1, · · · , ω̇N ), where p11 ≥ ω̇1 ≥ · · · ≥ ω̇N ≥ p01.
To conclude this subsection, we state some structural prop-

erties of T (ωi(t)), ϕ(ωi(t)) and φ(ωi(t)) that are useful in
the subsequent proofs.

Lemma 1. If p11 > p01, it holds that
• T (ωi(t)) is monotonically increasing in ωi(t);
• p01 ≤ T (ωi(t)) ≤ p11, ∀ 0 ≤ ωi(t) ≤ 1.

Proof: Lemma 1 holds straightforwardly from
T (ωi(t)) = (p11 − p01)ωi(t) + p01.

Lemma 2. If 0 ≤ O1

O0
≤ (1−p11)p01

p11(1−p01) , it holds that
• ϕ(ωi(t)) increases monotonically in ωi(t) with ϕ(0) = 0

and ϕ(1) = 1;
• ϕ(ωi(t)) ≤ p01, ∀p01 ≤ ωi(t) ≤ p11.
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Proof: Noticing that ϕ(ωi) = O1ωi(t)
O1ωi(t)+O0(1−ωi(t))

, Lem-
ma 2 follows straightforwardly.

Lemma 3. If 0 ≤ O1

O0
≤ (1−p11)p01

p11(1−p01) , let ζ =
1−O1

1−O0
, it holds:

• φ(ωi(t)) increases monotonically in ωi(t) with φ(0) = 0
and φ(1) = 1;

• φ(ωi(t)) > ωi(t), ∀p01 ≤ ωi(t) ≤ p11.

Proof: Noticing that φ(ωi) = ζωi(t)
ζωi(t)+1−ωi(t)

and ζ > 1,
Lemma 3 follows straightforwardly.

We would like to point out that when the initial belief ωi(1)
is set to p01

p01+1−p11 as is often the case in practical systems,
it can be checked that p01 ≤ ωi(1) ≤ p11 holds. Moreover,
even the initial belief does not fall in [p01, p11], all the the
belief values are bounded in the interval from the second slot
following Lemma 1. Hence we always assume that the initial
belief is located in [p01, p11] for the ease of discussion.

B. Auxiliary and Adjugate Auxiliary Value Functions: Defini-
tion and Properties

In this subsection, we first define the auxiliary and the
adjugate auxiliary value functions and then derive several
fundamental properties of them, which are crucial in the study
on the optimality of the myopic channel probing policy.

Definition 2 (Auxiliary Value Function (AVF) and Adjugate
Auxiliary Value Function (AAVF)). The AVF Wt(Ω(t)) and
AAVF Ŵt(Ω(t); Ω̂(t)) (1 ≤ t ≤ T , t+1 ≤ r ≤ T ) are defined
as follows:

AVF



WT (Ω(T )) = F (ΩA(T ))

Wr(Ω(r)) = F (ΩA(r))

+β
∑
E⊆A(r) CEA(r)

Wr+1(ΩE(r + 1))

Wt(Ω(t)) = F (ΩN (k)(t))

+β
∑
E⊆N (k) CEN (k)Wt+1(ΩE(t+ 1)),

(3)

AAVF



ŴT (Ω(T ); Ω̂(T )) = F (Ω̂A(T ))

Ŵr(Ω(r); Ω̂(r)) = F (Ω̂A(r))

+β
∑
E⊆A(r) ĈEA(r)

Ŵr+1(ΩE(r + 1); Ω̂E(r + 1))

Ŵt(Ω(t); Ω̂(t)) = F (Ω̂N (k)(t))

+β
∑
E⊆N (k) ĈEN (k)Ŵt+1(ΩE(t+ 1); Ω̂E(t+ 1)),

(4)
where

1) ΩE(t+1) and ΩE(r+1) are generated by 〈Ω(t),N (k), E〉
and 〈Ω(r),A(r), E〉, respectively, according to (1), and
then sorted by belief value;

2) Ω̂E(t+1) and Ω̂E(r+1) are generated by 〈Ω̂(t),N (k), E〉
and 〈Ω̂(r),A(r), E〉, respectively, according to (1), and
the order of channel index keeps consistent with that of
ΩE(t+ 1) and ΩE(r + 1), respectively.

3) A(r) and N (k) of AAVF are the same with that of AVF.

Remark. It is insightful to note the following engineering
implications that hinge behind the above definition:

1) AVF gives the expected discounted accumulated reward
of the following policy: in slot t probe the first k channels

in the belief vector and then probe the channels in
A(r) (t + 1 ≤ r ≤ T ) (i.e., adopt the myopic channel
probing policy from slot t + 1 to T ). If A(t) = N (k),
then Wt(Ω(t)) is the total reward from slot t to T under
the myopic channel probing policy.

2) AAVF, as an adjugate of AVF, is introduced to show
the different functions of ‘policy’ and ‘value’. That is,
its policy is determined by the policy belief vector Ω(t)
while its value is determined by the value belief vector
Ω̂(t). If Ω̂(t) = Ω(t), then AAVF degenerates to AVF.

In the subsequent analysis, we derive some important struc-
tural properties of AVF and AAVF.

Lemma 4 (Belief Substitution of AAVF). Given two policy
belief vectors Ω = (ω1, ω2, · · · , ωN ), Ω′ = (ω′1, ω

′
2, · · · , ω′N ),

if p11 ≥ ω1 ≥ ω2 ≥ · · · ≥ ωN ≥ p01 and p11 ≥ ω′1 ≥ ω′2 ≥
· · · ≥ ω′N ≥ p01, it holds that Ŵt(Ω; Ω̂) = Ŵt(Ω

′; Ω̂).

Proof: It is easily to verify that the lemma holds for slot
T . Assume that it holds for t+ 1, · · · , T − 1. We now prove
it also holds for slot t.

Recall (4), it suffices to prove Ŵt+1(ΩE(t+1); Ω̂E(t+1)) =

Ŵt+1(Ω′E(t + 1); Ω̂E(t + 1)) under given E . According to
the induction hypothesis, it is sufficient to show that when
ΩE(t+ 1) and Ω′E(t+ 1) are sorted in the decreasing order of
their elements, they have the same order of channel index. Let
{σ1, · · · , σk} denote any permutation of {1, · · · , k} and E =
{σ1, · · · , σm} at slot t (0 ≤ m ≤ k, σ1 ≤ · · · ≤ σm, σm+1 ≤
· · · ≤ σk), according to Lemma 1, 2 and 3, we have
T (φ(ωσ1

)) ≥ · · · ≥ T (φ(ωσm
)) ≥ T (φ(ωk)) > T (ωk) ≥

T (ωk+1) ≥ · · · ≥ T (ωN ) ≥ p01 ≥ T (ϕ(ωσm+1
)) ≥

· · · ≥ T (ϕ(ωσk
)), that is to say, the order of channel index

of ΩE(t + 1) is (σ1, · · · , σm, k + 1, · · · , N, σm+1, · · · , σk).
Similarly, the order of channel index of Ω′E(t + 1) is also
(σ1, · · · , σm, k + 1, · · · , N, σm+1, · · · , σk).

Remark. Lemma 4 implies that by substituting a decreasingly
sorted policy belief vector by another one, AAVF remains the
same and hence generates the same reward.

Lemma 5 (Symmetry of AVF). If 0 ≤ O1

O0
≤ (1−p11)p01

p11(1−p01) and
F is regular, it holds that Wt(Ω(t)) is symmetrical in ωi, ωj
for any i, j ∈ A(t) or i, j /∈ A(t) for all t = 1, 2, · · · , T , i.e.,

Wt(ω1, · · · , ωi, · · · , ωj , · · · , ωN )

= Wt(ω1, · · · , ωj , · · · , ωi, · · · , ωN ).

Proof: The proof is given in Appendix A.

Remark. Lemma 5 implies that the reward generated by AVF
remains the same against any channel permutation within the
probed channels and within the non-probed channels.

Lemma 6 (Decomposability of AAVF). If 0 ≤ O1

O0
≤

(1−p11)p01
p11(1−p01) and F is regular, for any policy belief vector

Ω, it holds that Ŵt(Ω; Ω̂(t)) is decomposable for all t =
1, 2, · · · , T , i.e.,

Ŵt(Ω; Ω̂) = ω̂lWt(Ω; Ω̂1) + (1− ω̂l)Wt(Ω; Ω̂0),∀l ∈ N ,
where, Ω̂ = (ω̂1, · · · , ω̂l, · · · , ω̂N ),
Ω̂0 = (ω̂1, · · · , 0, · · · , ω̂N ), Ω̂1 = (ω̂1, · · · , 1, · · · , ω̂N ).
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Proof: The proof is given in Appendix B.

Remark. Lemma 6 states that given the probing policy, the
reward attained from AAVF can be decomposed into two terms
with deterministic realizations 0 and 1 in any channel of the
value belief vector.

Lemma 6 can be applied one step further to prove the
following corollary.

Corollary 1. If 0 ≤ O1

O0
≤ (1−p11)p01

p11(1−p01) and F is regular, for
any belief vector Ω, it holds that ∀l,m ∈ N , t = 1, · · · , T
Ŵt(Ω; Ω̂0)− Ŵt(Ω; Ω̂1) = (ω̂l − ω̂m)

[
Wt(Ω; Ω̂2)−Wt(Ω; Ω̂3)

]
,

where
Ω̂0 = (ω̂1, · · · , ω̂l, · · · , ω̂m, · · · , ω̂N ),

Ω̂1 = (ω̂1, · · · , ω̂m, · · · , ω̂l, · · · , ω̂N ),

Ω̂2 = (ω̂1, · · · , 1, · · · , 0, · · · , ω̂N ),

Ω̂3 = (ω̂1, · · · , 0, · · · , 1, · · · , ω̂N ).

Lemma 7 (Monotonicity of AAVF). If 0 ≤ O1

O0
≤ (1−p11)p01

p11(1−p01)

and F is regular, it holds that Ŵt(Ω̇; Ω(t)) is monotonously
non-decreasing in ωl, ∀l ∈ N , i.e.,

ω̂′l ≥ ω̂l =⇒ Ŵt(Ω̇; Ω̂0) ≥Wt(Ω̇; Ω̂1),

where,
Ω̂0 = (ω̂1, · · · , ω̂′l, · · · , ω̂N ), Ω̂1 = (ω̂1, · · · , ω̂l, · · · , ω̂N ).

Proof: The proof is given in Appendix C.

Remark. Lemma 7 states that given the probing policy, the
reward attained from AAVF increases with any element of the
value belief vector.

C. Optimality of Myopic Channel Probing Policy

We are now ready to study the optimality of the myopic
channel probing policy. We proceed by showing the following
important auxiliary lemmas (Lemma 8–10 and Corollary 2)
and then establish the sufficient condition under which the
optimality of the myopic channel probing policy is guaranteed.

Lemma 8. Given that (1) F is regular, (2) O1

O0
< p01(1−p11)

P11(1−p01) ,

and (3) β ≤ ∆min/∆max

(1−O1
O0

)(1−p01)+
O1(p11−p01)

1−(1−O1)(p11−p01)

, if p01 ≤ ω̂i ≤
p11 (1 ≤ i ≤ N ) and p11 ≥ ω̂l ≥ ω̂m ≥ p01, it holds that

Wt(Ω̂0) ≥Wt(Ω̂1), 1 ≤ t ≤ T,
where,

Ω̂0 = (ω̂1, · · · , ω̂l, · · · , ω̂m, · · · , ω̂N ),

Ω̂1 = (ω̂1, · · · , ω̂m, · · · , ω̂l, · · · , ω̂N ).

Lemma 9. Given that (1) F is regular, (2) O1

O0
< p01(1−p11)

P11(1−p01) ,

and (3) β ≤ ∆min/∆max

(1−O1
O0

)(1−p01)+
O1(p11−p01)

1−(1−O1)(p11−p01)

, if p01 ≤ ω̂i ≤
p11 (1 ≤ i ≤ N ) and p11 ≥ ω̂1 ≥ ω̂N ≥ p01, it holds that

Ŵt(Ω̇; Ω̂0)− Ŵt(Ω̇; Ω̂1) ≤ 1− p01

O0
∆max, 1 ≤ t ≤ T

where Ω̂0 = (ω̂1, · · · , ω̂N−1, ω̂N ), Ω̂1 = (ω̂N , ω̂1, · · · ω̂N−1).

Lemma 10. Given that (1) F is regular, (2) O1

O0
< p01(1−p11)

P11(1−p01) ,

and (3) β ≤ ∆min/∆max

(1−O1
O0

)(1−p01)+
O1(p11−p01)

1−(1−O1)(p11−p01)

, if p01 ≤ ω̂i ≤

p11 (1 ≤ i ≤ N ) and p11 ≥ ω̂1 ≥ ω̂N ≥ p01, it holds that for
1 ≤ t ≤ T
Ŵt(Ω̇; Ω̂0)− Ŵt(Ω̇; Ω̂1)

≤ (p11 − p01)∆max
1− [β(1−O1)(p11 − p01)]T−t+1

1− β(1−O1)(p11 − p01)
,

where
Ω̂0 = (ω̂1, ω̂2, · · · , ω̂N−1, ω̂N ), Ω̂1 = (ω̂N , ω̂2, · · · , ω̂N−1, ω̂1).

For the clarity of presentation, the proofs of the above three
lemmas are deferred to the Appendix. Technically speaking,
the proof is based on the intrinsic structure of AVF and AAVF,
and the development of different “branches” of the channel
realizations to derive the relevant bounds, which are further
applied to study the optimality of the myopic channel probing
policy in Theorem 1.

Remark. We would like to provide a note on the engineering
implications of the above three lemmas. Lemma 8 states that
the SU cannot increase the expected reward by visiting a
channel with a smaller belief value. Lemma 9 derives the upper
bound on the difference of the total reward by swapping ωN
and ωk (k = N − 1, · · · , 1). Lemma 10, on the other hand,
derives the upper bound on the difference of the total reward
by swapping ωN and ω1.

Based on Lemma 8 and 10, we have the following corollary.

Corollary 2. Given that (1) F is regular, (2) O1

O0
< p01(1−p11)

P11(1−p01) ,

and (3) β ≤ ∆min/∆max

(1−O1
O0

)(1−p01)+
O1(p11−p01)

1−(1−O1)(p11−p01)

, if p01 ≤ ω̂i ≤

p11 (1 ≤ i ≤ N ) and ω̂i = max{ω̂j : j ∈ N} and ω̂N =
min{ω̂j : j ∈ N}, it holds that for 1 ≤ t ≤ T
Ŵt(Ω̇; Ω̂0)− Ŵt(Ω̇; Ω̂1)

≤ (p11 − p01)∆max
1− [β(1−O1)(p11 − p01)]T−t+1

1− β(1−O1)(p11 − p01)
,

where
Ω̂0 = (ω̂1, · · · , ω̂i, · · · , ω̂N−1, ω̂N ),

Ω̂1 = (ω̂1, · · · , ω̂N , · · · , ω̂N−1, ω̂i).

Proof: It can be developed that:
Ŵt(Ω̇; (ω̂1, · · · , ω̂i−1, ω̂i, ω̂i+1, · · · , ω̂N−1, ω̂N ))

− Ŵt(Ω̇; (ω̂1, · · · , ω̂i−1, ω̂N , ω̂i+1, · · · , ω̂N−1, ω̂i))

≤Ŵt(Ω̇; (ω̂i, ω̂1, · · · , ω̂i−1, ω̂i+1, · · · , ω̂N−1, ω̂N ))

− Ŵt(Ω̇; (ω̂N , ω̂1, · · · , ω̂i−1, ω̂i+1, · · · , ω̂N−1, ω̂i))

≤(p11 − p01)∆max
1− [β(1−O1)(p11 − p01)]T−t+1

1− β(1−O1)(p11 − p01)
,

where, the first inequality follows from Lemma 8 and the
second one Lemma 10.

The following theorem establishes the main result of our
work by stating the condition under which the myopic channel
probing policy is guaranteed to achieve the system optimum.

Theorem 1. If p01 ≤ ωi(1) ≤ p11, 1 ≤ i ≤ N , the myopic
probing policy is optimal if (1) F (Ω) is regular; (2) O1

O0
<

p01(1−p11)
P11(1−p01) ; (3) β ≤ ∆min/∆max

(1−O1
O0

)(1−p01)+
O1(p11−p01)

1−(1−O1)(p11−p01)

.

Proof: It suffices to show that for any t, by sorting Ω(t)
in decreasing order such that ω1 ≥ · · · ≥ ωN , it holds that
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Wt(ω1, · · · , ωN ) ≥ Wt(ωi1 , · · · , ωiN ), where (ωi1 , · · · , ωiN )
is any permutation of (1, · · · , N).

We prove the above inequality by contradiction. As-
sume, by contradiction, the maximum of Wt is achieved at
(ωi∗1 , · · · , ωi∗N ) 6= (ω1, · · · , ωN ), i.e.,

Wt(ωi∗1 , · · · , ωi∗N ) > Wt(ω1, · · · , ωN ). (5)

However, run a bubble sort algorithm on (ωi∗1 , · · · , ωi∗N ) by
repeatedly stepping through it, comparing each pair of adjacent
element ωi∗l and ωi∗l+1

and swapping them if ωi∗l < ωi∗l +1.
Note that when the algorithm terminates, the channel belief
vector are sorted decreasingly, that is to say, it becomes
(ω1, · · · , ωN ). By applying Lemma 8 at each swapping, we
have Wt(ωi∗1 , · · · , ωi∗N ) ≤ Wt(ω1, · · · , ωN ), which contra-
dicts to (5). Theorem 1 is thus proven.

D. Discussion: a Case Study

To illustrate the application of the obtained result, we study
a concrete underlay CR system where the SU can transmit at
rate r1 if the channel probed is observed in the good state
and r0 (r0 ≤ r1) for the bad state. In this scenario, the utility
function can be formulated as F (ΩA) =

∑
i∈A[r1 · ωi + r0 ·

(1 − ωi)]. Note that the optimality of the myopic policy for
this model is studied in [22] for the case of k = 1 and very
strict conditions are obtained on the optimality result. We now
study the generic case with arbitrary k. To that end, recall
Theorem 1, we can see that condition (1) holds, and we have
∆min = ∆max = r1−r0. We can then verify that when O1

O0
<

p01(1−p11)
P11(1−p01) , it holds that ∆min/∆max

(1−O1
O0

)(1−p01)+
O1(p11−p01)

1−(1−O1)(p11−p01)

> 1.

Therefore, when the condition (2) holds, the myopic channel
probing policy is optimal for any β. This result in the generic
case significantly generalizes the results of [22] by dropping
one of the conditions of [22] which may be too stringent in
practical scenarios and extends to arbitrary k.

IV. NUMERICAL ANALYSIS

A. Simulation Setting

In this section, we demonstrate some of the theoretical
results derived in previous sections and gain further insights
on the channel probing problem in underlay CR systems.

Specifically, we conduct a numerical analysis on the scenari-
o studied in Section III-D by focusing on two typical parameter
settings:
• The strong positively correlated case where p11 signif-

icantly outweighs p01, indicating a system with strong
positively correlated channels: concretely in our simula-
tion we set p11 = 0.8, p01 = 0.2. Other parameters are
set to r1 = 0.9, r0 = 0.5, O0 = 0.5, O1 = 0.025.

• The weakly positively correlated case where p11 only
slightly outweighs p01, indicating a system with weak-
ly positively correlated channels. That is, p11 = 0.6,
p01 = 0.4. Other parameters are set to r1 = 0.9, r0 = 0.5,
O0 = 0.1, O1 = 0.005.

For comparison reference, we implement three policies:
• Optimal policy;
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Fig. 2. Performance comparison (k = 1): upper plot: strong positively
correlated case; lower plot: weakly positively correlated case

• Sub-optimal policy: given the complexity of finding the
optimal policy, we investigate the performance of the sub-
optimal policy which is regarded as the best policy chosen
from 10000 random policies;

• Myopic policy, studied in previous analysis.
We conduct our numerical analysis for two network scenarios:
(1) N = 3, k = 1 and (2) N = 3, k = 2, i.e., the scenarios
where the SU can probe one and two channel(s) each time.

B. Simulation Results

In our numerical studies, we are interested in the per-
formance of the average throughput (i.e., reward) of the
three policies. The results obtained in this section provide
a complementary quantitative study on the performance of
the myopic channel probing policy although it is explicitly
addressed in the analytical part. In Figure 2 and Figure 3, we
plot the average throughput as a function of the time horizon
T = 10 for k = 1 and k = 2, respectively.

It can be illustrated from the simulation results that the
average throughput obtained by the myopic policy perfectly
matches that of the optimal policy, which confirms our analyt-
ical findings in previous sections. We can also observe that the
myopic policy outperforms the sub-optimal policy to various
extents depending on the system parameter settings. Given the
exponential complexity of obtaining the optimal policy and the
large number of trials in the sub-optimal policy, the benefit of
the myopic policy is well demonstrated.

V. CONCLUSION

We have investigated the problem of opportunistic spectrum
access in underlay CR systems where an SU can exploit the
primary feedback signals to obtain the channel information
on the primary channels. We have formulated the channel
probing problem in which the SU chooses the set of channels
to probe so as to maximize its long-term reward. By casting
the problem into the RMAB problem, we have established
the closed-form condition to ensure the optimality of the
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Fig. 3. Performance comparison (k = 2): upper plot: strong positively
correlated case; lower plot: weakly positively correlated case

myopic channel probing policy, a natural policy consisting of
probing the best channels based on current belief values of the
channel condition. Due to the generic nature of the addressed
problem, we believe that the obtained results and the analysis
methodology employed in our analysis are widely applicable
in a wide range of engineering domains.

APPENDIX A
PROOF OF LEMMA 5

Recall Wt(Ω(t)) = β
∑
E⊆N (k) CEN (k)Wt+1(ΩE(t + 1)) +

F (ΩN (k)(t)), we prove the lemma by distinguishing the
following two cases:

Case 1: i, j ∈ A(t). Noticing that (1) both F (ΩN (k)(t))
and

∑
E⊆N (k) CEN (k) =

∑
E⊆A(t) CEA(t) are symmetrical

w.r.t. ωi and ωj , (2) (ω1, · · · , ωi, · · · , ωj , · · · , ωN ) and
(ω1, · · · , ωj , · · · , ωi, · · · , ωN ) generate the same belief vector
ΩE(t + 1) for any E , and (3) myopic policy is adopted from
slot t+ 1 to T , it holds that Wt(Ω(t)) is symmetrical w.r.t. ωi
and ωj .

Case 2: i, j /∈ A(t). Noticing that (1) F (ΩN (k)(t))
and

∑
E⊆N (k) CEN (k) =

∑
E⊆A(t) CEA(t) are unrelated

with ωi and ωj , (2) (ω1, · · · , ωi, · · · , ωj , · · · , ωN ) and
(ω1, · · · , ωj , · · · , ωi, · · · , ωN ) generate the same belief vector
ΩE(t + 1) for any E , and (3) myopic policy is adopted from
slot t+ 1 to T , it holds that Wt(Ω(t)) is symmetrical w.r.t. ωi
and ωj .

Combing the analysis completes the proof.

APPENDIX B
PROOF OF LEMMA 6

We proceed the proof by backward induction. First, it is
easy to verify that the lemma holds for slot T . Assume that
the lemma holds from slots t+1, · · · , T , we now prove it also
holds for slot t by the following two different cases.

Case 1: channel l is not observed in slot t, i.e. l ≥ k + 1.
Let M , N (k) = {1, · · · , k}, ω̂l = 0 and 1, respectively, we
have according to Lemma 4

Ŵt(Ω; (ω̂1, · · · , ω̂l, · · · , ω̂n))

=F (ω̂1, · · · , ω̂k) + β
∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂El (t+ 1)),

Ŵt(Ω; (ω̂1, · · · , 0, · · · , ω̂n))

=F (ω̂1, · · · , ω̂k) + β
∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂El,0(t+ 1)),

Ŵt(Ω; (ω̂1, · · · , 1, · · · , ω̂n))

=F (ω̂1, · · · , ω̂k) + β
∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂El,1(t+ 1)),

where
Ω̂El (t+ 1) = (Φ(E),Υl−1

k+1, T (ω̂l),Υ
N
l+1,Ψ(M, E)),

Ω̂El,0(t+ 1) = (Φ(E),Υl−1
k+1, p01,Υ

N
l+1,Ψ(M, E)),

Ω̂El,1(t+ 1) = (Φ(E),Υl−1
k+1, p11,Υ

N
l+1,Ψ(M, E)).

To prove the lemma in this case, it is sufficient to prove
Ŵt+1(Ω̇; Ω̂El (t+ 1)) =(1− ω̂l)Ŵt+1(Ω̇; Ω̂El,0(t+ 1))

+ ω̂lŴt+1(Ω̇; Ω̂El,1(t+ 1)) (6)
According to induction hypothesis, we have

Ŵt+1(Ω̇; Ω̂El (t+ 1))

=(1− T (ω̂l))Ŵt+1(Ω̇; (Φ(E),Υl−1
k+1, 0,Υ

N
l+1,Ψ(M, E)))

+ T (ω̂l)Ŵt+1(Ω̇; (Φ(E),Υl−1
k+1, 1,Υ

N
l+1,Ψ(M, E))) (7)

Ŵt+1(Ω̇; Ω̂El,0(t+ 1))

=(1− p01)Ŵt+1(Ω̇; (Φ(E),Υl−1
k+1, 0,Υ

N
l+1,Ψ(M, E)))

+ p01Ŵt+1(Ω̇; (Φ(E),Υl−1
k+1, 1,Υ

N
l+1,Ψ(M, E))) (8)

Ŵt+1(Ω̇; Ω̂El,1(t+ 1))

=(1− p11)Ŵt+1(Ω̇; Φ(E),Υl−1
k+1, 0,Υ

N
l+1,Ψ(M, E))

+ p11Ŵt+1(Ω̇; Φ(E),Υl−1
k+1, 1,Υ

N
l+1,Ψ(M, E)) (9)

Combing (7), (8), (9), we have (6).
Case 2: channel l is observed in slot t, i.e. l ≤ k. Let
M , N (k) \ {l} = {1, · · · , l − 1, l + 1, · · · , k}, we have
according to eq. (4) and Lemma 4
Ŵt(Ω; Ω̂(t)) = F (ω̂1, · · · , ω̂l, · · · , ω̂k)

+ β[1−O0(1− (1− ε)ω̂l)]
∑
E⊆M

ĈEM

Ŵt+1(Ω̇; (Φl(E), T (φ(ω̂l)),Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)))

+ β[O0(1− (1− ε)ω̂l)]
∑
E⊆M

ĈEM

Ŵt+1(Ω̇; (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), T (ϕ(ω̂l)),Ψl(M, E)))

Let ω̂l = 0 and 1, respectively, we have
Ŵt(Ω; Ω̂l=0(t)) = F (ω̂1, · · · , 0, · · · , ω̂k)

+ β[1−O0]
∑
E⊆M

ĈEM

Ŵt+1(Ω̇; (Φl(E), p01,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)))

+ βO0

∑
E⊆M

ĈEM

Ŵt+1(Ω̇; (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), p01,Ψl(M, E))),

Ŵt(Ω; Ω̂l=1(t)) = F (ω̂1, · · · , 1, · · · , ω̂k)

+ β[1−O1]
∑
E⊆M

ĈEM
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Ŵt+1(Ω̇; (Φl(E), p11,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)))

+ βO1

∑
E⊆M

ĈEM

Ŵt+1(Ω̇; (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), p11,Ψl(M, E)))

To prove the lemma in this case, it is sufficient to show

[1−O0(1− (1− ε)ω̂l)]
Ŵt+1(Ω̇; (Φl(E), T (φ(ω̂l)),Φl(E),ΥN

k+1,Ψ
l(M, E),Ψl(M, E)))

+ [O0(1− (1− ε)ω̂l)]
Ŵt+1(Ω̇; (Φl(E),Φl(E),ΥN

k+1,Ψ
l(M, E), T (ϕ(ω̂l)),Ψl(M, E)))

= (1− ω̂l)(1−O0)

Ŵt+1(Ω̇; (Φl(E), p01,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)))

+ (1− ω̂l)O0

Ŵt+1(Ω̇; (Φl(E),Φl(E),ΥN
k+1),Ψl(M, E), p01,Ψl(M, E)))

+ ω̂l(1−O1)

Ŵt+1(Ω̇; (Φl(E), p11,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)))

+ ω̂lO1

Ŵt+1(Ω̇; (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), p11,Ψl(M, E)))
(10)

According to induction hypothesis, we have

Ŵt+1(Ω̇; Φl(E), x,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E))

= (1− x)

Ŵt+1(Ω̇; (Φl(E), 0,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)))

+ xŴt+1(Ω̇; (Φl(E), 1,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)))
(11)

Ŵt+1(Ω̇; Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), y,Ψl(M, E))

= (1− y)

Ŵt+1(Ω̇; (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), 0,Ψl(M, E)))

+ yŴt+1(Ω̇; (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), 1,Ψl(M, E)))
(12)

Let x, y = T (φ(ω̂l)), T (ϕ(ω̂l)), p11 and p01, respectively, we
can easily obtain (10) by some simple arithmetic operations.

Combing the above analysis, we thus prove Lemma 6.

APPENDIX C
PROOF OF LEMMA 7

We proceed the proof by backward induction. First, it is
easy to verify that the lemma holds for slot T . Assume that
the lemma holds from slots t+1, · · · , T , we now prove that it
also holds for slot t by distinguishing the following two cases.

Case 1: channel l is not observed in slot t, i.e., l ≥ k + 1.
In this case, the immediate reward is unrelated to ω̂l and
ω̂′l. Moreover, let Ω̂(t + 1) and Ω̂′(t + 1) denote the be-
lief vector generated by Ω̂(t) = (ω̂1, · · · , ω̂l, · · · , ω̂N ) and
Ω̂′(t) = (ω̂1, · · · , ω̂′l, · · · , ω̂N ), respectively, it can be noticed
that Ω̂(t + 1) and Ω̂′(t + 1) differ in only one element:
ω̂′l(t + 1) ≥ ω̂l(t + 1). By induction hypothesis, it holds that
Ŵt+1(Ω̇; Ω̂′(t + 1)) ≥ Ŵt+1(Ω̇; Ω̂(t + 1)). Noticing (4), it
follows that Ŵt(Ω̇; Ω̂′(t)) ≥ Ŵt(Ω̇; Ω̂(t)).

Case 2: channel l is observed in slot t, i.e., l ≤ k. Following
Lemma 6 and after some straightforward algebraic operations,
we have

Ŵt(Ω̇; (ω̂1, · · · , ω̂′l, · · · , ω̂N ))− Ŵt(Ω̇; (ω̂1, · · · , ω̂l, · · · , ω̂N ))

= (ω̂′l − ω̂l)
[Ŵt(Ω̇; (ω̂1, · · · , 1, · · · , ω̂N ))− Ŵt(Ω̇; (ω̂1, · · · , 0, · · · , ω̂N ))].

Let M , N (k) \ {l} = {1, · · · , l − 1, l + 1, · · · , k}, by
developing Ŵt(Ω̇; Ω(t)) as a function of ω̂l, we have

Ŵt(Ω̇; Ω̂(t)) = F (ω̂1(t), · · · , ω̂k(t))

+ β[1−O0(1− (1− O1

O0
)ω̂l)]

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E(t+ 1))

+ β[O0(1− (1− O1

O0
)ω̂l)]

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E(t+ 1)).

Let ω̂l = 0 and 1, respectively, we have

Wt(Ω̇; Ω̂l=0(t)) =F (ω̂1(t), · · · , 0, · · · , ω̂k(t))

+ β[1−O0]
∑
E⊆M

ĈEMWt+1(Ω̇; Ω̂E0,1(t+ 1))

+ βO0

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E0,0(t+ 1)),

Wt(Ω̇; Ω̂l=1(t)) =F (ω̂1(t), · · · , 1, · · · , ω̂k(t))

+ β[1−O1]
∑
E⊆M

ĈEMWt+1(Ω̇; Ω̂E1,1(t+ 1))

+ βO1

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E1,0(t+ 1)),

where

Ω̂E0,1(t+ 1) = (Φl(E), p01,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)),

Ω̂E0,0(t+ 1) = (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), p01,Ψl(M, E)),

Ω̂E1,1(t+ 1) = (Φl(E), p11,Φl(E),ΥN
k+1,Ψ

l(M, E),Ψl(M, E)),

Ω̂E1,0(t+ 1) = (Φl(E),Φl(E),ΥN
k+1,Ψ

l(M, E), p11,Ψl(M, E)).

It can be checked that Ω̂E1,1(t + 1) ≥ Ω̂E0,1(t + 1) and
Ω̂E1,0(t + 1) ≥ Ω̂E0,0(t + 1). It then follows from induction
that given E , Ŵt+1(Ω̇; Ω̂E1,1(t + 1)) ≥ Ŵt+1(Ω̇; Ω̂E0,1(t + 1))

and Ŵt+1(Ω̇; Ω̂E1,0(t + 1)) ≥ Ŵt+1(Ω̇; Ω̂E0,0(t + 1)). Noticing
that F is increasing, we then have

Ŵt(Ω̇; (ω̂1, · · · , 1, · · · , ω̂n))− Ŵt(Ω̇; (ω̂1, · · · , 0, · · · , ω̂n))

= F (ω̂1, · · · , 1, · · · , ω̂n)− F (ω̂1, · · · , 0, · · · , ω̂n)

+ β[1−O1]
∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E1,1(t+ 1))

+ βO1

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E1,0(t+ 1))

− β[1−O0]
∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E0,1(t+ 1))

− βO0

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E0,0(t+ 1))

≥ β[1−O1]
∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E1,1(t+ 1))

+ βO1

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E1,0(t+ 1))
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− β[1−O0]
∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E1,1(t+ 1))

− βO0

∑
E⊆M

ĈEMŴt+1(Ω̇; Ω̂E1,0(t+ 1))

= β[O0 −O1]
∑
E⊆M

ĈEM[
Ŵt+1(Ω̇; Ω̂E1,1(t+ 1))− Ŵt+1(Ω̇; Ω̂E1,0(t+ 1))

]
≥ 0.

Combining the above analysis in two cases completes our
proof.

APPENDIX D
PROOF OF LEMMA 8–LEMMA 10

Due to the dependency between the lemmas, we prove them
together by backward induction.

We first show that Lemma 8–10 hold for slot T . It is
easy to verify that Lemma 8 holds.

We then prove Lemma 9–10. Noticing that p01 ≤ ω̂N ≤
ω̂k ≤ p11 ≤ 1 and p01 ≤ ω̂N ≤ ω̂1 ≤ p11, we have
ŴT (Ω̇; (ω̂1, · · · , ω̂N ))− ŴT (Ω̇; (ω̂N , ω̂1, · · · , ω̂N−1))

= F (ω̂1, · · · , ω̂k)− F (ω̂N , ω̂1, · · · , ω̂k−1)

= (ω̂k − ω̂N )[F (ω̂1, · · · , ω̂k−1, 1)− F (ω̂1, · · · , ω̂k−1, 0)]

≤ (1− ω̂N )∆max,

ŴT (Ω̇; (ω̂1, · · · , ω̂N ))− ŴT (Ω̇; (ω̂N , ω̂2, · · · , ω̂N−1, ω̂1))

= F (ω̂1, · · · , ω̂k)− F (ω̂N , ω̂2, · · · , ω̂k−1)

= (ω̂1 − ω̂N )[F (1, ω̂2, · · · , ω̂k)− F (0, ω̂2, · · · , ω̂k)]

≤ (p11 − p01)∆max.

Lemma 9–10 thus hold for slot T .
Assume that Lemma 8–10 hold for slots T, · · · , t+1, we

now prove that they hold for slot t.
We first prove Lemma 8. We distinguish the following

three cases considering l < m:
Case 1: l ≥ k + 1. This case follows Lemma 5.
Case 2: l ≤ k and m ≥ k + 1. In this case, denote M ,

N (k) \ {l}, we have
Wt(ω̂1, · · · , ω̂l, · · · , ω̂m, · · · , ω̂N )

−Wt(ω̂1, · · · , ω̂m, · · · , ω̂l, · · · , ω̂N )

=Ŵt(Ω̂; (ω̂1, · · · , ω̂l, · · · , ω̂m, · · · , ω̂N ))

− Ŵt(Ω̂; (ω̂1, · · · , ω̂m, · · · , ω̂l, · · · , ω̂N ))

=(ω̂l − ω̂m)
[
Ŵt(Ω̂; (ω̂1, · · · , 1, · · · , 0, · · · , ω̂N ))

− Ŵt(Ω̂; (ω̂1, · · · , 0, · · · , 1, · · · , ω̂N ))
]

=(ω̂l − ω̂m)
{
F (ω̂1, · · · , 1, · · · , ω̂k)− F (ω̂1, · · · , 0, · · · , ω̂k)

+ β
∑
E⊆M

ĈEM·[
(1−O1)Ŵt+1(Ω̇; (Φl(E), p11,Φl(E), T (ω̂k+1), · · · ,

p01, · · · , T (ω̂N ),Ψl(M, E),Ψl(M, E))

+O1Ŵt+1(Ω̇; (Φl(E),Φl(E), T (ω̂k+1), · · · ,
p01, · · · , T (ω̂N ),Ψl(M, E), p11,Ψl(M, E))

− (1−O0)Ŵt+1(Ω̇; (Φl(E), p01,Φl(E), T (ω̂k+1), · · · ,

p11, · · · , T (ω̂N ),Ψl(M, E),Ψl(M, E))

−O0Ŵt+1(Ω̇; (Φl(E),Φl(E), T (ω̂k+1), · · · ,

p11, · · · , T (ω̂N ),Ψl(M, E), p01,Ψl(M, E))
]}

≥(ω̂l − ω̂m)
{

∆min + β
∑
E⊆M

ĈEM·[
(1−O1)Ŵt+1(Ω̇; (Φl(E), p11,Φl(E), T (ω̂k+1), · · · ,

p01, · · · , T (ω̂N ),Ψl(M, E),Ψl(M, E))

+O1Ŵt+1(Ω̇; (Φl(E),Φl(E), T (ω̂k+1), · · · ,
p01, · · · , T (ω̂N ),Ψl(M, E), p11,Ψl(M, E))

− (1−O0)Ŵt+1(Ω̇; (Φl(E), p11,Φl(E), T (ω̂k+1), · · · ,
p01, · · · , T (ω̂N ),Ψl(M, E),Ψl(M, E))

−O0Ŵt+1(Ω̇; (Φl(E),Φl(E), T (ω̂k+1), · · · ,

p11, · · · , T (ω̂N ),Ψl(M, E), p01,Ψl(M, E))
]}

=(ω̂l − ω̂m)
{

∆min + β
∑
E⊆M

ĈEM·[
(O0 −O1)Ŵt+1(Ω̇; (Φl(E), p11,Φl(E), T (ω̂k+1), · · · ,

p01, · · · , T (ω̂N ),Ψl(M, E),Ψl(M, E))

+O1Ŵt+1(Ω̇; (Φl(E),Φl(E), T (ω̂k+1), · · · ,
p01, · · · , T (ω̂N ),Ψl(M, E), p11,Ψl(M, E))

−O0Ŵt+1(Ω̇; (Φl(E),Φl(E), T (ω̂k+1), · · · ,

p11, · · · , T (ω̂N ),Ψl(M, E), p01,Ψl(M, E))
]}

≥(ω̂l − ω̂m)
{

∆min + β
∑
E⊆M

ĈEM·[
(O0 −O1)Ŵt+1(Ω̇; (p01,Φ

l(E), p11,Φl(E), T (ω̂k+1), · · · ,

T (ω̂N ),Ψl(M, E),Ψl(M, E))

+O1Ŵt+1(Ω̇; (Φl(E), p01,Φl(E), T (ω̂k+1), · · · ,
T (ω̂N ),Ψl(M, E),Ψl(M, E), p11))

−O0Ŵt+1(Ω̇; (Φl(E), p11,Φl(E), T (ω̂k+1), · · · ,

T (ω̂N ),Ψl(M, E),Ψl(M, E), p01)
]}

≥(ω̂l − ω̂m)
[
∆min − β

∑
E⊆M

ĈEM ·
(

(O0 −O1)
1− p01

O0
∆max

+O1(p11 − p01)∆max
1− [β(1−O1)(p11 − p01)]T−t

1− β(1−O1)(p11 − p01)

)]
≥(ω̂l − ω̂m)

∑
E⊆M

ĈEM ·
[
∆min−

β ·
(

(1− O1

O0
)(1− p01)∆max +

O1(p11 − p01)∆max

1− (1−O1)(p11 − p01)

)]
≥0,

where the first two inequalities follow the induction result of
Lemma 8, the third inequality follows the induction result of
Lemma 9–10 and Corollary 2, the fourth inequality follows
the condition in the lemma.

Case 3: l,m ≥ k. This case follows Lemma 5.
Lemma 6 is thus proven for slot t.
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We then proceed to prove Lemma 9. We start with the
first inequality. We develop Ŵt w.r.t. ω̂k and ω̂N according to
Lemma 6 as follows:

Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, ω̂k, · · · , ω̂n−1, ω̂n))

− Ŵt(Ω̇; (ω̂n, ω̂1, · · · , ω̂k−1, ω̂k, ..., ω̂n−1))

= ω̂kω̂n

[
Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1, 1))

− Ŵt(Ω̇; (1, ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1))
]

+ ω̂k(1− ω̂n)
[
Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1, 0))

− Ŵt(Ω̇; (0, ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1))
]

+ (1− ω̂k)ω̂n

[
Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1, 1))

− Ŵt(Ω̇; (1, ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1))
]

+ (1− ω̂k)(1− ω̂n)
[
Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1, 0))

− Ŵt(Ω̇; (0, ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1))
]

(13)

Let M = {1, · · · , k − 1}. We proceed the proof by
upbounding the four terms in (13).

For the first term, we have

Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1, 1))

− Ŵt(Ω̇; (1, ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1))

=β
∑
E⊆M

ĈEM[
(1−O1)Ŵt+1(Ω̇; (Φ(E), p11,Υ

N−1
k+1 , p11,Ψ(M, E)))

+O1Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p11,Ψ(M, E), p11))

− (1−O1)Ŵt+1(Ω̇; (p11,Φ(E), p11,Υ
N−1
k+1 ,Ψ(M, E)))

−O1Ŵt+1(Ω̇; (Φ(E), p11,Υ
N−1
k+1 , p11,Ψ(M, E)))

]
≤0

where, the inequality follows the induction of Lemma 8.
For the second term, we have

Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1, 0))

− Ŵt(Ω̇; (0, ω̂1, · · · , ω̂k−1, 1, ω̂k+1, · · · , ω̂n−1))

=F (ω̂1, · · · , ω̂k−1, 1)− F (0, ω̂1, · · · , ω̂k−1) + β
∑
E⊆M

ĈEM·[
(1−O1)Ŵt+1(Ω̇; (Φ(E), p11,Υ

N−1
k+1 , p01,Ψ(M, E)))

+O1Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p01,Ψ(M, E), p11))

− (1−O0)Ŵt+1(Ω̇; (p01,Φ(E), p11,Υ
N−1
k+1 ,Ψ(M, E)))

−O0Ŵt+1(Ω̇; (Φ(E), p11,Υ
N−1
k+1 , p01,Ψ(M, E)))

]
=F (ω̂1, · · · , ω̂k−1, 1)− F (0, ω̂1, · · · , ω̂k−1) + β

∑
E⊆M

ĈEM·[
(1−O0)

[
Ŵt+1(Ω̇; (Φ(E), p11,Υ

N−1
k+1 , p01,Ψ(M, E)))

− Ŵt+1(Ω̇; (p01,Φ(E), p11,Υ
N−1
k+1 ,Ψ(M, E)))

]
+O1

[
Ŵt+1(Ω̇; (Φ(E),ΥN−1

k+1 , p01,Ψ(M, E), p11))

− Ŵt+1(Ω̇; (Φ(E), p11,Υ
N−1
k+1 , p01,Ψ(M, E)))

]]

≤∆max + β
∑
E⊆M

ĈEM ·
[
(1−O0)

[
Ŵt+1(Ω̇; (Φ(E), p11,Υ

N−1
k+1 ,Ψ(M, E), p01))

− Ŵt+1(Ω̇; (p01,Φ(E), p11,Υ
N−1
k+1 ,Ψ(M, E)))

]]
≤∆max + β · (1−O0) · 1− p01

O0
∆max

following the induction of Lemma 8–9.
For the third term, we have
Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1, 1))

− Ŵt(Ω̇; (1, ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1))

=F (ω̂1, · · · , ω̂k−1, 0)− F (1, ω̂1, · · · , ω̂k−1) + β
∑
E⊆M

ĈEM·[
(1−O0)Ŵt+1(Ω̇; (Φ(E), p01,Υ

N−1
k+1 , p11,Ψ(M, E)))

+O0Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p11,Ψ(M, E), p01))−

− (1−O1)Ŵt+1(Ω̇; (p11,Φ(E), p01,Υ
N−1
k+1 ,Ψ(M, E)))

−O1Ŵt+1(Ω̇; (Φ(E), p01,Υ
N−1
k+1 , p11,Ψ(M, E)))

]
≤F (ω̂1, · · · , ω̂k−1, 0)− F (1, ω̂1, · · · , ω̂k−1) + β

∑
E⊆M

ĈEM·[
(1−O0)Ŵt+1(Ω̇; (p01, p11,Φ(E),ΥN−1

k+1 ,Ψ(M, E)))

+O0Ŵt+1(Ω̇; (p11,Φ(E),ΥN−1
k+1 ,Ψ(M, E), p01))−

− (1−O1)Ŵt+1(Ω̇; (p01, p11,Φ(E),ΥN−1
k+1 ,Ψ(M, E)))

−O1Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1
k+1 ,Ψ(M, E), p11))

]
≤−∆min + β

∑
E⊆M

ĈEM ·O0·[
Ŵt+1(Ω̇; (p11,Φ(E),ΥN−1

k+1 ,Ψ(M, E), p01))

− (1− O1

O0
)Ŵt+1(Ω̇; (p01, p11,Φ(E),ΥN−1

k+1 ,Ψ(M, E)))

− O1

O0
Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1

k+1 ,Ψ(M, E), p11))
]

≤−∆min + β
∑
E⊆M

ĈEM ·O0 ·
[
(1− O1

O0
)
1− p01

O0
∆max

+
O1

O0
(p11 − p01)∆max

1− [β(1−O1)(p11 − p01)]T−t

1− β(1−O1)(p11 − p01)

]
≤
∑
E⊆M

ĈEM ·
[
−∆min + β ·

[
(1− O1

O0
)(1− p01)∆max

+ ∆max
O1(p11 − p01)

1− (1−O1)(p11 − p01)

]]
≤ 0

where the first two inequalities follow the induction result
of Lemma 8, the third equality follows the induction result
of Lemma 9, the forth inequality is due the condition in
Lemma 10.

For the fourth term, we have
Ŵt(Ω̇; (ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1, 0))

− Ŵt(Ω̇; (0, ω̂1, · · · , ω̂k−1, 0, ω̂k+1, · · · , ω̂n−1))

=β
∑
E⊆M

ĈEM·[
(1−O0)Ŵt+1(Ω̇; (Φ(E), p01,Υ

N−1
k+1 , p01,Ψ(M, E)))
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+O0Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p01,Ψ(M, E), p01))

− (1−O0)Ŵt+1(Ω̇; (p01,Φ(E), p01,Υ
N−1
k+1 ,Ψ(M, E)))

−O0Ŵt+1(Ω̇; (Φ(E), p01,Υ
N−1
k+1 , p01,Ψ(M, E)))

]
≤β

∑
E⊆M

ĈEM·[
(1−O0)Ŵt+1(Ω̇; (Φ(E), p01,Υ

N−1
k+1 ,Ψ(M, E), p01))

+O0Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p01,Ψ(M, E), p01))

− (1−O0)Ŵt+1(Ω̇; (p01,Φ(E), p01,Υ
N−1
k+1 ,Ψ(M, E)))

−O0Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1
k+1 , p01,Ψ(M, E)))

]
≤β · (1−O0) · 1− p01

O0
∆max + β ·O0 ·

1− p01

O0
∆max

=β
1− p01

O0
·∆max

where, the first inequality follows the induction result of
Lemma 8 and the second inequality follows the induction
result of Lemma 9.

Combing the above results of the four terms, we have

Ŵt(Ω̇; (ω̂1, · · · , ω̂N ))− Ŵt(Ω̇; (ω̂N , ω̂1, · · · , ω̂N−1))

≤ω̂k(1− ω̂N ) · [∆max + β · (1−O0) · 1− p01

O0
∆max]

+ (1− ω̂k)(1− ω̂N ) · β 1− p01

O0
∆max

≤ω̂k(1− ω̂N ) · [∆max + (1−O0) · 1− p01

O0
∆max]

+ (1− ω̂k)(1− ω̂N ) · 1− p01

O0
∆max

=∆max
1− ω̂N
O0

[ω̂kO0 + (1− p01)(1− ω̂kO0)]

≤∆max
1− ω̂N
O0

[ω̂kO0 + (1− ω̂kO0)] ≤ 1− ω̂N
O0

∆max

≤1− p01

O0
∆max,

which completes the proof of the Lemma 9.
Finally, We then proceed to prove Lemma 10. To this

end, denote M , {2, · · · , k}, we have

Ŵt(Ω̇; (ω̂1, ω̂2 · · · , ω̂N−1, ω̂N ))

− Ŵt(Ω̇; (ω̂N , ω̂2, · · · , ω̂N−1, ω̂1))

= (ω̂1 − ω̂N )[
Ŵt(Ω̇; (1, ω̂2, · · · , ω̂N−1, 0))− Ŵt(Ω̇; (0, ω̂2, · · · , ω̂N−1, 1))

]
= (ω̂1 − ω̂N )

{
F (1, ω̂2, · · · , ω̂k)− F (0, ω̂2, · · · , ω̂k)

+ β
∑
E⊆M

ĈEM·[
(1−O1)Ŵt+1(Ω̇; (p11,Φ(E),ΥN−1

k+1 , p01,Ψ(M, E)))

+O1Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p01, p11,Ψ(M, E)))

− (1−O0)Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1
k+1 , p11,Ψ(M, E)))

−O0Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p11, p01,Ψ(M, E)))

]}
≤ (ω̂1 − ω̂N )

{
∆max + β

∑
E⊆M

ĈEM·

[
(1−O1)Ŵt+1(Ω̇; (p11,Φ(E),ΥN−1

k+1 , p01,Ψ(M, E)))

+O1Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p01, p11,Ψ(M, E)))

− (1−O0)Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1
k+1 , p11,Ψ(M, E)))

−O0Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p01, p11,Ψ(M, E)))

]}
= (ω̂1 − ω̂N )

{
∆max + β

∑
E⊆M

ĈEM·[
(1−O1)[Ŵt+1(Ω̇; (p11,Φ(E),ΥN−1

k+1 , p01,Ψ(M, E)))

− Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1
k+1 , p11,Ψ(M, E)))]

+ (O0 −O1)[Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1
k+1 , p11,Ψ(M, E)))

− Ŵt+1(Ω̇; (Φ(E),ΥN−1
k+1 , p01, p11,Ψ(M, E)))]

]}
≤ (ω̂1 − ω̂N )

{
∆max + β

∑
E⊆M

ĈEM·[
(1−O1)[Ŵt+1(Ω̇; (p11,Φ(E),ΥN−1

k+1 , p01,Ψ(M, E)))

− Ŵt+1(Ω̇; (Φ(E), p01,Υ
N−1
k+1 , p11,Ψ(M, E)))]

]}
≤ (ω̂1 − ω̂N )

{
∆max + β

∑
E⊆M

ĈEM·[
(1−O1)(Ŵt+1(Ω̇; (p11,Φ(E),ΥN−1

k+1 ,Ψ(M, E), p01))

− Ŵt+1(Ω̇; (p01,Φ(E),ΥN−1
k+1 ,Ψ(M, E), p11)))

]}
≤ (p11 − p01)

[
∆max +

∑
E⊆M

ĈEM · β(1−O1)(p11 − p01)·

1− [β(1−O1)(p11 − p01)]T−t

1− β(1−O1)(p11 − p01)
∆max

]
=
∑
E⊆M

ĈEM ·
[
1 + β(1−O1)(p11 − p01)·

1− [β(1−O1)(p11 − p01)]T−t

1− β(1−O1)(p11 − p01)

]
(p11 − p01)∆max

=
1− [β(1−O1)(p11 − p01)]T−t+1

1− β(1−O1)(p11 − p01)
(p11 − p01)∆max

where the first three inequalities follows the recursive applica-
tion of the induction result of Lemma 8, the fourth inequality
follows the induction result of Lemma 10.

We thus complete the whole process of Lemma 8–10.
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