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Abstract—In this paper, we address the question that
how to design efficient MAC protocols in selfish and non-
cooperative networks, which is crucial in nowadays open
environments. We model the medium access control prob-
lem as a non-cooperative game in which the MAC proto-
col can be regarded as distributed strategy update scheme
approaching the equilibrium point. Under such game the-
oretical framework, three MAC protocols, the aggressive,
conservative and cheat-proof MAC protocol, are then pro-
posed with tunable parameters allowing them to converge
to desired social optimal point. The first two MAC proto-
cols require network participants to follow the rules, while
the cheat-proof MAC protocol can survive the selfish envi-
ronments where nodes are pure self-interested.

Based on our game theoretical analysis, we provide a gen-
eral methodology for designing efficient MAC protocols in
non-cooperative and selfish environments. We believe that
the proposed methodology not only provides a general way
of designing stable and controllable MAC protocols achiev-
ing high performance even in selfish environments, but also
provides a general framework that can be extended to de-
sign efficient protocols in other non-cooperative and selfish
environments.

I. Introduction

Medium Access Control (MAC) is crucial for networks
where the communication medium is shared by network
participants competing for the channel access. Designing
efficient MAC protocols is a challenging task, especially in
wireless environments where channel sensing is much less
effective than in wired medium. IEEE 802.11 DCF (Dis-
tributed Coordination Function), the most popular MAC
protocol for WLANs, uses the exponential backoff (EB)
mechanism where each node doubles its contention win-
dow (CW) upon a collision until CWmax and sets it to the
basic value CWmin upon a successful transmission. This
MAC protocol results in too many collisions and thus leads
to network sub-optimality when the network scales. More-
over, it has short-term fairness problem due to the EB
mechanism applied after the collision.

This motivates us to address the fundamental question
that how to design efficient MAC protocols, what are the
methodology and guidelines to follow? An efficient MAC
protocol should satisfy the following properties: 1) Con-
vergence and stability : the protocol should converge to a
stable equilibrium; 2) Social optimality and fairness: the
converged equilibrium should be network-wide optimal or
at least quasi-optimal and each participant should get a
fair share of payoff at this point.

Besides the above requirements on performance, we pose
another requirement: the survivability of the MAC proto-
col in selfish environments. Nowadays, networks become

more and more open. Hence network participants may be-
have selfishly rather than cooperatively, i.e., they adapt the
strategy that maximizes their own utility, regardless of oth-
ers. Thus we can not implicitly assume all participants act
cooperatively by following the designed protocols. Under
such circumstance, we require an efficient MAC protocol
to be survivable such that it can guide the individual nodes
to operate on the designed equilibrium point even they are
purely self-interested and non-cooperative. In other words,
the MAC protocol consists of a strategy that each selfish
individual node has no incentive to deviate.

We conduct our work using game theory, a powerful tool
to study the interaction among decision makers with con-
flicting objectives. Our motivation of using game theoret-
ical approach rather than global optimization approach is
two-fold: 1) Game theory is a powerful tool to model self-
ish behaviors and their impact on the system performance
in distributed environments with self-interested players; 2)
Game theory can model the features or constraints such as
lack of coordination and network feedback in distributed
environments. In fact in such environments, selfish be-
havior is often much more robust and scalable than any
centralized cooperative control, which is very expensive or
even impossible to implement.

We begin by modelling the medium access control prob-
lem as a non-cooperative game GMAC , where each player
chooses its strategy, the channel access probability, to
maximize its utility function, defined as the difference be-
tween its throughput and transmission cost. In such non-
cooperatives games, a Nash equilibrium (NE) is the strat-
egy profile where no player has incentive to deviate unilat-
erally. The MAC protocol can be viewed as the distributed
strategy update mechanism approaching the NE.

We then conduct an in-depth study on the NE of GMAC .
We find that there always exists a biased NE and that
under certain condition, there also exists a unique non-
biased NE, in which we are specially interested since at
the non-biased NE, the fairness is ensured among players.
However, by studying the network-wide utility on the non-
biased NE and the social optimal point, we find that the
non-biased NE is inefficient. We then propose two pricing
schemes to improve the efficiency of the non-biased NE.
We show that by wisely choosing the pricing factors, the
non-biased NE can be approached to the social optimal
point. We then seek the MAC protocol that can lead the
network to converge to the social optimal point. However,
the convergence is not guaranteed under the best response
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and subgradient control, the two basic dynamic control
mechanisms in game theory.

We thus turn to more sophisticated control mechanisms
under which the game is provably convergent to the so-
cial optimal point. We propose three MAC protocols: ag-
gressive, conservative and cheat-proof MAC protocol. We
show that the proposed MAC protocols have the follow-
ing desirable properties: 1) They consist of nature access
probability update schemes for rational players; 2) They
provide tunable parameters with which one can control
the convergent point of the network; 3) They lead the net-
work to a stable state where both the convergence and
the social optimality are ensured. The aggressive and the
conservative MAC protocol require network participants
to respect their rules. In contrast, the cheat-proof MAC
protocol with the correspondent pricing function based on
observable information is designed such that the channel
access probability update scheme is the best response for
the rational selfish players when maximizing their utility.
Hence no player has incentive to deviate from the cheat-
proof MAC protocol. As a result, the cheat-proof MAC
protocol can survive the selfish environments where play-
ers are purely self-interested and may break any protocol
rules if they can get more payoff than obeying the rules.

Based on our game theoretical analysis, we answer the
posed question by providing the following methodology in
designing efficient MAC protocols in non-cooperative and
selfish environments: 1) choosing a natural channel access
update scheme; 2) configuring the parameters in the chosen
update scheme to ensure that the network converges to the
designed optimal equilibrium under the update scheme; 3)
deriving appropriate pricing functions based on observable
information such that no player has incentive to deviate
from the MAC protocol.

Our main contributions can be summarized as follows:
• We formulate the medium access control as a non-

cooperative game and perform an in-depth analysis on
the game, including the existence, uniqueness, conver-
gence and efficiency of the NE;

• Three MAC protocols, the aggressive, conservative
and cheat-proof MAC protocol, are proposed with
tunable parameters allowing them to converge to de-
sired social optimal point. The first two MAC proto-
cols require network participants to follow the rules,
while the cheat-proof MAC protocol can survive the
non-cooperative and selfish environments.

• Based on our game theoretical analysis, we provide a
general methodology for designing efficient MAC pro-
tocols in non-cooperative and selfish environments.

We believe these contributions are very relevant for the
medium access control design achieving high efficiency and
survivability in selfish and non-cooperative environments.

II. Related Work

Game theory has been employed widely to study the
non-cooperative behaviors at MAC layer. [6] studies
the non-cooperative equilibria of Aloha for heterogeneous
users. [5] studies the stability of multi-packet slotted Aloha

with selfish users and perfect information. [7] shows that
the 802.11 MAC protocol leads to inefficient equilibria if
users configure their packet size and data rate to maximize
their own throughput. [8] shows that the existence of small
population of selfish nodes leads to network collapse. The
authors thus propose a penalizing scheme to prevent the
network from being paralyzed. [2] reverse-engineers binary
exponential backoff algorithm in game theory framework.

In the field of MAC protocol design, much recent work
[10] [11] applies the network utility maximization (NUM)
framework by viewing the network as an optimization
solver and the MAC protocols as distributed algorithms
solving some global network utility maximization problem.
Our work, however, is based on a game theoretical frame-
work under which the medium access control problem is
modeled as a non-cooperative game and the MAC proto-
col is regarded as the distributed strategy update scheme
approaching the equilibrium. We argue that our work is
more suited in selfish non-cooperative environments such
as nowadays open accessed networks where participants are
purely self-interested. [1] also studies the MAC design from
a game theoretical angle. It is focused on modelling a large
class of system-wide quality of services models via utility
functions and deriving distributed contention resolution al-
gorithm based on continuous feedback signal rather than
binary contention signal to approach the NE (may not be
social optimal). In contrast, our work focuses on providing
a methodology on how to design efficient MAC protocols
in selfish environments that can guide the network to a
stable equilibrium which is network-wide optimal and at
which each participant gets a fair share of payoff.

III. System Model

We consider a LAN consisting of a set N = {1,2, · · · ,n}
of nodes sharing the common medium. We base our study
on a general and basic MAC layer model: Time is divided
into synchronized slots. Each node can send one packet in
a slot. If a node i has a new packet to send, it attempts
transmission during the next slot with probability pi called
channel access probability. The channel access probability
pi can be realized via contention window in the case where
a backoff mechanism is implemented such as CSMA. In the
above simple model, we do not assume any collision avoid-
ance or detection mechanism although such mechanisms
may facilitate the MAC protocol design. Built on a basic
MAC layer model without any added functionalities, our
proposed MAC protocols can be implemented in almost all
nowadays network systems, from slotted Aloha to CSMA.

IV. Non-cooperative Medium Access Control
Game

In game theory, the utility function describes the satis-
faction level of the player as the result of their strategies.
In our study, we consider a utility function as follows

Ui = pi

∏

j∈N ,j 6=i

(1− pj)− cipi
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In the above defined utility function, node i gets payoff
1 for a successful frame transmission and no payoff if the
transmission fails due to a collision. On the other hand,
the transmission of a frame also incurs the transmission
cost ci (ci is normalized), e.g., in terms of energy. In this
paper, for the reason of simplicity, we assume that ci = c.
The utility function Ui thus represents the net benefit of a
node i when operating on pi.

We now formulate the medium access control problem
as a non-cooperative game GMAC .

Definition 1: The non-cooperative medium access game
GMAC is a triple (N ,{Ai},{Ui}), whereN is the player set,
Ai is the strategy set of player i, Ui is the utility function
of player i defined previously. Each player i selects its
channel access probability pi ∈ Ai = [0,1] to maximize its
utility Ui. Formally, GMAC is expressed as:

GMAC : max
pi∈Ai

Ui(pi, p−i), i ∈ N

A. Nash Equilibrium Analysis

For non-cooperative games as GMAC , the most impor-
tant concept is the Nash equilibrium (NE), where no player
has incentive to deviate from its current strategy. The NE
can be seen as optimal “agreements” between the oppo-
nents of the game. In the case of the GMAC , we have the
following definition of NE.

Definition 2: A channel access probability vector p∗ =
(p∗1, · · · ,p∗n) is a NE of GMAC if no player can improve its
utility by unilaterally deviating from p∗:

Ui(p∗i , p
∗
−i) ≥ Ui(p′i, p

∗
−i), 0 ≤ p′i ≤ 1, ∀i ∈ N

We use the concept of Pareto-optimality and social wel-
fare optimality to characterize the efficiency of different
strategy profiles.

Definition 3: The strategy profile s is Pareto-optimal if
there does not exist another strategy profile s′ such that
for each player i, it holds that Ui(s′) > Ui(s).

Definition 4: The strategy profile s is social welfare op-
timal if it maximizes the aggregated payoff

∑
i∈N Ui.

Theorem 1 studies the NE of GMAC .
Theorem 1: GNPC admits at least one NE.
Proof: It can be verified that the strategy set of each

player i Ai = [0,1] is a nonempty compact convex subset
of Euclidian space. The utility function Ui is continuous
and concave w.r.t. pi on Ai. Hence, by Theorem 1 in [3],
there exists at least one NE.

Since the utility function Ui is concave, p∗ is either on

the border of the strategy space or satisfies
∂Ui

∂pi
= 0. We

call a NE p∗ a non-biased equilibrium if, for all nodes

i, p∗ satisfies
∂Ui

∂pi
= 0, and biased equilibrium otherwise.

Theorem 2 provides a more in-depth insight on the NE of
GMAC . The proof is straightforward and is omitted here.

Theorem 2: If c≥ 1, then GMAC has only one biased NE
{p∗i = 0} and no non-biased NE; If c < 1, then GMAC has n
biased NE NEi = {p∗i = 1, p∗j = 0(j 6= i)}(i = 1, · · · ,n) and
one non-biased NE {p∗i = 1− c

1
n−1 }.

Remark 1: c≥ 1 is the trivial case where the transmission
cost is so expensive that all players choose to keep silent. If
c < 1, the biased NE corresponds to the situation that one
player captures the channel and others always defer their
transmission. The non-biased NE is the case where each
player gets a fair share of the channel. We are mainly inter-
ested in the non-biased NE in our study and any efficient
MAC protocol should not lead the network to the biased
NE. In the rest of the paper, we focus on the non-trivial
case where c < 1.
Remark 2: We can analyze the non-biased NE from an-
other angle: consider each player has two pure strategies:
transmit or wait. The non-biased NE is thus the mixed
strategy NE of GMAC and such NE is guaranteed to exist.
Remark 3: From an economic point of view, c can
be regarded as the price for player i operating on pi.
The NE is thus the point where the marginal gain
∂pi

∏
j∈N ,j 6=i(1− pj)

∂pi
equals to the price c. From the play-

ers’s point of view, operating at higher pi increases the gain
at the expense of paying more in terms of price. Hence,
to search the NE is actually to seek a compromised point
between the gain and the cost.

V. Inefficiency of the Non-biased NE of GMAC

The non-biased NE discussed in last section provides a
solution where no player can increase its utility any further
through individual effort. A natural question we pose is
that whether the non-biased NE is efficient, i.e., Pareto-
optimal and social welfare optimal. In this section, we
answer this question by comparing the utility at above non-
biased NE and the social welfare optimal point.

Let P̂ = {p̂i} denote the social welfare optimal point
of GMAC maximizing the global network utility

∑
i∈N Ui,

we investigate the fair social welfare optimal point where
p̂i = p̂ for all i ∈N in the following lemma.

Lemma 1: Under the condition that n≥ 2 and 0 < c < 1,
there is a unique fair social welfare optimal point where
p̂i = p̂ for all i ∈N . Moreover, it holds that

1. p̂ is the root of n(1−p)n−1−(n−1)(1−p)n−2−c = 0.
2. 0 < p̂ < 1/n
3. p̂ < p∗i
Proof: It is easy to verify the case where n =

2. We consider the case where n ≥ 3. Let Q(p) =
∂

∑
i∈N Ui({pi = p})

∂p
, by imposing Q(p) = 0, we get

Q(p) = n(1− p)n−1− (n− 1)(1− p)n−2− c = 0. It follows

Q′(p) = −n(n− 1)(1− p)n−2 + (n− 1)(n− 2)(1− p)n−3

Hence Q(p) is monotonously decreasing w.r.t. p in (0,
2
n

)

and monotonously increasing in (
2
n

, 1). Noticing that

Q(1) = −c < 0, Q(
1
n

) = −c < 0 and Q(0) = 1− c > 0, we

obtain that Q(p) = 0 admits a unique solution p̂ ∈ (0,
1
n

).

Moreover, Q(p) < 0 when p ∈ (p̂, 1) and Q(p) > 0 when
p ∈ (0, p̂). Hence, p̂ is the unique maximizer of

∑
i∈N Ui.
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On the other hand, following 0 < c < 1, we have Q(p∗i ) =
(n− 1)c(1− c−

1
n−1 ) < 0. This leads to p∗i > p̂.

Consider the utility function at the non-biased NE p∗,
we have Ui(p∗) = 0 for all player i. Since all players are
self-interested and rational and would never accept a neg-
ative payoff, operating at p∗ actually minimizes both the
individual and network-wide utility. On the other hand,
at P̂, we have

∑
i∈N Ui = n

(
p̂(1− p̂)n−1− cp̂

)
. By ex-

pressing c by p̂, after some mathematic operations, we get∑
i∈N Ui = n(n− 1)(1− p̂)n−2p̂2 > 01.
The non-biased NE is not Pareto optimal either. If all

players switch from the non-biased NE to the social op-
timal point, both the individual and the network utility
increase. This is due to the fact of lack of cooperation
and the incentive to operate at social optimal point. The
following theorem summarizes our result of this section.

Theorem 3: The non-biased NE of GMAC is inefficient,
i.e., neither Pareto-optimal nor social welfare optimal.

Figure 1 and Figure 2 show the non-biased NE and the
social optimal point p̂ as a function of c.
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VI. Non-cooperative Medium Control Access
Game With Pricing

Pricing is a powerful technique in game theory to mo-
tivate selfish players to adopt desirable behaviors. In our
context, we turn to pricing to let the network converge to
the social optimal point. From Lemma 1, at the NE, play-
ers tend to operate at higher pi than the optimal point p̂,
we encourage the players to decrease their pi via pricing
to approach the social optimal point. In this new context,
we develop a non-cooperative game with pricing denoted
by GMACP =

(N , {Ai}, {U ′
i}

)
, where the utility function

U ′
i(·) is defined as U ′

i = Ui + τi(pi), where τi : Ai → R is
the general form of the pricing function. In this paper, we
investigate the following two pricing schemes.

A. Pricing Scheme 1

Motivated by the fact that, at the non-biased NE of
GMAC , players operate at higher pi than the social optimal
case, we impose a linear pricing function τi =−bipi which
is monotonously decreasing w.r.t. pi by setting bi > 0 to
encourage the players to decrease their pi. bipi can be
regarded as extra price to players imposed by the pricing

1 Under our model, when c = 0, we get bp = 1/n, the aggregated
utility becomes the network throughput S. From Lemma 1 we have
S =

P
i∈N Ui = (1−1/n)n−1 < 1/e and limn→∞S = 1/e. The result

is coherent to the traditional performance bound of slotted-Aloha.

policy. The non-cooperative medium access game with this
pricing scheme G1

MACP is thus formally expressed as

G1
MACP : max

0≤pi≤1
U1

i (pi, p−i) = Ui(pi, p−i)− bipi, i ∈ N

We rewrite the utility function as U1
i = pi

∏
j∈N ,j 6=i(1−

pj)− c′pi, where c′ = c+ bi. It can be shown that if c′ < 1,
G1

MACP admits n biased NEs and a unique non-biased NE
{pi = p∗1 = 1− (c′)

1
n−1 }. By imposing p∗1 = p̂, the non-

biased NE coincides to the social optimal point.
Theorem 4: By setting the pricing factor bi = (1 −

p̂)n−1 − c, G1
MACP admits a unique efficient non-biased

NE which is also the social optimal point.
In the analysis of GMAC , we can interpret c as the price

for player i operating on pi. Here in G1
MACP , the above

price becomes c + bi = (1− p̂)n−1. As the price increases,
each player i tends to decrease its pi at the non-biased NE.

Figure 3 and Figure 4 show bi as a function of c (n = 10)
and n (c=0.1).
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B. Pricing Scheme 2

In this pricing scheme, we impose a gain discount on
the utility function. Under this circumstance, U2

i =
dipi

∏
j∈N ,j 6=i(1− pj)− cpi, where di < 1 is the discount-

ing factor applied to discourage players to increase their
pi. The non-cooperative medium access game with this
pricing scheme G2

MACP is formally expressed as

G2
MACP : max

0≤pi≤1
U2

i (pi, p−i) = dipi

∏

j∈N ,j 6=i

(1−pj)− cpi, i ∈ N

For G2
MACP , n biased NEs and a unique non-biased NE

{pi = p∗2 = 1− (
c

di
)

1
n−1 } exist if

c

di
< 1. By imposing p∗2 =

p̂, the non-biased NE coincides to the social optimal point.
Theorem 5: By setting the pricing factor di =

c

(1− p̂)n−1
, G2

MACP admits a unique efficient non-biased

NE which is also the social optimal point.
Figure 5 and Figure 6 show di as a function of c (n = 10)

and n (c=0.2).
Different from the first pricing scheme achieving the

goal by increasing the cost of the transmission from c to
c′, the second pricing scheme attains the same goal by
decreasing the gain of the successful transmission from
pi

∏
j∈N ,j 6=i(1− pj) to dipi

∏
j∈N ,j 6=i(1− pj).
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VII. Approaching the Non-biased NE

Until now, we have studied the NE of GMAC and two
pricing schemes to improve the efficiency of the non-biased
NE. The MAC protocol can be viewed as the distributed
strategy update mechanism to converge to the NE. To
study such game dynamics, we consider the repeated play
of GMAC , and look for update mechanism in which players
repeatedly adjust strategies in response to observations of
other player actions so as to approach the non-biased NE.
In this section, we study the convergence of two basic strat-
egy update mechanisms widely used in game theory: the
best response update and the subgradient update.

A. Best Response Update

In game theory, the simplest strategy update mecha-
nism is best response update: at each iteration, every node
chooses the best response to the actions of all the other
nodes in previous iteration. Mathematically, at iteration
t +1, player i updates its channel access probability as

pt+1
i = r(pt) := argmax

0≤pi≤1
Ui(pi, p

t
−i)

Clearly, if the above dynamic reaches a stable state, this
state is a NE. The convergence to the NE under best re-
sponse update is also guaranteed.

For our medium access game without or with pricing, the
convergence under the best response update is not guar-
anteed. Take GMAC as an example, the best response is

pt+1
i = r(pt) =





1
∏

j∈N ,j 6=i(1− pj) > c

0
∏

j∈N ,j 6=i(1− pj) < c

∀pi ∈ [0,1]
∏

j∈N ,j 6=i(1− pj) = c

Staring by p0
i = 0,∀i ∈N , we have pt

i = 1 if t is even, pt
i = 1

if t is odd. Hence, the best response update of the medium
access games may not converge to the NE.

B. Subgradient Update

An alternative strategy is the subgradient update. Com-
pared to the best response update, subgradient update can
be viewed as the better response update in which every
player adjusts its channel access probability in the gradient
direction suggested by observations of other player actions.
Mathematically, player i updates its strategy according to

pt+1
i = pt

i + λt
i

∂Ui

∂pi

∣∣∣
p=pt

where λt
i > 0 is the stepsize of player i at iteration t. The

subgradient update scheme can be interpreted from an eco-
nomic point of view. If the marginal gain is greater than

contention price c, i.e.,
∂Ui

∂pi

∣∣∣
p=pt

> 0, i increases the ac-

cess probability pi, otherwise, i decreases pi. Since at each
iteration, players update channel access probabilities by a
small amount, they usually experience smooth trajectories.

We take GMAC as an example to study the convergence
to the NE under the above subgradient update scheme.
For GMAC , the subgradient update can be derived as

pt+1
i = pt

i + λt
i


 ∏

j∈N ,j 6=i

(1− pt
j)− c




where the fixed point of the subgraidient update is pi =
1−c

1
n−1 which is also the non-biased NE. Consider a simple

case where n = 2, starting from p0 = (p1, p2) = (1− c +
ε,1− c− ε) where ε is a small positive value, we have pt →
(1,0) as t→ +∞; starting from p0 = (1− c− ε,1− c + ε),
pt → (0, 1) as t → +∞. Hence, the subgradient update
may not converge to the non-biased NE.

VIII. Medium Access Control Design

Given the fact that the two basic update schemes studied
above do not guarantee the convergence to the non-biased
NE in the medium access game with or without pricing,
we investigate more sophisticated medium access control
mechanisms and propose the following three medium ac-
cess control schemes with provable convergence to the de-
sired equilibrium.

A. Medium Access Control Scheme 1: Aggressive Control

The first medium access control scheme is defined as:

pt+1
i = pmax

∏

j∈N ,j 6=i

(1− pt
j) + βpt

i


1−

∏

j∈N ,j 6=i

(1− pt
j)


 (1)

where 0 < pmax < 1, β < 1. One interpretation of the
scheme is that at each iteration player i sets its channel
access probability pi to the maximum value pmax with
probability

∏
j∈N ,j 6=i(1−pt

j) depending on the channel ac-
cess probability of other players in the last iteration, while
reduces pi by a factor β otherwise. If one iteration cor-
responds to one slot, pt+1

i is the expected channel access
probability of the following update scheme based on chan-
nel condition: if the channel is not occupied by other play-
ers during the last slot, then player i sets pi to pmax for
the coming slot; otherwise it reduces pi by β. We refer this
scheme as the aggressive medium access control as players
set their channel access probability to the maximum value
once the channel is not occupied by others.

The following theorem studies the dynamics under the
aggressive medium access control scheme.

Theorem 6: If max
{

(n − 1)pmax, β + (1 −

pmax)n−1

(
(n− 1)pmax

1− pmax
−β

) }
< 1, the update scheme

defined in (1) admits a unique fixed point pf1 = {pf1
i }

and it holds that:1) 0 < pf1
i < pmax; 2) Starting from any
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initial point p0 = {p0
i } where 0 < p0

i < pmax, the iteration
defined by (1) converges to pf1.

Proof: We first show that with any initial point
0 < p0

i < pmax, it holds that 0 < pt
i < pmax, ∀i ∈

N , t > 0. We prove it by showing that if 0 < pt
i <

pmax, t ≥ 0, then 0 < pt+1
i < pmax, ∀i ∈ N . Notic-

ing that 0 < βpt
i < pt

i < pmax, we get 0 < pt+1
i <

pmax

(∏
j∈N ,j 6=i(1− pt

j)+ 1−∏
j∈N ,j 6=i(1− pt

j)
)

= pmax.
We then show that (1) admits a unique fixed point by

using the following lemma concerning the fixed point of a
contraction [4]:

Lemma 2: If the update scheme defined in (1) is a con-
traction, then it admits a unique fixed point; Moreover,
starting from any initial point, the iteration under it con-
verges to the unique fixed point.

The contraction is defined in [4] as follows: let (X,d) be
a metric space, f : X → X is a contraction if there exists
a constant k with 0≤ k < 1 such that

d(f(x), f(y)) ≤ kd(x, y) ∀x, y ∈ X

where d(x,y) = ||x− y||= maxi ||xi− yi||.
The key point to establish the uniqueness of the fixed

point is thus to show the update scheme defined in (1) is
a contraction.

We have

d(f(x),f(y)) = ||f(x)− f(y)||
≤ ||∂f

∂x
||||x− y||= ||∂f

∂x
||d(x,y)

If the Jacobian ||∂f

∂x
|| ≤ k < 1, f is a contraction. In our

context, we show that the update scheme of (1) is a con-
traction by proving ||J ||∞ ≤ k, where J = {Jij} is the Ja-

cobian of the update scheme of (1) defined by Jij =
∂pt+1

i

∂pt
j

.

At iteration t (t≥ 0), we have

Jij =
{

(βpt
i − pmax)

∏
l∈N ,l 6=i,l 6=j(1− pt

l) i 6= j

β(1−∏
l∈N ,l 6=i(1− pt

l)) i = j

Noticing that 0 < βpt
i < pt

i < pmax, we have

||J ||∞ = max
i∈N

∑

j∈N
|Jij |= β(1−

∏

l∈N ,l 6=i

(1− pt
l))

− (βpt
i − pmax)

∑

j∈N ,j 6=i

∏

l∈N ,l 6=i,l 6=j

(1− pt
l)

< β(1−
∏

l∈N ,l 6=i

(1− pt
l))+ pmax

∑

j∈N ,j 6=i

∏

l∈N ,l 6=i,l 6=j

(1− pt
l)

= β +
∏

l∈N ,l 6=i

(1− pt
l)


pmax

∑

l∈N ,l 6=i

1
1− pt

l

−β




Let pt = {pt
i}, Q(pt) = β +

∏

l∈N ,l 6=i

(1 −

pt
l)


pmax

∑

l∈N ,l 6=i

1
1− pt

l

−β


, we bound Q(pt) by

Qmax. To this end, we rewrite Q as

Q(pt
j) = β +

∏

l∈N ,l 6=i,l 6=j

(1− pt
l) ∗





pmax

∑

l∈N ,l 6=i,l 6=j

1
1− pt

l

−β


(1− pt

j)+ pmax




It follows that Q attains Qmax when pt
j = 0 or pt

j = pmax.
Performing the same analysis for all j ∈ N , we show that
Q attains Qmax at the border of the strategy space. Let
N(0≤N ≤ n−1) be the number of players with the access
probability pmax at Qmax, it follows that

Q(N) = β+(1−pmax)N

(
pmax

(
N

1− pmax
+ n− 1−N

)
− β

)

Imposing
∂Q

∂N
= 0, we obtain

pmax

1− pmax
N2 +

(
n− β

pmax

)
N − (1− pmax) = 0

We can further verify that
∂Q

∂N
= 0 at N0 =

−
(
n− β

pmax

)
+

√(
β

pmax

)2

+4pmax

2pmax

(1−pmax)

, If 0 ≤ N0 ≤ n − 1,

∂Q

∂N
< 0 in [0, N0),

∂Q

∂N
> 0 in (N0, n − 1]. Hence Q

is minimized at N = N0 and maximized at N = 0 or
N = n− 1. If N0 < 0 or N0 > n− 1, Q has no local max-
imizer in (0, n− 1) and attains its maximum at border.
In both cases, we have Qmax = max

{
Q(0),Q(n− 1)

}
=

max
{

(n−1)pmax,β +(1−pmax)n−1

(
(n− 1)pmax

1− pmax
−β

)}

Let k = max
{

(n − 1)pmax, β + (1 −

pmax)n−1

(
(n− 1)pmax

1− pmax
−β

) }
, if the condition in

the theorem holds, i.e., k < 1, we have ||J ||∞ ≤ k < 1.
The update defined in (1) is a contraction. It admits
a unique fixed point and the update converges to the
fixed point, i.e., lim

t→∞
pt

i = pf1
i . Since we have shown that

0 < pt
i < pmax, we have 0 < pf1

i < pmax. This concludes
our proof.

Recall that our goal of the medium access control de-
sign is to encourage the players to operate stably at the
social optimal point, to this end, we impose p̂ = pf1

i . The
following theorem is immediate.

Theorem 7: Under the condition of Theorem 6, by tun-
ing β and pmax such that p̂ = pf1

i , or p̂ = pmax(1− p̂)n−1 +
βp̂

(
1− (1− p̂)n−1

)
, the proposed aggressive medium con-

trol scheme is convergent to the social optimal point, which
is also the non-biased NE of the medium access game with
pricing.

Theorem 6 and Theorem 7 provide guidelines for choos-
ing parameters for aggressive MAC scheme. From The-
orem 6, we can see that small pmax and large β help the
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network operate at a stable point. Theorem 7 further quan-
tifies pmax and β to approach the stable convergent point
to the social optimal point. As an example, if n is large
((1− 1

n )n−1 ∼ 1
e ), c → 0, then pmax = 1

n + ε where ε is a
positive small number, e.g. ε = O(n−2), β = 1− nε

(e−1) is a
possible setting.

B. Medium Access Control Scheme 2:Conservative Control

In this section, we propose a more conservative medium
access control scheme defined as:

pt+1
i = pt

if(pt
i)

∏

j∈N ,j 6=i

(1− pt
j)+ pmin


1−

∏

j∈N ,j 6=i

(1− pt
j)


(2)

where f(pt
i) = 1+

pmax− pt
i

pmax− pmin
δ, 0 < pmin < pmax < 1, 0 <

δ ≤ pmax− pmin

pmax
. We pose the above constraint of δ to en-

sure that with any pmin ≤ pt
i ≤ pmax, it holds that pmin ≤

pt
if(pt

i) ≤ pmax. One interpretation of the above update
scheme is that at each iteration player i sets pi to the min-
imum value pmin with probability 1−∏

j∈N ,j 6=i(1− pt
j),

while increases pi by a factor f(pt
i) otherwise. f(pt

i) is spe-
cially designed such that f(pt

i) = 1 + δ at pmin, f(pt
i) = 1

at pmax, 1 < f(pt
i) < 1 + δ and is linearly decreasing w.r.t.

pt
i in (pmin,pmax). The increasing factor is thus adaptable

based on the current channel access probability pt
i. If one

iteration consists of one slot, pt+1
i becomes the expected

channel access probability of the following update scheme:
if the channel is occupied by other players during the last
slot, then i sets pi to pmin for the coming slot; otherwise
it increase pi by 1 + δ. We refer this scheme as the con-
servative medium access control as players set the channel
access probability to the minimum value once the channel
is sensed occupied by others.

We next investigate the dynamics under the above con-
servative medium access control scheme.

Theorem 8: If 0 < δ ≤ pmax− pmin

pmax
and (n− 1)(pmax−

pmin)(1− pmin)n−2 +
(

1− pmaxδ

pmax− pmin

)
(1− pmin)n−1 <

1, the update scheme defined in (2) admits a unique fixed
point pf2 = {pf2

i } and it holds that:1) pmin < pf2
i < pmax;

2) Starting from any initial point p0 where pmin < p0
i <

pmax, the iteration defined by (2) converges to pf2.
Proof: We follow the same way as the proof of Theorem

6 by showing that the Jacobian for (2) ||J ′||∞ ≤ k′ < 1. To
this end, we compute J ′ij as

Jij =





(
pmin− pt

i

(
1 + δ

pmax− pt
i

pmax− pmin

))

×
∏

l∈N ,l 6=i,l 6=j

(1− pt
l) i 6= j

(
1+ δ

pmax− 2pt
i

pmax− pmin

) ∏

l∈N ,l 6=i

(1− pt
l) i = j

Noticing that 0 < δ ≤ pmax− pmin

pmax
, we can show that

||J ′||∞ = maxi∈N
∑

j∈N Jij is maximized at pt
i = pmax,

pt
j = pmin for j 6= i, we thus have

||J ′||∞ ≤ (n− 1)(pmax− pmin)(1− pmin)n−2 +(
1− pmaxδ

pmax− pmin

)
(1− pmin)n−1

If the condition in the theorem holds, i.e., k′ = (n−
1)(pmax − pmin)(1 − pmin)n−2 +

(
1− pmaxδ

pmax− pmin

)
(1 −

pmin)n−1 < 1, ||J ′||∞ ≤ k′ < 1. (2) is a contraction. Both
the uniqueness of the fixed point and the convergence are
guaranteed. It is further easy to show that the fixed point
pmin < pf2

i < pmax.
We then study the convergence of the conservative

medium access control to the social optimal point.
Theorem 9: Under the condition of Theorem 8, by tun-

ing δ, pmax and pmin such that p̂ = pf2
i , or p̂ = p̂f(p̂)(1−

p̂)n−1 + pmin

(
1− (1− p̂)n−1

)
, the conservative medium

control scheme is convergent to the social optimal point.

C. Medium Access Control Scheme 3: Cheat-proof Control

The above MAC protocols have following desirable prop-
erties: 1) they consist of natural access probability update
schemes for rational players; 2) they provide tunable pa-
rameters with which one can control the convergent point
of the network; 3) they lead the network to a stable state
where both fairness and social optimality are ensured;

The above MAC protocols meet the requirements for
efficient MAC protocols in terms of performance. How-
ever, they both require network participants to respect
the rules. Hence, they cannot survive selfish and non-
cooperative environments because in such environments,
players only adopt strategies that bring the most benefits
to them, regardless of the fact that the adopted strategy
leads to social optimality or not. In such environments, we
can not implicitly assume that all participants act cooper-
atively by following the designed MAC protocols. Under
such circumstance, we require an efficient MAC protocol to
be survivable such that it can guide the individual nodes to
operate on the designed optimal equilibrium even they are
purely self-interested and non-cooperative. In other words,
the MAC protocol consists of a set of strategies that each
selfish individual node has no incentive to deviate.

To this end, we apply the pricing technique again. On
one hand, the pricing scheme approaches the non-biased
NE to the social optimal point; on the other hand, the pric-
ing scheme encourages the individual selfish players to fol-
low the MAC protocol. In the following part of this section,
we propose the cheat-proof MAC protocol. The above de-
sirable properties are maintained in the cheat-proof MAC
protocol. Moreover, the imposed pricing function can en-
courage the players to follow the proposed protocol.

The channel access probability update scheme in the
cheat-proof MAC protocol is defined as

pt+1
i = pmax

∏

j∈N ,j 6=i

(1− pt
j)+ pmin


1−

∏

j∈N ,j 6=i

(1− pt
j)


 (3)
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One interpretation of the above update scheme is that at
each iteration player i sets its access probability pi to pmax

with probability
∏

j∈N ,j 6=i(1− pt
j) and pmin otherwise. If

one iteration corresponds to one slot, pt
i becomes the ex-

pected channel access probability of the following update
scheme: if the channel is occupied by other players during
the last slot, then player i sets pi to pmin for the coming
slot; otherwise it sets pi to pmax. In this scheme, pt+1

i is
decoupled with pt

i, which is a necessary condition for the
following demonstration.

(3) can not only be regarded as the update scheme
for the channel access probability, but also be viewed as
the strategy update that implicitly maximizes some utility
function, as studied in the following theorem.

Theorem 10: Regard (3) as the best response function
for each player i ∈N at each iteration, the underlying util-
ity function that each player tries to maximize is

UC
i = −

(
pi − pmin − (pmax − pmin)

∏

j∈N ,j 6=i

(1− pj)
)2

+ C

where C > max
{(

pmax − pmin − (pmax − pmin)(1 −
pmax)n−1

)2

,
(
(pmax−pmin)(1−pmin)n−1

)2}
is a constant

large enough to avoid the negative utility value.
Proof: The proof is straightforward noticing (3) can be

written as pt+1
i = pmin +(pmax− pmin)

∏

j∈N ,j 6=i

(1− pt
j)

Recall that in GMAC , the utility function Ui is

Ui = pi

∏

j∈N ,j 6=i

(1− pj)− cpi

We impose the following pricing function

τi(pi) = UC
i −Ui

= −(pi− pmin− (pmax− pmin)
∏

j∈N ,j 6=i

(1− pj))2

+ C − pi

∏

j∈N ,j 6=i

(1− pj)− cpi

Next we define the non-cooperative game with the above
pricing function as

GC
MACP : max

0≤pi≤1
UC

i (pi, p−i), i ∈ N

The above proposed MAC scheme with pricing is cheat-
proof in that the access probability update scheme cor-
responds to the best response strategy of GC

MAC , thus a
rational player will follow (3) to maximize its payoff.

The following theorem establishes the existence, unique-
ness of the NE in GC

MACP and the convergence to the
unique NE under the cheat-proof MAC scheme.

Theorem 11: Under the condition that (n− 1)(pmax −
pmin)(1 − pmin)n−1 < 1, GC

MACP admits a unique NE.
Starting from any initial point p0, the cheat-proof MAC
scheme is convergent to the unique NE.

Proof: We use the following theorem in game theory
concerning the uniqueness of NE [4]:

Lemma 3: If the best response function is a contraction,
then the game admits a unique NE; Moreover, starting
from any initial point, the iteration under the best response
converges to the unique NE.

The above lemma shows that actually the NE consists
of the fixed point of the best response function.

We now prove that the update scheme (3) is a contrac-
tion. This can be shown by noticing that

JC
ij =

{ −(pmax− pmin)
∏

j∈N ,j 6=i(1− pt
j) i 6= j

0 i = j

||J ||C∞ = (n− 1)(pmax− pmin)
∏

j∈N ,j 6=i

(1− pt
j)

≤ (n− 1)(pmax− pmin)(1− pmin)n−1 < 1

Thus (3) is a contraction. The theorem is proven
Furthermore, if the condition in Theorem 11 is satisfied,

let pC = {pC
i } be the unique NE, we can show that pmin <

pC
i < pmax. The following theorem studies the efficiency of

the unique NE of GC
MAC .

Theorem 12: If p̂ = pmin +(pmax− pmin)(1− p̂)n−1, the
unique NE is efficient, i.e., pC

i = p̂.
Theorem 11 and 12 provide sufficient condition on the

convergence to the NE under (3), which can be regarded as
the best response update. One draw back is that the best
response update often leads to large fluctuations that may
cause temporary system instability. We address this issue
by studying the subgradient update in GC

MACP . By set-
ting the step size sufficiently small, the subgradient update
scheme experiences a smooth trajectory. Theorem 13 gives
the sufficient condition on the convergence of the subgra-
dient update to the NE of GC

MACP . The proof follows the
similar way as that of Theorem 6 and is omitted here.

Theorem 13: Consider the subgradient update for cheat-
proof MAC scheme defined as

pt+1
i = pt

i +λ
∂UC

i

∂pi

= pt
i − 2λ


pt

i − pmin− (pmax− pmin)
∏

j∈N ,j 6=i

(1− pt
j)




under the same condition as Theorem 12, the subgradient
update scheme converges to the unique NE.

The above subgradient update scheme is actually a mild
version of the cheat-proof MAC scheme in (3). By con-
trolling the step size λ, players experience less variation
in their strategies than the best response update (3). The
system is thus more stable. As price, the convergence delay
increases.

D. Implementation Issues

In the practical implementation of the proposed MAC
protocols, players usually do not have access to the ac-
cess probability of others, so they can not directly cal-
culate

∏
j∈N ,j 6=i(1 − pt

j) which is needed to update pt
i.
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To solve this problem, we apply the Idle Sense approach
proposed in [9] allowing a player to estimate the chan-
nel condition by observing the average number of consec-
utive idle slots between two transmission attempts. Let
P t

idle =
∏

j∈N (1− pt
j) be the probability of an idle slot

and nt
idle be the number of average consecutive idle slots

between two transmission attempts during iteration t, it

holds that nt
idle =

P t
idle

1−P t
idle

. It follows that
∏

j∈N ,j 6=i

(1−

pt
j) =

nt
idle

nt
idle + 1

· 1
1− pt

i

. Thus each player i can update pt
i

by observing nt
idle. Another desirable feature of using Idle

Sense approach is that our MAC protocols decouple ac-
cess control from collision perception, thus are immune to
problems incurred by packet collision perception.

Algorithm 1 shows the derived cheat-proof MAC proto-
col. The aggressive and conservative MAC protocols can
be derived similarly. In the protocol, a transmission corre-
sponds to an occupied channel slot when only one player
transmits (a successful transmission) or multiple players
transmit simultaneously (a collision).

Algorithm 1 Cheat proof MAC Protocol

After each transmission do
sum ← sum + n, ntrans ← ntrans + 1 /* Idle
sense: the player observes n idle slots
before the transmission */
if ntrans≥ ntransmax then

nt
idle ←

sum

ntrans
/* estimate nt

idle */

pt+1
i ← pmin + (pmax − pmin)

nt
idle

nt
idle +1

· 1
1− pt

i

/*

update pi */
sum← 0, ntrans← 0 /* reset variables */

end if
end

In our work, we do not address how to realize the pricing,
which is not trivial at all. An appropriate pricing scheme
in our context should be distributed and cheat-proof in
case where players may provide forged information to get
extra gain. In previous part of this section, we have shown
how to estimate

∏
j∈N ,j 6=i(1− pt

j) based on nt
idle, which is

observable to all players. Next we provide a mechanism to
estimate pt

i based on only observable information. This is
a crucial issue to implement any pricing scheme.

The mechanism is extended from the Idle Sense ap-
proach. Let P t

idle,i =
∏

j∈N ,j 6=i(1− pt
j) and nt

idle,i be the
number of average consecutive idle slots between two “i-
transmissions” during iteration t, where “i-transmission”
corresponds to an occupied channel slot when only one
player except i transmits or multiple players transmit si-
multaneously. P t

idle,i is in fact the probability of the slot

with no “i-transmission”. It holds that nt
idle,i =

Pidle,i

1−Pidle,i
.

It follows that pt
i = 1− Pidle

Pidle,i
=

nt
idle,i−nt

idle

nt
idle,i(1+ nt

idle)
. Hence,

pt
i can be estimated based on nt

idle which is observable to
all players, and nt

idle,i which is observable to all players ex-
cept i (i knows pt

i). By employing the above mechanism,
the pricing scheme can be realized in a distributed and
cheat-proof way based on only observable information.

E. Methodology for Efficient MAC Protocol Design

Based on the analysis on the medium access game and
the three proposed MAC protocols, we introduce the fol-
lowing methodology for designing efficient MAC protocols
for non-cooperative and selfish environments:

1. Choosing a natural channel access update scheme;
2. Configuring the parameters in the chosen update

scheme to ensure that the network converges to the
global optimal point under the update scheme;

3. Deriving appropriate pricing functions based on ob-
servable information such that no player has incentive
to deviate from the designed MAC protocol.

We believe that the proposed methodology not only pro-
vides a general way of designing stable and controllable
MAC protocols achieving high performance even in self-
ish environments, but also provides a general framework
that can be extended to design efficient protocols in other
non-cooperative and selfish environments.

IX. Numerical Results

In this section, we provide numerical results on the per-
formance of the proposed MAC protocols. First, we con-
sider a network of 10 nodes. We set c = 0.25, ntransmax =
10. We calculate the social optimal point to be p̂ = 0.058.
Based on Theorem 6 and Theorem 7, we set pmax = 0.08,
β = 0.33. The correspondent aggressive MAC protocol
leads the network to the social optimal point. Simi-
larly, for the conservative MAC protocol, we set δ = 0.133,
pmax = 0.08, pmin = 0.05. For the cheat-proof MAC pro-
tocol, we set pmin = 0.001 and pmax = 0.105. Under these
parameter settings, based on our analytical model, the net-
work converges to the social optimal point under the pro-
posed three MAC protocols. This is confirmed by the nu-
merical result shown in Figure 7-9, which plot the channel
access probability trajectories of each player. Figure 10
plots the trajectories of the access probability under sub-
gradient update, a mild version of the cheat-proof MAC
protocol. The trajectory converges in a smoother way with
longer convergence delay.
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Fig. 7. Aggressive MAC
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Fig. 8. Conservative MAC

We then focus on the cheat-proof MAC protocol. In the
protocol implementation, the number of network partici-
pants n is required to configure the protocol parameters.
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Fig. 9. Cheat-proof MAC

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  50  100  150  200ch
an

ne
l a

cc
es

s 
pr

ob
ab

ili
ty

iteration

Fig. 10. Cheat-proof MAC: mild
version

We now study the impact of the estimation error of n on
the protocol performance by allowing certain estimation
error on n and studying the performance under such esti-
mation error. Figure 11 plots Uact/Uopt under estimation
error 10%−50%, where Uact is the actual global utility with
estimation error, Uopt is the optimal global utility without
error. We can see that our protocol is quite robust in
that the global utility does not degrade dramatically w.r.t.
the estimation error of n, even when the estimation error
reaches 50%. This is a disable feature when running the
protocol in dynamical environments.
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Fig. 11. Cheat-proof MAC: perfor-
mance with estimation error of n
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Finally, we compare the performance of our protocol
with the EB based MAC protocol widely employed in
nowadays WLANs. We set n = 50, c = 0.01. Since the
performance of the EB protocol highly depends on pmax

and pmin, we simulate the EB protocol with different pmax

and pmin values and plot the maximum aggregated util-
ity with the aggregated utility achieved by the cheat-proof
protocol in Figure 12. We also compares the fairness of the
two protocols by plotting the normalized Jain fairness in-
dex [12] in Figure 13. We can see that our protocol achieves
higher utility with better short-term fairness. The result
is due to the fact that the EB protocol relies on an in-
efficient collision resolution mechanism which causes both
network sub-optimality on performance and the short-term
fairness problem. However, the cheat-proof MAC protocol
decouples the access control from collision perception and
players have much less variation in channel access prob-
ability around the social optimal point. Hence it is not
surprising that the proposed MAC protocol outperforms
the EB protocol in both performance and fairness.

X. Conclusion and Future Work

In this paper, we address the question that how to de-
sign efficient MAC protocols in selfish and non-cooperative
networks, which is crucial in nowadays open environments.
To this end, we conduct an in-depth study on the medium

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

Ja
in

 in
de

x

normalized window size

cheat-proof MAC
exponential backoff

Fig. 13. Fairness comparison

access control under game theoretical framework. Three
MAC protocols, the aggressive, the conservative and the
cheat-proof MAC protocols, are then proposed with tun-
able parameters allowing them to converge to desired op-
timal point. The first two MAC protocols require network
participants to follow the rules, while the cheat-proof MAC
protocol can survive the selfish environments where nodes
are purely self-interested.

Based on our game theoretical analysis, we provide a
general methodology for designing efficient MAC protocols
for non-cooperative and selfish environments. We believe
that the proposed methodology not only provides a general
way of designing stable and controllable MAC protocols
achieving high performance even in selfish environments,
but also provides a general framework that can be extended
to design efficient protocols in other non-cooperative and
selfish environments.

As future work, we plan to develop a general practical
pricing scheme to guide selfish players act cooperatively.
Another direction is to apply the methodology proposed
in this paper to the network and transport layers.
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