
Charge Me If You Can: Charging Path Optimization and
Scheduling in Mobile Networks

Lin Chen
LRI-CNRS UMR 8623

Univ. Paris-Sud
chen@lri.fr

Shan Lin
Dpt. Elec. Comp. Eng.

Stony Brook Univ.
shan.x.ling@stonybrook.edu

Hua Huang
Dpt. Elec. Comp. Eng.

Stony Brook Univ.
hua.huang@stonybrook.edu

ABSTRACT

We study a class of generic optimization problems on charger
scheduling and charging path planing. These problems arise
from emerging networking applications where mobile charg-
ers are dispatched to deliver energy to mobile agents (e.g.,
robots, drones, and vehicles), which have specified tasks
and mobility patterns. We instantiate our work by focus-
ing on finding the charging path maximizing the number of
nodes charged within a fixed time horizon. We prove that
this problem is APX-hard. By recursively decomposing the
problem into sub-problems of searching sub-paths, we de-
sign a quasi-polynomial time algorithm that achieves poly-
logarithmic approximation to the optimum charging path.
Our approximation algorithm can be further adapted and
extended to solve a variety of charging path optimization
and scheduling problems with realistic constraints, such as
limited time and energy budget.

CCS Concepts

•Networks → Network control algorithms; •Theory
of computation → Scheduling algorithms;

Keywords

Mobile charger scheduling; Mobile wireless networks; Ap-
proximation algorithm

1. INTRODUCTION
In many emerging applications such as first responder, in-

frastructure monitoring, and scientific exploration, battery-
powered mobile agents (e.g., sensors [1], robots [2], drones [3],
and vehicles [4]) usually have specified tasks and mobil-
ity patterns [5]. To supply energy to these agents, mobile
chargers are dispatched to visit these agents, which can sig-
nificantly prolong the lifetime of mobile nodes. However,
as the mobile charger only deliver energy to a target node
when it encounters the node (or close to the node if wire-
less charging is used), inefficient path planning may incur

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiHoc’16, July 04-08, 2016, Paderborn, Germany

c© 2016 ACM. ISBN 978-1-4503-4184-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2942358.2942364

long latency to pursue target nodes, result in dead nodes or
even task failures. Therefore, optimizing the trajectory of
the mobile charger is a primary concern for maintaining the
operation of these systems.

In this paper, we focus on the path optimization and
charger scheduling problems with mobile nodes in mobile
charging applications. To make our analysis generic and
widely applicable, we do not impose any constraint on the
mobility patterns of nodes, i.e., the trajectory of any node
can be a curve of any form. We formulate a class of generic
path optimization problems and concentrate on the prob-
lem of maximizing the number of nodes charged within a
fixed time horizon. Our framework allows a variety of path
optimization problems to be formulated with realistic con-
straints, such as limited time and energy budget. We prove
that these problems are either NP-hard or APX-hard. We
design a quasi-polynomial time algorithm that achieves poly-
logarithmic approximation to the optimum charging path.
The core technicality of our design is a recursive algorithm
that decomposes the problem into sub-problems of search-
ing sub-paths. We also demonstrate how our approximation
algorithm can be adapted and extended to solve other charg-
ing path optimization and scheduling problems.

Despite our focus on mobile charging, the generic formu-
lation of the problem makes our analysis methodology and
obtained results applicable to a wide range of related prob-
lems such as data mule scheduling, package delivery, target
monitoring, and security patrolling. These problems have
a common generic objective of designing an optimum path
and the corresponding scheduling that maximise the num-
ber of encountered targets under a given budget in terms
of time or energy, or minimizes the cost of encountering a
given minimum number of targets.

The rest of the paper is organized as follows. We review
the literature in Section 2. We formulate the charging path
optimization problem in Section 3 and establish its APX-
hardness. In Section 4, we present our approximation algo-
rithm and analyze its performance. Section 5 discusses rele-
vant extensions and variants of our work. Section 6 presents
the simulation results. Section 7 concludes the paper.

2. RELATED WORK
The problem we address and the methodology we employ

are related to the following research fields.

2.1 Path Optimization in Vehicular Routing
and Data Ferry Assisted Data Harvesting

There have been a significant amount of research works

on the Vehicular Routing Problem (VRP) [6]. In general,
the VRP seeks to optimise the routing decisions of a sin-
gle or fleet of vehicles to deliver goods to specified locations
according to demand requirements and other specified con-
straints. The VRP has many variants based on the appli-
cation scenarios and constraints. Some recent papers deal
with optimizations with dynamism [7,8], uncertainty [9], and
many real-life constraints [10, 11]. These works provide a
rich foundation for related algorithmic research. However,
it is commonly assumed in these works that the targets are
stationary and the vehicle travels through a set of fixed lo-
cations.

Another related problem is path optimization in data ferry
assisted data harvesting [12–15] (cf. [16] for a comprehen-
sive survey), where a data ferry (e.g., robot, vehicle) travels
across the sensor field and harvests data from sensor nodes.
Again, existing works focus on finding the optimum path
of minimum length in the setting where sensor nodes are
stationary.

2.2 Mobile Charger Scheduling
The mobile charger scheduling problem [17–19] seeks paths

for mobile chargers (e.g., mobile robots) to replenish batter-
ies for sensor networks. Many variants are studied by intro-
ducing different optimization goals, application scenarios,
and constraints. For example, the authors of [20] consider
collaborate mobile charger scheduling, where different mo-
bile chargers can recharge each other so that the chargers
can cover a larger area. In [21], the authors assume that
the charging time for sensor nodes is much longer than the
mobile charger’s traveling time. Their goal is to maximize
the timespan that all sensor nodes are alive. In [22], the
authors assume that the charger can recharge all the sensor
nodes lying within a distance through wireless power trans-
fer. Their goal is to find a charging path and stopping points
to minimize the charging time. In a recent paper [23], the
authors consider the power heterogeneity of sensor nodes.
They divide sensor nodes into groups, and apply the TSP
algorithms to recharge nodes within each group. In [24], the
problem of ensuring monitoring quality for stochastic events
is studied. When the traveling time of the mobile charger is
ignored, this problem can be reformulated as a sub-modular
problem. A polynomial time algorithm with constant time
approximation ratio is then developed.

Existing works on mobile charger scheduling all assume
that the nodes are fixed in locations. In contrast, we study a
more generic and practical scenario of moving target nodes,
and develop a quasi-polynomial time scheduling algorithm
that achieves poly-logarithmic approximation.

2.3 Traveling Salesman Problem and
Orienteering Problem

The Traveling Salesman Problem (TSP) is a class of com-
binatorial optimization problems which have been exten-
sively studied. Many approximation algorithms have been
proposed [25, 26]. A relevant extension to the TSP is the
deadline-TSP or the TSP with time window, where each
node can be visited only within a time interval [27–30].

In [28] and [29], the authors study the Max-Prize Path
problem, also referred to as the Orienteering problem, where
the goal is to visits as many nodes as possible, but only be-
fore a hard time deadline D. The APX-hardness of the Ori-
enteering problem can be shown via reduction from the TSP

on bounded metrics which is APX-hard [31]. For the Orien-
teering problem on undirected graphs, the best approxima-
tion ratio in the literature is 2+ ǫ [32]. For the Orienteering
problem on directed graphs, the best approximation ratio is
O(log2 OPT) [32].

Our paper can be regarded as a non-trivial extension of the
Orienteering problem in a more generic case where nodes are
are mobile. In this regard, only [33] has considered the TSP
with moving nodes by designing a (1 + α)-approximation
algorithm, where α denotes the approximation ratio of the
TSP heuristic. However, the algorithm developed in [33]
only works when the number of moving targets is sufficiently
small. In contrast, we address the generic case even when
the network scales. We would like to emphasize that the
analysis method of the classic TSP and the (directed) Ori-
enteering problems where the heuristic path is formed by
joining several trees cannot be applied in our problem as
the resulting path may not be feasible when nodes are mo-
bile. Therefore, an original study is called for which cannot
draw on existing results.

3. SYSTEM MODEL AND PROBLEM

FORMULATION

3.1 Network Model
We consider a network composed of n mobile nodes (e.g.,

robots, sensors, drones), denoted by the set V , {vi}
n
i=1,

deployed over a 2-D Euclidean plan. Nodes are battery-
powered and thus need to be recharged periodically. To
perform the charging task a mobile wireless charging vehicle,
referred to as charger for short, travels from a starting point,
denoted by a virtual node s, then visits a number of nodes to
charge them before returning to a terminal point, denoted
by t. If the charger needs to return to the starting point, t
coincides with s, and the charging path becomes a tour. A
node remains stationary when being charged.

The novel challenge we address, w.r.t. the state-of-the-art
works, is that both the charger and the nodes are mobile.
We denote vi(t) (1 ≤ i ≤ n) the position of node vi at time
t. We assume the mobility pattern of the nodes (i.e., their
moving trajectories vi(t)) are known to the charger and leave
the unknown or partially known mobility case for future
research. We denote ri the upper-bound of the moving speed
of vi and rs the moving speed of the charger. We assume
that rs > ri, ∀i ∈ [1, n] which holds in typical mobile sensing
applications. We denote P ∈ P the charging path followed
by the charger, where P denotes the set of all possible paths.
To make our analysis generic and widely applicable, we do
not impose any constraint on the mobility patterns of nodes,
i.e., the trajectory of any node can be a curve of any form.
Table 1 lists the major notations used in the paper. The
example in Figure 1 further illustrates our network model.

Example 1. Consider the network illustrated in Figure 1
composed of three nodes v1, v2, v3. v1 is stationary. v2 and
v3 are mobile with their trajectories illustrated in the figure.
Charging is immediate at any node. By following the path
P , the charger can charge v1, v2 and v3 at time 1, 2 and 3.

3.2 Optimum Charging Path Design
We consider a class of charging path optimization and

scheduling problems including (but not limited to) the fol-
lowing:

Table 1: Notations
Section 3: System Model and Problem Formulation

V Set of nodes in the network
n Number of nodes in the network
vi Node i

vi(t) Position of node i at time t

s Starting point of the charger
t Terminal point of the charger

rs Moving speed of the charger
ri Upper-bound of moving speed of vi
P Possible charging path set

d(P) Euclidean length of path P

ts(p) Sojourn time of the charger at p
without charging

Λ(P) Set of nodes charged on path P

Γ(P) Timespan of path P

fi(t) Charging level of node vi as a function of
charging time t

gi(x) Inverse function of fi(t): gi(x) = f−1
i (t)

α Required charging level
B Maximum charging path timespan
Section 4: Approximation Algorithm Design

∆t Time stepsize
Gd Discretized graph with node set V (Gd) and

edge set E(Gd)
nd Number of nodes in Gd: nd = |V (Gd)|

cd(e) Cost of edge e in Gd

λ Scaling factor in edge cost rounding
ǫ(λ) Relative error under rounding factor λ
C(v) Set of nodes in the same clique of v
Vv

−
Set of nodes in Gd to which there exists
an edge from v

Vv+ Set of nodes in Gd from which there exists
an edge to v

L Maximum recursion level in Alg. 1

• The charger has a fixed time budget for the charging
journey and aims at charging the maximum number of
nodes in one journey;

• The charger has a battery reservoir and aims at charg-
ing the maximum number of nodes before returning to
its service station to replenish itself;

• The charger has a fixed number of M ≤ n nodes to
charge and aims at minimizing the total charging time;

• The charger needs to charge all nodes within a charging
journey and seeks the charging path minimizing the
energy consumption or the total time.

The above problems can be classified into two categories:
• The charger has a certain budget (e.g., in terms of

time, energy) and it seeks a path to maximise the num-
ber of nodes it can charge within the given budget;

• The charger has a number of nodes to charge and it
seeks a path of minimum cost (e.g. in terms of time,
energy consumption) to accomplish the charging task.

Our work establishes a generic framework on the charging
path optimization and scheduling problems. To instantiate
our work, we focus on the first problem of maximizing the
number of nodes charged within a fixed time horizon, as for-
mulated below. We discuss in Section 5 how our framework
can be applied to address other problems formulated above.

P

s v1 v2(2) v3(3) t

v2(0)

v2(1)

v3(0)

v3(1)

v3(2)

v2(3)

Figure 1: An example illustrating network model.

3.3 Problem Formulation
We start by modeling the charging process. Let x ∈ [0, 1]

denote the battery level (in percentage) of a node during
the charging process. For each node vi, x can be expressed
as a function of the charging time t and the initial battery
level x0: x = fi(t, x0). Figure 2 traces an example of charg-
ing curve for x0 = 0. Throughout our analysis, we assume
the battery level of any node remains constant during the
charging journey unless it is charged by the charger. This
assumption is reasonable as the duration of one charging
journey is typically negligibly small compared to the lifetime
of a node. This assumption also implies that each node is
charged at most once during a charging journey. Under this
assumption, fi can be expressed as a function of t from the
charger’s perspective. Generically, the following property
holds from elementary electrical circuit analysis:

• fi(t) is continuous, derivable and monotonously in-
creasing in t;

• fi(t) is concave in t, meaning that the marginal charg-
ing utility decreases in t.

Define gi(x) , f−1
i (t). The following properties on gi(x)

directly follow from the properties of fi(t):
• gi(x) exists and is the time required to charge vi to x;
• gi(x) is continuous and convex in x;
• The derivative of gi(x), g

′
i(x), is increasing in x.

f(t)

1

t

Figure 2: Example of charging curve.

Given a charging path P whose Euclidean length is de-
noted by d(P), let Λ(P) ⊆ P denote the set of nodes that
the charger charges to battery level α ∈ [0, 1] (e.g., 90%)
while traveling along P 1. For any point p ∈ P , let ts(p)
denote the sojourn time during which s stays at p without
charging any node. The entire charging time along P , de-
noted by Γ(P), can be established below

Γ(P) =
d(P)

rs
+

∑

vi∈Λ(P)

gi(α) +
∑

p∈P

ts(p),

where d(P)
rs

is the time required for the charger to travel

1To make our analysis clear, we assume nodes need to be
charged to the same battery level α. The extension to the
generic case with different charging levels is straightforward.

distance d(P),
∑

vi∈A(P) gi(α) is the time to charge all nodes

in Λ(P) to α and
∑

p∈P ts(p) is the total sojourn time.
We refer to the total charging time along a path P as the

timespan of P . Without introducing ambiguity, a charging
path P also denotes the corresponding charging schedule.

Problem 1 (Charging Path Optimization). The charging
path optimization problem is as follows:

P
∗ = argmax

P∈P,Γ(P)≤B

|Λ(P)|.

That is, given the required charging level α and the maxi-
mum timespan B, the charger seeks an optimum path that
maximises the number of charged nodes. The solution P ∗ is
termed as an optimum charging path.

In many practical scenarios, it is acceptable to have small
marge on the charging performance, which motivates the
following definition.

Definition 1 (ǫ-optimum Charging Path). A charging path
Pǫ is called an ǫ-optimum charging path (0 ≤ ǫ ≤ 1) if the
following conditions are satisfied:

• Γ(Pǫ) ≤ B, i.e., the timespan of Pǫ does not exceed B;
• By following Pǫ, the charger can charge all the nodes

in Λ(P ∗) to at least (1− ǫ)α.

3.4 Problem Hardness
We prove the APX-hardness of Problem 1 below.

Theorem 1 (APX-hardness of Charging Path Optimiza-
tion). Problem 1 is APX-hard, or NP-hard to approximate
within an arbitrarily small constant factor.

Proof. Consider the Orienteering problem which has been
proved APX-hard.

Problem 2 (Orienteering Problem). Given an edge-weighted
graph G = (V (G), E(G)) (directed or undirected), two nodes
s, t ∈ V (G) and a path length upper-bound B, the Orien-
teering problem seeks a path starting at s ending at t of total
length at most B maximising the number of nodes visited.

To prove the APX-hardness of Problem 1, we prove that
it can be reduced to Problem 2 in polynomial time.
Given any graph G = (V (G), E(G)) on which we need to

solve Problem 2, we instantiate Problem 1 as below. We set
V = V (G). All nodes are stationary. Charging is immediate
at any node, i.e., it takes 0 time to charge a node. In this
instance, it is straightforward to see that the solution of
Problem 2 is also the solution of Problem 1 and vice versa.
Since Problem 2 is APX-hard, Problem 1 is also APX-hard.
�

The proof of Theorem 1 demonstrates that even the static
version of Problem 1 is APX-hard. It becomes much more
complex with nodes being mobile.

4. APPROXIMATION ALGORITHM DESIGN
In this section, we design an approximation algorithm to

solve Problem 1.

4.1 Problem Discretization
We divide time into time instances {tk, k = 0, 1, · · · } with

stepsize ∆t , tk − tk−1
2. The trajectory of vi can then be

2To make the analysis concise, we set the same stepsize for
all the nodes. Nevertheless, our analysis can be slightly
adapted to the case with different per-node stepsize ∆ti.

discretized into a vector [vi(t0), vi(t1), · · ·] where vi(tk) is
the position of vi at time tk. By the discretization above,
we construct a directed acyclic graph, denoted by Gd, whose
vertices and edges are specified as follows.

Vertices. The vertex set V (Gd) includes:
• the discretized points on the trajectories of all nodes

in V , i.e., vi(ki∆t) (0 ≤ ki ≤ Ki), ∀vi ∈ V 3,
• the starting point s which is denoted as v0(0),
• the terminal point t denoted as vn+1(Kn+1∆t) with

Kn+1 =
⌊

B
∆t

⌋

.
Edges. For any two points vi(ki∆t) and vj(kj∆t) with

vi 6= vj , there exists an edge
−−−−−−−−−−−−→
vi(ki∆t)vj(kj∆t) in Gd iff the

inequality below holds

(kj − ki)∆t ≥ gi[(1− ǫ)α] +
|vi(ki∆t)vj(kj∆t)|

rs
, (1)

where gi[(1 − ǫ)α] is the time to charge vi to (1 − ǫ)α and
g0[(1 − ǫ)α] = gn+1[(1 − ǫ)α] = 0 since the starting point
v0 and the terminal point vn+1 do not need to be charged.
|vi(ki∆t)vj(kj∆t)| = d[vi(ki∆t), vj(kj∆t)] is the Euclidean
distance between vi(ki∆t) and vj(kj∆t), i.e., the length of

the line segment vi(ki∆t)vj(kj∆t). The inequality (1) im-
plies that starting at vi(ki∆t) at time ki∆t, the charger can
charge vi to level (1 − ǫ)α and then arrive at vj(kj∆t) no

later than kj∆t. For any edge
−−−−−−−−−−−−→
vi(ki∆t)vj(kj∆t), we set its

cost cd[vi(ki∆t), vj(kj∆t)] as follows:

cd[vi(ki∆t), vj(kj∆t)] , (kj − ki)∆t.

Note that there is no edge between vi(k
1
i∆t) and vi(k

2
i∆t)

for any vi ∈ V and 0 ≤ k1
i , k

2
i ≤ Ki.

The index upper-bound Ki (1 ≤ i ≤ n) is set as below:

cd[v0(0), vi(Ki∆t)] + cd[vi(Ki∆t), vn+1(Kn+1∆t)]

rs
+

gi[(1− ǫ)α] ≤ B, (2)

where the left hand side of (2) is the minimum time required
for the charger to go from the starting point to vi(Ki∆t) and
charge vi to (1− ǫ)α and then return to the terminal point.
For any node vi(ki∆t) with ki > Ki, it is impossible for
the charger to charge vi at the position vi(ki∆t) under the
timespan budget B.

We next introduce two definitions that are useful in sub-
sequent analysis.

Definition 2 (Clique). In Gd, a clique is defined as a set
of nodes vi(ki∆t) (0 ≤ ki ≤ Ki) belonging to the trajectory
of the same physical node vi.

Definition 3 (Feasible Path). Let Pd denote the set of all
paths in Gd, a path P ∈ Pd is called a feasible path if P starts
from v0(0), terminates at vn+1(Kn+1∆t), passes exactly one
node of each clique it traverses, and Γ(P) ≤ B. An optimum
feasible path is a feasible path passing maximum number of
cliques.

Example 2. Figure 3 illustrates an example of Gd and a
feasible charging path P . There are two nodes to be charged
with v1 being stationary and v2 being mobile. The coordi-
nates of nodes and the trajectory of v2 are shown in the left
subfigure. ∆t = 1. B = 3. The speed of the charger and v2

3How to set Ki will be analysed later.

P

s
(0, 0)

v1
(1, 0)

v2(2)

(2, 0)

t
(3, 0)

v2(0)

(2,−1)

v2(1)

(2,−0.5)

v0(0) v3(3)

v1(0)

v1(1)

v1(2)

v2(0)

v2(1)

v2(2)

P

Figure 3: An example of Gd and a feasible path P .

are rs = 1 unit length per unit time and r2 = 0.5. Charg-
ing is immediate at any node. The corresponding discretized
graph Gd is shown in the right subfigure with a feasible path
P depicted in both subfigures.

Theorem 2. Any feasible path passing m cliques corre-
sponds to a charging path of maximum timespan B that can
charge m nodes to (1− ǫ)α.

Proof. We prove the theorem by constructing a feasible
charging path and schedule from any feasible path passing
m cliques. Let P denote a feasible path passing sequentially
v0(0) (i.e., s) and then m nodes vi(ki∆t) sequentially from
i = 1 to m before terminating at vn+1(Kn+1∆t) (i.e., t). We
construct the charging path and schedule where the charger
starts charging node vi (1 ≤ i ≤ m) at time ki∆t for gi[(1−
ǫ)α] time and then goes straightly to node vi+1. It follows
from (1) that under this charging schedule, the charger can
charge nodes vi (1 ≤ i ≤ m) to (1 − ǫ)α. Moreover, the
timespan of the constructed charging path equals to Γ(P)
which is by definition upper-bounded by B. �

We next show that an optimum charging path can be ap-
proximated arbitrarily close by a feasible path in terms of
the number of charged nodes.

Theorem 3. Given any ǫ > 0, under the condition that
∆t ≤ αǫ

3
min1≤i≤n g′i[(1− ǫ)α], there exists a feasible path in

Gd which is also an ǫ-optimum charging path.

Proof Sketch. Without loss of generality, assume the
optimum charging path P ∗ starts from s, then charges M

nodes sequentially from v1 to vM before terminating at t. By
slightly introducing ambiguity, we denote vn+1(Kn+1∆t) as
vM+1(KM+1∆t) requiring 0 time to be charged for notation
and analysis convenience. Let Ti (1 ≤ i ≤ M) denote the
time when the charger starts charging vi and let ki∆t denote
the discretized time instance where (ki − 1)∆t < Ti ≤ ki∆t.
The core part of the proof consists of (1) proving that the

edges
−−−−−−−−−−−−−−−−→
vi(ki∆t)vi+1(ki+1∆t) (0 ≤ i ≤ M) exist in Gd, (2)

showing that concatenating these edges yields a feasible path
that is also an ǫ-optimum charging path. The detailed proof
is given in Appendix. �

Theorem 3 demonstrates that the performance loss due
to discretization can be controlled to arbitrarily small, at
the price of increasing computation complexity in terms of
the size of Gd. Given a tolerance level ǫ, Theorem 3 also
quantifies the bound on the discretization granularity ∆t to
meet the performance requirement.
It follows from Theorem 2 and Theorem 3 that the prob-

lem of finding ǫ-optimum charging path can be transformed

to the problem of finding the optimum feasible path, which
is however APX-hard. The proof follows from the same de-
duction to the Orienteering problem as that in the proof of
Theorem 1. Given its APX-hardness, we focus on approxi-
mation algorithm design in the next subsection.

4.2 Finding Optimum Feasible Path:
Approximation Algorithm

This subsection presents our design of a quasi-polynomial
time algorithm that achieves poly-logarithmic approxima-
tion to the optimum feasible path. We first state the follow-
ing property of Gd which is useful in later analysis.

Lemma 1. For any pair of nodes vs, vt ∈ V (Gd), if there
exists a path from vs to vt, then there must exist an edge from
vs to vt, i.e., c(vs, vt) 6= ∞. Equivalently, if c(vs, vt) = ∞,
then there does not exist a path from v1 to v2.

Proof. We denote the path from vs to vt as the node
sequence {v1(k1∆t), v2(k2∆t), · · · , vm(km∆t)} where vs =
v1(k1∆t) and vt = vm(km∆t). As there exists a path from

vs to vt, it holds that the edges
−−−−−−−−−−−−−−−−→
vi(ki∆t), vi+1(ki+1∆t) (1 ≤

i ≤ m− 1) exist in Gd. It then follows from (1) that

(ki+1 − ki)∆t ≥ gi[(1− ǫ)α] +
|vi(ki∆t)vi+1(ki+1∆t)|

rs
. (3)

Summing (3) for all i from 1 to m− 1 yields

(km − k1)∆t ≥
m−1
∑

i=1

gi[(1− ǫ)α] +
|
−−−−−−−−−−−−−−→
v1(k1∆t)vm(km∆t)|

rs

≥ g1[(1− ǫ)α] +
|
−−−−−−−−−−−−−−→
v1(k1∆t)vm(km∆t)|

rs
.

It then follows from (1) that the edge
−−−−−−−−−−−−−−→
v1(k1∆t)vm(km∆t)

exists. That is, there exists an edge from vs to vt. �

To develop our algorithm, we assume that the edge costs
of Gd are integers. If not, we can round them to integers by
scaling each edge cost by a factor λ and rounding the scaled
cost to its ceiling integer. The relative error incurred by the
rounding process can be upper-bounded by λ, denoted by
ǫ(λ), as follows:

ε(λ) =
⌈cd(e)λ⌉ − cd(e)λ

cd(e)λ
≤

1

cd(e)λ
= O

(

1

λ

)

.

The core idea of our algorithm, inspired by the idea of
recursion in [34,35], is summarized below:

• For each m = [1..nd] (nd , |V (Gd)|) and each node
v ∈ V (Gd)− {s, t}:

– Recursively search a path P1 from s to v of mini-
mum timespan that charges m nodes, denote the
timespan of P1 by b1;

– Recursively search another path P2 from v to t of
timespan at most B − b1 that charges the maxi-
mum number of nodes;

• Output the concatenated path P = (P1, P2) that charges
the maximum number of nodes;

In the recursion process, we need to carefully choose P1 and
P2 such that the resulting concatenated path does not visit
any clique more than once.

Formally, the pseudo-code of the algorithm is illustrated
in Algorithm 1. The core part of Algorithm 1 is the recursive
procedure OPF, which has the following inputs:

Algorithm 1 Finding optimum feasible path (OFP)

Input: Gd, s, t, B, L
Output: Pf

1: return Pf := OPF(Gd, s, t, V (Gd), L, B)

2: procedure OPF(Gd, vs, vt, V , l, b)
3: if b < cd(vs, vt) or cd(vs, vt) = ∞ then
4: return P := ∅
5: else
6: P := (vs, vt)
7: end if
8: if l = 0 then
9: return P

10: end if
11: for all v ∈ V − C(vs)− C(vt) do
12: for m := 1 to nd do
13: (P1, b1) := Bmin(Gd, vs, v, Vv−, l − 1, b, m)
14: if P1 = ∅ then
15: Break
16: end if
17: P2 :=OPF(Gd, v, vt, Vv+−C(P1), l−1, b−b1)
18: if P2 = ∅ then
19: Break
20: end if
21: if |Λ(P1)|+ |Λ(P2)| > |Λ(P)| then
22: P := (P1, P2)
23: end if
24: end for
25: end for
26: return P

27: end procedure

28: procedure Bmin(Gd, vs, v, V , l, b, m)
29: bmin := 1, Pmax := OPF(Gd, vs, v, V , l, b)
30: if |Λ(Pmax|) < m then
31: return (∅, 0)
32: end if
33: bmax := b

34: while bmax − bmin > 1 do

35: bmid :=
⌈

bmin+bmax

2

⌉

36: P := OPF(Gd, vs, v, V , l, bmid)
37: if |Λ(P)| ≤ m then
38: bmin := bmid, Pmin := P

39: else
40: bmax := bmid, Pmax := P

41: end if
42: end while
43: return (P, bmid)
44: end procedure

• Gd: the discretised graph;
• vs, vt: the starting and terminating nodes;
• V : the set of nodes to be charged; initially V = V (Gd);
• l: the recursion level, upper-bounded by L;
• b: the timespan budget of the charging journey.
OPF returns the optimum feasible path starting from vs

ending at vt charging maximum number of nodes in V ,
whose timespan is upper-bounded by b, by invoking l re-
cursions.

• OFP first checks the timespan budget b and returns
P = ∅ if the budget is infeasible. OFP also returns

∅ if cd(vs, vt) = ∞ as it follows from Lemma 1 that
cd(vs, vt) = ∞ implies there does not exist a path from
vs to vt. Otherwise P is initialized to cd(vs, vt).

• If l = 0, meaning that the current instance is the last
recursion, then OFP returns P .

• Otherwise, OFP iterates on each node v ∈ V (Gd) −
C(vs)− C(vt) and m = [1..nd] to recursively find: (1)
P1 with minimum timespan (denoted by b1) starting
from vs ending at v that charges m nodes, each in
a distinct clique, and (2) P2 which starts from v and
ends at vt with timespan B−b1 that charges maximum
number of nodes, each in a distinct clique and differ-
ent to the cliques in P1. To find P1, it follows from
Lemma 1 that only nodes in Vv− need to be searched.
Symmetrically, only nodes in Vv+ − C(P1) need to be
searched to find P2.

• The output is the concatenation of P1 and P2 that
charges the maximum number of nodes.

To find P1 OFP calls the procedure BMin, essentially a
binary search function that returns the path with minimum
timespan starting from vs ending at v that charges m nodes,
each in a distinct clique.

In the following three lemmas, we show that OFP indeed
returns a feasible path (Lemma 2) and establish its time
complexity (Lemma 3) and approximation ratio (Lemma 4).

Lemma 2 (Correctness of OFP). If B ≥ cd(s, t), OFP re-
turns a feasible path for any L, otherwise it returns P = ∅.

Proof. If B < cd(s, t), it follows from Line 3 of the
pseudo-code of OFP that it returns P = ∅. We then prove
the non-trivial case B ≥ cd(s, t) by induction on L.

In the case where L = 0, it follows from Line 9 of the
pseudo-code of OFP that it returns P = (vs, vt) which is
feasible.

Assume Lemma 2 holds for L ≤ L0, we now prove it holds
for L = L0 + 1. To that end, we consider the procedure
OFP(Gd, vs, vt, V , L0 + 1, b). From the pseudo-code of
OFP and the induction result we have that P1 and P2 are
either ∅ or feasible.

• If either P1 = ∅ or P2 = ∅, the current iteration is
broken and P is not updated. Since P is initialised
to (vs, vt) which is feasible, it holds that the path P

returned at the end is feasible.
• If both P1 and P2 are feasible, it follows from the

construction of P1 and P2 that their concatenation
(P1, P2) is feasible. Since P is initialised to (vs, vt)
which is feasible, it holds that the returned P at the
end is feasible, no matter whether it is updated or not.

Lemma 2 thus holds for L = L0 + 1. �

Lemma 3 (Time complexity of OFP). OFP terminates in

O
(

(nd min(nd, B) logB)L
)

time.

Proof. Let Υ(l) denote the time complexity of OFP un-
der the recursion level l, let m∗ = |Λ(P ∗

f)| where P
∗
f denotes

the optimum feasible path, we observe from the pseudo-code
of OFP that

Υ(l) = O([min(nd,m
∗) log b]Υ(l − 1)).

Since the edge costs are integers, i.e., cd(e) ≥ 1, it holds
that m∗ ≤ B. Note that Υ(0) = O(1), by recursion we have

Υ(l) = O
(

(nd min(nd, B) logB)L
)

. �

Lemma 4 (Approximation ratio of OFP). Let P ∗
f denote

the optimum feasible path and let m∗ = |Λ(P ∗
f)|. Under the

condition L ≥ ⌈logm∗⌉+ 14, it holds that

|Λ(P)| ≥
|Λ(P ∗

f)|

1 + ⌈logm∗⌉
, i.e., |Λ(P)| = Ω

(

|Λ(P ∗
f)|

logm∗

)

.

Proof. In the case m∗ = 1, under the condition L ≥ 1, it
can be noted from the pseudo-code of OFP that it searches
all nodes v ∈ V (Gd) − C(s) − C(t) and returns a feasible
path P = (s, v, t). It holds that |Λ(P)| = |Λ(P ∗

f)| = 1.
We now prove the lemma for m∗ ≥ 2. To that end, we

decompose P ∗
f to two sub-paths P ∗

1 and P ∗
2 where

|Λ(P ∗
1)| =

⌊

m∗

2

⌋

, |Λ(P ∗
2)| = m

∗ −

⌊

m∗

2

⌋

=

⌈

m∗

2

⌉

.

Let B∗
1 = |Λ(P ∗

1)| and B∗
2 = |Λ(P ∗

2)|. Let v∗1 denote
the terminal node of P ∗

1 . Consider the procedure OPF(Gd,
vs, vt, V , L, B) under the condition L ≥ ⌈logm∗⌉ + 1;
we establish the relationship between |Λ(Pi)| and |Λ(P ∗

i)|
(i = 1, 2) as below:

• We first consider the call for BMin(Gd, vs, v, Vv
−
,

L − 1, b, m) with m =
⌊m∗

2
⌋

1+⌈log(m∗

2
)⌉

and v = v∗1 . It

follows from the condition L ≥ ⌈logm∗⌉+ 1 that

L− 1 ≥ ⌈logm∗⌉ ≥

⌊

log
m∗

2

⌋

+ 1.

It then follows from the induction that BMin returns
a path P1 with timespan b1 ≤ B∗

1 such that

|Λ(P1)| ≥
|Λ(P ∗

1)|

1 +
⌈

log m∗

2

⌉ =
|Λ(P ∗

1)|

⌈logm∗⌉
. (4)

• On the other hand, it follows from the condition L ≥
⌈logm∗⌉+ 1 that

L− 1 ≥ ⌈logm∗⌉ =

⌈

log
m∗

2

⌉

+ 1.

Denote C(P1) =
⋃

v∈P1
C(v). We construct a graph G′

whose node set is V (G′) = V (Gd)− C(P1) and whose
edges are the edges in Gd with end points in V (G′).
We denote by Λ′(P) the set of nodes in G′ on path P .

Define P
′
2 , arg max

Γ(P)≤B−b1

|Λ′(P)|. We have

|Λ(P2)| ≥
|Λ′(P ′

2)|
⌈

log m∗

2

⌉

+ 1
≥

|Λ′(P ′
2)|

⌈logm∗⌉
(5)

≥
|Λ′(P ∗

2)|

⌈logm∗⌉
(6)

≥
|Λ(P ∗

2)| − |Λ(P1)|

⌈logm∗⌉
(7)

≥
|Λ(P ∗

2)| − |Λ(P)|

⌈logm∗⌉
. (8)

In the above inequalities, (5) follows from the induc-
tion by noticing that B−b1 ≥ B−B∗

1 = B∗
2 ; (6) follows

from the definition of P ′
2; (7) follows from |Λ′(P ′

2)| ≥

4All logarithms in our analysis are to base 2. In the case
where m∗ = 0, meaning that the optimum feasible path
cannot pass any node other than s and t, it holds that
|Λ(P ∗

f)| = 0, Lemma 4 holds trivially for any L.

|Λ(P ∗
2)| − |Λ(P1)| based on the definition of Λ′; (8)

follows from |Λ(P1)| ≤ |Λ(Pf)|.
Since P1 and P2 pass distinct cliques, it follows from (4)

and (8) that

|Λ(P)| = |Λ(P1)|+ |Λ(P2)| ≥
|Λ(P ∗

1)|+ |Λ(P ∗
2)| − |Λ(P)|

⌈logm∗⌉
,

which yields |Λ(P)| ≥
|Λ(P∗

f)|

1+⌈logm∗⌉
. Lemma 4 is proven. �

Lemma 2, Lemma 3 and Lemma 4 together lead to the
main theorem below on the performance of OFP.

Theorem 4. By setting L = 1 + ⌈logm∗⌉, OFP finds
an O(logm∗)-approximate optimum feasible path in quasi-
polynomial time.

In practice, to set L without knowing m∗, we need to
estimate the upper-bound of m∗. Since the edge costs are
integers, it holds that m∗ ≤ B. L can thus be set to B to
ensure the O(logB) approximation.

5. DISCUSSION ON VARIANTS AND

EXTENSIONS
We now discuss how our approximation algorithm can be

adapted and extended to solve other charging path optimiza-
tion and scheduling problems formulated in Section 3.

For the problem where the charger has a battery reser-
voir and aims at charging the maximum number of nodes
before returning to its service station to replenish itself, we
can set the edge cost between vi and vj (vi, vj ∈ V (Gd))
to the energy required to charge vi to (1− ǫ)α plus the en-
ergy consumption to move from vi to vj . Our algorithm
OFP can then be invoked to find the O(logm∗)-optimum
solution. In a broader sense, our approach can be adopted
to solve the first category of the charging path optimization
and scheduling problems formulated in Section 3.

We next focus on the second class of charging path opti-
mization problems where the charger has a number of nodes
M to charge and it seeks a path with minimum cost (e.g.
in terms of time, energy consumption) to accomplish the
charging task. This class of problems are NP-hard because
when nodes are stationary and charging is immediate and
M = n, the problems degenerate to the classical TSP prob-
lem which is NP-hard. To solve these problems, we devise a
recursive algorithm similar to OFP, summarized below:

• For each m = [1..M] and each node v ∈ V (Gd)−{s, t}:
– Recursively search a path P1 from s to v of min-

imum timespan (or any form of budget) charging
m nodes, denote the timespan of P1 by b1;

– Recursively search another path P2 from v to t of
minimum timespan charging M −m nodes;

• Output the concatenated path P = (P1, P2) of mini-
mum timespan;

Using the similar analysis as OFP, we can establish the log-
arithmic approximation ratio of the above algorithm.

In many practical scenarios, some nodes are more critical
than others. Instead of seeking P ∗ = argminP∈P |Λ(P)|,
it makes more sense to solve P ∗ = argminP∈P

∑

vi∈Λ(P) wi,
where wi is a weight for node vi. Our algorithm OFP can be
readily applied to solve such weighted version by attributing
a reward wi to vi and by adjusting the objective to finding
the path maximizing the collected reward.

Our algorithm can also be adapted to solve the charging
path optimization with time windows where node vi needs
to be charged within a time window. Specifically, this can be
done by redefining the feasible charging path such that only
nodes charged within its time window is counted in Λ(P).

6. NUMERICAL ANALYSIS
In this section, we conduct numerical analysis to evalu-

ate the performance of our approximation algorithm. We
evaluate our algorithm w.r.t. the following two algorithms:

• The random algorithm where the charger randomly
targets a node to charge if the remaining budget allows
it to arrive at t after charging;

• The greedy algorithm where the charger targets the
nearest node to charge if the remaining budget allows
it to arrive at t after charging.

Specifically, we set up a simulation area of an Euclidean
square [0, 10000]2 (in meters) and randomly deploy a number
of n nodes in the square, where n varies from 20 to 100. The
starting and terminating points of the charger are located
at (5000, 5000) and (10000, 10000). The traveling speed of
the charger is set to rs = 5 m/s. The network nodes follow
the random way point model with maximum speed ri (1 ≤
i ≤ n) randomly chosen in [0, 2] m/s with no pause.

For the battery model, we choose a regular NiMH battery
with the nominal cell voltage and the quantity of electricity
being 1.2 V/2.5 Ah [36]. We have Emax = 1.2V×2.5A×3600s=
10.8 kJ. We set the initial battery level of vi to eiEmax with
ei randomly chosen from [0, 1]. We set α = 90% et ǫ = 0.1.
We simulate two charger profiles where the first one corre-
sponds to a more powerful charger with the average energy
transfer rate being 50 W and the second one is less powerful
with the average energy transfer rate being 20 W. We set
∆t = 0.1s and λ = 100. The budget B is set to 6 hours.

We trace the following metric to evaluate the performance
of our algorithm compared to the random algorithm:

Υ =
Number of nodes charged by our algorithm

Number of nodes charged by random algorithm
.

Similarly, we define the same metric Υ′ over the greedy al-
gorithm. For each set of chosen parameters, we run a num-
ber of independent simulations where the nodes’ positions
are randomly chosen and the required number of simulation
runs is calculated using “independent replications” [37].

The simulation results are shown in Figure 4 with an con-
fidence interval 90%. The simulation results demonstrate
that our algorithm consistently outperforms both the ran-
dom and the greedy algorithms under both charger profiles.
The performance gain is more significant when the charger
is more powerful. This is because a more powerful charger
implicates less charging time. Hence the performance gain
on charging path optimization becomes more visible.

We then study the impact of the algorithm parameters,
particularly the number of recursion levels L and the time
stepsize ∆t, on the performance of our approximation algo-
rithm. We thus simulate the same network as the previous
set of simulations and trace the number of charged nodes
Λ(P) as functions of L and ∆t where P is the charging path
output by our approximation algorithm. The results, illus-
trated in Figure 5, demonstrate that by increasing L and/or
decreasing ∆t, we get better performance at the price of in-
creased computation complexity. The performance improve-
ment is less significant when L is sufficiently large and ∆t

is sufficiently small. In this regard, our algorithm allows
to tradeoff between the performance gain and the compu-
tation complexity by tuning L and ∆t. We observe from
Figure 5 that in the simulated scenario our algorithm is able
to achieve reasonably good performance with relatively light
computation complexity with a mild setting of L and ∆t.

7. CONCLUSION AND FUTURE WORK
In this paper, we have studied a class of generic charg-

ing path optimization problems arising from emerging net-
working applications where mobile chargers are dispatched
to delivery energy to mobile agents, which have specified
tasks and mobility patterns. We have instantiated our anal-
ysis by focusing on finding the charging path maximizing
the number of nodes charged within a fixed time horizon.
We established the APX-hardness of the problem. We de-
signed a quasi-polynomial time algorithm that achieves poly-
logarithmic approximation to the optimum charging path.
Our algorithm can be further adapted and extended to solve
a variety of path optimization problems with realistic con-
straints, such as limited time and energy budget.

There are a number of research directions we plan to in-
vestigate following our work in this paper. The first is to
study the case where the trajectories of nodes are partially
known, or even unknown to the charger. In this context, the
charger seeks a charging path that maximizes the expected
number of nodes charged. The second direction is to use
the methodology in the paper to study more sophisticated
variants of the problem, e.g., the case of multiple chargers
with heterogeneous moving speed.

8. ACKNOWLEDGEMENTS
The work of S. Lin and H. Huang is supported by NSF

awards: NSF CNS 1536086, CNS 1463722, and IIS 1460370.

Appendix: Proof of Theorem 3

Without loss of generality, assume the optimum charging
path P ∗ starts from s, then charges M nodes sequentially
from v1 to vM before terminating at t. By slightly introduc-
ing ambiguity, we denote vn+1(kn+1∆t) as vM+1(kM+1∆t)
requiring 0 time to be charged for notation and analysis
convenience. We also denote s and t as two stationary
nodes v0 and vM+1 requiring 0 time to be charged. Let
Ti (1 ≤ i ≤ M) denote the time when the charger starts
charging vi and let ki∆t denote the discretized time instance
where (ki − 1)∆t < Ti ≤ ki∆t. The core part of the proof

consists of (1) proving that the edges
−−−−−−−−−−−−−−−−→
vi(ki∆t)vi+1(ki+1∆t)

(0 ≤ i ≤ M) exist in Gd, (2) showing that concatenating
these edges yields a feasible path that is also an ǫ-optimum
charging path.

We first prove the existence of
−−−−−−−−−−−−−−−−→
vi(ki∆t)vi+1(ki+1∆t) (0 ≤

i ≤ M). Recall that (1) Ti and Ti+1 are the time when the
charger starts charging vi and vi+1 and (2) vi is charged to
at least α, we have

Ti+1 − Ti ≥ gi(α) +
|vi(Ti)vi+1(Ti+1)|

rs
. (9)

Recall that (ki − 1)∆t < Ti ≤ ki∆t for all i, it holds that

Ti+1 − Ti ≤ (ki+1 − ki + 1)∆t. (10)

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

P
e
r
f
o
r
m
a
n
c
e

g
a
i
n

n

Υ

Υ’

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

P
e
r
f
o
r
m
a
n
c
e

g
a
i
n

n

Υ

Υ’

Figure 4: Performance gain of our algorithm over the random algorithm and the greedy algorithm as functions
of n with less powerful charger (left) and more powerful charger (right).

 0

 20

 40

 60

 80

 100

2 4 6 8 10 12

N
u
m
b
e
r

o
f

n
o
d
e
s

c
h
a
r
g
e
d

Number of recursion level: L

less powerful charger
more powerful charger

 0

 20

 40

 60

 80

 100

0.1 0.5 1 5 10

N
u
m
b
e
r

o
f

n
o
d
e
s

c
h
a
r
g
e
d

Time stepsize: ∆t

less powerful charger
more powerful charger

Figure 5: Performance of our algorithm as functions of the recursion level L (left) and time stepsize ∆t (right).

On the other hand, applying the triangle inequality, we have:

|vi(ki∆t)vi+1(ki+1∆t)| ≤ |vi(ki∆t)vi(Ti)|+

|vi(Ti)vi+1(Ti+1)|+ |vi+1(Ti+1)vi+1(ki+1∆t)|. (11)

Noticing that ri is the speed upper-bound of vi and ri < rs,
we have

{

|vi(ki∆t)vi(Ti)| ≤ ri(ki∆t− Ti) ≤ rs∆t,

|vi(Ti)vi+1(Ti+1)| ≤ ri(ki+1∆t− Ti) ≤ rs∆t.

Injecting the above inequalities into (11) yields

|vi(Ti)vi+1(Ti+1)| ≥ |vi(ki∆t)vi+1(ki+1∆t)| − 2rs∆t. (12)

By injecting (9) and (10) into (12), we have

(ki+1−ki)∆t≥gi(α) +
|vi(ki∆t)vi+1(ki+1∆t)|

rs
− 3∆t. (13)

On the other hand, it follows from the properties of fi(t)
and gi(x) that for any ǫ, it holds that

gi(α)− gi[(1− ǫ)α] ≥ g
′
i[(1− ǫ)α]ǫα. (14)

By setting ∆t ≤ αǫ
3
min1≤i≤n g′i[(1 − ǫ)α] and recall that

gi(x) is increasing and convex in x, we have

3∆t ≤ gi(α)− gi[(1− ǫ)α], ∀i.

We can then rewrite (13) as follows:

(ki+1 − ki)∆t ≥ gi[(1− ǫ)α] +
|vi(ki∆t)vi+1(ki+1∆t)|

rs
.

It follows from (1) that
−−−−−−−−−−−−−−−−→
vi(ki∆t)vi+1(ki+1∆t) exists in Gd.

We then prove that by concatenating the following edges
−−−−−−−−−−−−−−−−→
vi(ki∆t)vi+1(ki+1∆t) (0 ≤ i ≤ M), we can construct a feasi-
ble path that is also an ǫ-optimum charging path. To prove
this, we construct the charging schedule of the concatenated
charging path as follows: the charger starts from v0(0) (i.e.,
s) and then passes nodes vi(ki∆t) sequentially from i = 1
to M before terminating at vM+1(kM+1∆t) (i.e., t), dur-
ing which the charger starts charging node vi (1 ≤ i ≤ M)
at time ki∆t for gi[(1 − ǫ)α] time and then goes straightly
to node vi+1. It follows from (1) that under this charging
schedule, the charger can charge nodes vi (1 ≤ i ≤ M) to
(1−ǫ)α. Moreover, it follows from the path construction that
the charger arrives at vM+1(kM+1∆t) (i.e., vn+1(kn+1∆t)
with our notation) at time kn+1∆t. Recall Kn+1 =

⌊

B
∆t

⌋

,
it holds that kn+1∆t ≤ B. It follows from Definition 1 that
the constructed path is an ǫ-optimum charging path.

9. REFERENCES

[1] L. Xie, Y. Shi, Y. T. Hou, W. Lou, H. D. Sherali,
H. Zhou, and S. F. Midkiff, “A mobile platform for
wireless charging and data collection in sensor
networks,” IEEE J. Sel. Areas Commun., vol. 33,
no. 8, pp. 1521–1533, 2015.

[2] N. Atanasov, J. Le Ny, and G. J. Pappas, “Distributed
Algorithms for Stochastic Source Seeking with Mobile
Robot Networks,”ASME J. Dynamic Syst.,
Measurement, Control, 2014.

[3] L. Di Puglia Pugliese, F. Guerriero, D. Zorbas, and
T. M. Razafindralambo, “Modelling the mobile target
covering problem using flying drones,”Optimization
Lett., Aug. 2015.

[4] H. Qin and W. Zhang, “Charging scheduling with
minimal waiting in a network of electric vehicles and
charging stations,” in Proc. ACM VANET 2011.

[5] B. Coltin and M. Veloso, “Mobile robot task allocation
in hybrid wireless sensor networks,” in Proc.
IEEE/RSJ Intl. Conf. Intelligent Robots Syst. (IROS),
2010.

[6] P. Toth and D. Vigo, eds., The Vehicle Routing
Problem. MOS/SIAM Series on Optimization, 2001.

[7] A. Haghani and S. Jung, “A dynamic vehicle routing
problem with time-dependent travel times,”Comput.
Oper. Res., 2005.

[8] P. Ni, H. T. Vo, D. Dahlmeier, W. Cai, J. Ivanchev,
and H. Aydt, “DEPART: Dynamic route planning in
stochastic time-dependent public transit networks,” in
Proc. IEEE Conf. Intelligent Transportation Syst.
(ITSC), 2015.

[9] F. Miao, S. Han, S. Lin, and G. J. Pappas, “Taxi
dispatch under model uncertainties.,” in Proc. IEEE
CDC, 2015.

[10] J. Yang, P. Jaillet, and H. Mahmassani, “Real-time
multivehicle truckload pickup and delivery problems,”
Transportation Sci., vol. 38, pp. 135–148, 2004.

[11] D. Zhang, T. He, S. Lin, S. Munir, and J. Stankovic,
“Online cruising mile reduction in large-scale taxicab
networks,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 11, pp. 3122–3135, 2015.

[12] R. Sugihara and R. K. Gupta, “Speed control and
scheduling of data mules in sensor networks,”ACM
Trans. Sen. Netw., vol. 7, Aug. 2010.

[13] D. Ciullo, G. Celik, and E. Modiano, “Minimizing
transmission energy in sensor networks via trajectory
control,” in Proc. IEEE WiOpt, 2010.

[14] G. Xing, T. Wang, W. Jia, and M. Li, “Rendezvous
design algorithms for wireless sensor networks with a
mobile base station,” in Proc. ACM MobiHoc, 2008.

[15] L. Chen, W. Wang, H. Huang, and S. Lin in Proc.
IEEE INFOCOM, title=Time-constrained Data
Harvesting in WSNs: Theoretical Foundation and
Algorithm Design, year=2015.

[16] E. Ekici, Y. Gu, and D. Bozdag, “Mobility-based
communication in wireless sensor networks,” IEEE
Comm. Mag., vol. 44, pp. 56–62, July 2006.

[17] J. Reich, V. Misra, D. Rubenstein, and G. Zussman,
“Connectivity maintenance in mobile wireless
networks via constrained mobility,” IEEE J. Sel. Areas
Commun., vol. 30, no. 5, pp. 935–950, 2012.

[18] Y. Hu, X. Wang, and X. Gan, “Critical sensing range
for mobile heterogeneous camera sensor networks,” in
Proc. IEEE INFOCOM, pp. 970–978, 2014.

[19] H. Huang, S. Lin, L. Chen, J. Gao, A. Mamat, and
J. Wu, “Dynamic mobile charger scheduling in
heterogeneous wireless sensor networks,” in Proc.
IEEE MASS, 2015.

[20] S. Zhang, J. Wu, and S. Lu, “Collaborative mobile
charging,” IEEE Trans. Computers, vol. 64, no. 3,
pp. 654–667, 2015.

[21] Y. Peng, Z. Li, W. Zhang, and D. Qiao, “Prolonging
sensor network lifetime through wireless charging,” in
Proc. IEEE RTSS, 2010.

[22] L. Xie, Y. Shi, Y. T. Hou, W. Lou, and H. D. Sherali,
“On traveling path and related problems for a mobile
station in a rechargeable sensor network,” in Proc.
ACM MobiHoc, 2013.

[23] L. He, L. Fu, L. Zheng, Y. Gu, P. Cheng, J. Chen, and
J. Pan, “Esync: An energy synchronized charging
protocol for rechargeable wireless sensor networks,” in
Proc. ACM MobiHoc, ACM, 2014.

[24] H. Dai, G. Chen, C. Wang, S. Wang, X. Wu, and
F. Wu, “Quality of energy provisioning for wireless
power transfer,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 2, pp. 527–537, 2015.

[25] G. Laporte, “The traveling salesman problem: An
overview of exact and approximate algorithms,”
European J. Oper. Res., 1992.

[26] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J.
Cook, The Traveling Salesman Problem: A
Computational Study: A Computational Study.
Princeton Univ. Press, 2011.

[27] R. Bar-Yehuda, G. Even, and S. M. Shahar, “On
approximating a geometric prize-collecting traveling
salesman problem with time windows,” J. Algorithms,
vol. 55, no. 1, pp. 76–92, 2005.

[28] A. Blum, S. Chawla, D. R. Karger, T. Lane,
A. Meyerson, and M. Minkoff, “Approximation
algorithms for orienteering and discounted-reward
tsp,” SIAM J. Comp., vol. 37, no. 2, pp. 653–670,
2007.

[29] C. Chekuri, N. Korula, and M. Pál, “Improved
algorithms for orienteering and related problems,”
ACM Trans. Algorithms, vol. 8, no. 3, p. 23, 2012.

[30] N. Bansal, A. Blum, S. Chawla, and A. Meyerson,
“Approximation algorithms for deadline-tsp and
vehicle routing with time-windows,” in Proc. ACM
STOC, pp. 166–174, 2004.

[31] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson,
and M. Minkoff, “Approximation algorithms for
orienteering and discounted-reward tsp,” SIAM J.
Comp., vol. 37, no. 2, pp. 653–670, 2007.

[32] C. Chekuri, N. Korula, and M. Pál, “Improved
algorithms for orienteering and related problems,”
ACM Trans. Algorithms, vol. 8, pp. 1–27, July 2012.

[33] C. Helvig, G. Robins, and A. Zelikovsky, “The
moving-target traveling salesman problem,” J.
Algorithms, vol. 49, no. 1, pp. 153 – 174, 2003.

[34] C. Chekuri and M. Pal, “A recursive greedy algorithm
for walks in directed graphs,” in Proc. IEEE FOCS,
2005.

[35] “A greedy approximation algorithm for the group
steiner problem,”Discrete Applied Mathematics,
vol. 154, no. 1, pp. 15 – 34, 2006.

[36] D. Linden and T.B.Reddy, Handbook of Batteries.
McGraw-Hill, 2002.

[37] W. Whitt, “The efficiency of one long run versus
independent replications in steady-state simulation,”
Management Sci., vol. 37, no. 6, pp. 645–666, 1991.

