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Abstract—We consider the channel access problem in a multi-
channel opportunistic communication system with imperfect
channel sensing, where the state of each channel evolves as an
independent and identically distributed Markov process. The
considered problem can be cast into a restless multi-armed
bandit (RMAB) problem that is of fundamental importance
in decision theory. It is well-known that the optimal policy of
RMAB problem is intractable for its exponential computation
complexity. A natural alternative is to consider the easily imple-
mentable myopic policy that maximizes the immediate reward
but ignores the impact of the current strategy on the future
reward. In this paper, we perform an analytical study on the
optimality of the myopic policy under imperfect sensing for
the considered RMAB problem. Specifically, for a family of
generic and practically important utility functions, we establish
the closed-form conditions to guarantee the optimality of the
myopic policy even under imperfect sensing. Despite our focus
on the opportunistic channel access, the obtained results are
generic in nature and are widely applicable in a wide range of
engineering domains.

Index Terms—Restless multi-armed bandit (RMAB), myopic
policy, imperfect sensing, opportunistic spectrum access (OSA).

I. INTRODUCTION

WE consider an opportunistic multi-channel communi-
cation system where a user has access to multiple

channels, but is limited to sense and transmit on a subset
of channels each time. The fundamental problem to study is
how the user can exploit past observations and the knowledge
of the stochastic properties of the channels to maximize
its expected accumulated throughput by switching channels
opportunistically.

Formally, there are N independent and identically dis-
tributed (i.i.d.) channels, each evolving as a two-state Markov
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process where the state of a channel indicates the availability
of this channel. At each time slot, a user chooses k (1 ≤ k ≤
N ) of the N channels to sense, and then transmit a certain
amount of data depending on the states of the chosen channels.
Given the initial states of these channels, the goal of the
user is to find the optimal policy of sensing channels at each
slot so as to maximize the expected accumulated throughput.
This problem can be cast into the restless multi-armed bandit
(RMAB) problem [1] or partially observable Markov decision
process (POMDP) [2].

Due to its application in numerous engineering problems,
the RMAB problem is of fundamental importance in stochastic
decision theory. However, finding the optimal policy of the
generic RMAB problem is shown to be PSPACE-hard by
Papadimitriou et al. in [3]. Whittle proposed a heuristic index
policy, called Whittle index policy [1] which is shown to
be asymptotically optimal in certain limited regime under
some specific constraints [4]. In this regard, Liu et al. studied
in [5] the indexability of a class of RMAB problems relevant
to dynamic multi-channel access applications. However, the
optimality of the index policy based on Whittle index is not
ensured in the general cases, especially when the channels
follow non-identical Markov chains. Unfortunately, not every
RMAB problem has a well-defined Whittle index. Moreover,
computing the Whittle index can be prohibitively complex.

A natural alternative, given the intractability of the RMAB
problem, is to seek a simple myopic policy maximizing the
short-term reward. In this line of research, significant research
efforts have been devoted to studying the performance of
the myopic policy, especially in the context of opportunistic
spectrum access (OSA). Key contributions from recent works
on this subject can be summarized as follows:

• Zhao et al. [6] established the structure of the myopic
sensing policy, analyzed the performance, and partly
obtained the optimality for the case of i.i.d. channels.

• Ahmad and Liu et al. [7] derived the optimality of the
myopic policy for the positively correlated i.i.d. channels
when the user is limited to access one channel (i.e., k =
1) each time.

• Ahmad and Liu [8] further extended the optimality result
to the case of sensing multiple i.i.d. channels (k > 1) for
a particular form of utility function modeling the fact that
the user gets one unit of reward for each channel sensed
to be idle.

• Our previous works studied the case of non i.i.d. channels
and provided generic conditions on the reward function
under which the myopic policy is optimal [9], and also
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illustrated that when these conditions are not satisfied,
the myopic policy may not be optimal [10].

The vast majority of previous studies (i.e., [2], [6], [7],
[8], [9]) in the area of OSA assume perfect observation of
channel states. However, sensing or observation errors are
inevitable in practical scenario (e.g., due to noise and system
limitations), especially in wireless communication systems.
More specifically, an idle (busy, respectively) channel may be
sensed to be busy (idle) and accessing a busy channel leads to
zero reward. In such context, it is crucial to study the structure
and the optimality of the myopic sensing policy with imperfect
observation. We would like to emphasize that the presence of
sensing error brings two difficulties when studying the myopic
sensing policy in this new context.

• The belief value evolves as a non-linear mapping instead
of a linear one in the perfect sensing case.

• In the imperfect sensing case, the belief value update of a
channel depends not only on the channel evolution itself,
but also on the observation outcome, meaning that the
transition is not deterministic.

Therefore, our problem requires an original study on the
optimality of the myopic sensing policy that cannot draw on
existing results in the perfect sensing case. We would like to
report that despite its practical importance, very few work has
been done on the impact of sensing error on the performance
of the myopic sensing policy, or more generically, on the
RMAB problem under imperfect observation.

To the best of our knowledge, [11], [12] are the only work
in this area. Chen, Zhao and Swami et al. [11] decoupled the
design of the sensing strategy from that of the spectrum sensor
and the access strategy, reduced the constrained POMDP to
an unconstrained one, and showed that the myopic sensor
operating and access policies are optimal for the joint design
of OSA, but left the optimality of the myopic sensing policy
unaddressed. After that Liu, Zhao and Krishnamachari [12]
established the optimality of the myopic sensing policy for the
case of two channels under certain conditions and conjectured
the optimality for arbitrary N under the same conditions. In
this paper, we derive closed-form conditions to guarantee the
optimality of the myopic sensing policy for arbitrary N and
for a class of utility functions. As shown in Section III-C,
the result obtained in this paper can cover the result of [12].
Moreover, this paper also significantly extends our previous
work [9], focusing on perfect sensing scenario. In this regard,
our work in this paper contributes the existing literature by
developing an adapted analysis on the RMAB problem under
imperfect sensing.

The rest of the paper is organized as follows: Our model
is formulated in Section II. Section III studies the optimality
of the myopic sensing policy and illustrates the application of
the derived results via two typical examples. Finally, the paper
is concluded by Section IV.

II. PROBLEM FORMULATION

A. Multi-channel Opportunistic Access with Imperfect Sensing

As outlined in the Introduction, we consider a multi-channel
opportunistic communication system, in which a user is able
to access a set N of N i.i.d. channels, each characterized by

a Markov chain of two states, idle (1) and busy (0). The state
transmission probabilities are given by {pi,j},i,j=0,1.

We assume that the system operates in a synchronous time
slot fashion with the time slot indexed by t (t = 1, 2, · · · , T ),
where T is the time horizon of interest. Each channel goes
through state transition at the beginning of each slot t. This
generic multi-channel opportunistic communication model can
be naturally cast into OSA problem in cognitive radio systems
where an unlicensed secondary user can opportunistically
access the temporarily unused channels of the licensed primary
users, with the availability of each channel evolving as an
independent Markov chain.

Limited by hardware constraints and energy cost, the user
is allowed to sense only k of the N channels at each slot t.
We denote A(t) as the set of channels chosen by the user at
slot t where A(t) ⊆ N and |A(t)| = k ≤ N . We assume that
the user makes the channel selection decision at the beginning
of each slot after the channel state transition. Moreover, we
are interested in the imperfect sensing scenario where channel
sensing is subject to errors, i.e., an idle channel may be sensed
as busy one and vice versa. Let S(t) � [S1(t), · · · , SN(t)]
denote the channel state vector where Si(t) ∈ {0, 1} is the
state of channel i in slot t and let S′(t) � {S′

i(t), i ∈ A(t)}
denote the sensing outcome vector where S′

i(t) = 0 (1) means
that the channel i is sensed to be busy (idle) in slot t. Using
such notation, the performance of channel state detection is
characterized by two system parameters: the probability of
false alarm εi(t) and the probability of miss detection δi(t),
formally defined as follows:

εi(t) � Pr{S′
i(t) = 0|Si(t) = 1},

δi(t) � Pr{S′
i(t) = 1|Si(t) = 0}.

In our analysis, we consider the case where εi(t) and δi(t)
are independent w.r.t. t and i. More specifically, we defined ε
and δ as the system-wide false alarm rate and miss detection
rate.

We also assume that when the receiver successfully receives
a packet from a channel, it sends an acknowledgement (ACK)
to the transmitter over the same channel at the end of the slot.
The absence of an ACK (NACK) signifies that the transmitter
does not transmit over this channel or transmitted but the
channel is busy in this slot. We assume that acknowledgement
are received without error since acknowledgements are always
transmitted over idle channels [12].

Obviously, by sensing only k channels, the user cannot
observe the state of the whole system. Hence, the user has to
infer the channel states from its past decision and observation
history so as to make its future decision. To this end, we define
the information state (hereinafter referred to as belief vector
for briefness) Ω(t) � {ωi(t), i ∈ N}, where 0 ≤ ωi(t) ≤ 1
is the conditional probability that channel i is in idle state
(i.e., Si(t) = 1) at slot t given all past states, actions and
observations1. As stated in [12], in order to ensure that the
user and its intended receiver tune to the same channel in
each slot, channel selections should be based on common
observations {0 (NACK), 1 (ACK)}k rather than the detection

1The initial belief ωi(1) can be set to p01
p01+1−p11

if no information about
the initial system state is available.
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outcomes at the transmitter. Due to the Markovian nature of
the channel model, given the action A(t) and the observations
{ACKi(t) ∈ {0, 1} : i ∈ A(t)}, the belief vector can be
updated recursively using Bayes Rule as shown in (1).

ωi(t+ 1) =

⎧⎪⎨
⎪⎩
p11, i ∈ A(t), ACKi(t) = 1

τ(ϕ(ωi(t))), i ∈ A(t), ACKi(t) = 0

τ(ωi(t)), i �∈ A(t)

, (1)

Note that the belief update under ACKi(t) = 0 results
from the fact that the receiver cannot distinguish a failed
transmission (i.e., collides with the primary user with prob-
ability δ(1 − ωi(t))) from no transmission (with probability
εωi(t) + (1− δ)(1− ωi(t))) [12]. For convenience, we intro-
duce two operators ϕ(ωi) � εωi(t)

εωi(t)+1−ωi(t)
and τ(ωi(t)) �

ωi(t)p11 + [1− ωi(t)]p01.

Remark. We would like to emphasize that in contrast to the
perfect sensing case [9] where ωi(t + 1) is a linear function
of ωi(t) whether i is sensed or not, in the imperfect sensing
case, the mapping from ωi(t) to ωi(t+ 1) is no longer linear
due to the sensing error (cf. the second line of equation (1)).
Moreover, the belief value update of a channel depends not
only on the channel evolution itself, but also on the observation
outcome, i.e., ωi(t+1) = p11 for i ∈ A(t), ACKi(t) = 1 and
ωi(t+ 1) = τ(ϕ(ωi(t))) for i ∈ A(t), ACKi(t) = 0. As will
be shown later, these differences make the analysis for the
imperfect sensing more complicated.

To conclude this subsection, we state structural properties
of τ(ωi(t)) and ϕ(ωi(t)) that are useful in the subsequent
proofs.

Lemma 1. Given p01 < p11, then
• τ(ωi(t)) is monotonically increasing in ωi(t);
• p01 ≤ τ(ωi(t)) ≤ p11, ∀ 0 ≤ ωi(t) ≤ 1.

Lemma 2. If 0 ≤ ε ≤ (1−p11)p01

p11(1−p01)
, then

• ϕ(ωi(t)) increases monotonically in ωi(t) with ϕ(0) = 0
and ϕ(1) = 1;

• ϕ(ωi(t)) ≤ p01, ∀p01 ≤ ωi(t) ≤ p11.

Proof: Lemma 1 follows from τ(ωi(t)) = (p11 −
p01)ωi(t) + p01 straightforwardly. Lemma 2 follows from
ϕ(ωi) =

εωi(t)
εωi(t)+1−ωi(t)

, Lemma 2.

B. Optimal Sensing Problem and Myopic Sensing Policy

Given the imperfect sensing context, we are interested in the
user’s optimization problem to find the optimal sensing policy
π∗ that maximizes the expected total discounted reward over
a finite horizon. Mathematically, a sensing policy π is defined
as a mapping from the belief vector Ω(t) to the action (i.e.,
the set of channels to sense) A(t) in each slot t: π : Ω(t) →
A(t), |A(t)| = k, t = 1, 2, · · · , T.

The following gives the formal definition of the optimal
sensing problem:

π∗ = argmax
π

E

[
T∑

t=1

βt−1Rπ(Ω(t))

∣∣∣∣∣Ω(1)
]

(2)

where Rπ(Ω(t)) is the reward collected in slot t under the
sensing policy π with the initial belief vector Ω(1), 0 ≤ β ≤ 1

is the discounted factor characterizing that the future reward is
less valuable than the immediate reward. By treating the belief
value of each channel as the state of each arm of a bandit,
the user’s optimization problem can be cast into a restless
multi-armed bandit problem.

To get more insight on the optimization problem formulated
in (2) and the complexity to solve it, we derive the dynamic
programming formulation of (2) as follows:

VT (Ω(T )) = max
π

E[Rπ(Ω(T ))] = max
A(T )⊆N

E[Rπ(Ω(T ))],

Vt(Ω(t)) = max
A(t)⊆N

E

[
Rπ(Ω(t)) + β

∑
E⊆A(t)

∏
i∈E

(1− ε)ωi(t)

∏
j∈A(t)\E

[1− (1− ε)ωj(t)]Vt+1(Ω(t+ 1))
]
.

In the above equations, Vt(Ω(t)) is the value function
corresponding to the maximal expected reward from time slot
t to T with the belief vector Ω(t+1) following the evolution
described in (1) given that the channels in the subset E are
observed in idle state (i.e., receiving ACK) and the channels
in A(t)\E are observed in busy state.

Theoretically, the optimal policy can be obtained by solving
the above dynamic programming. Unfortunately, due to the
impact of the current action on the future reward and the
unaccountable space of the belief vector, obtaining the op-
timal solution directly from the above recursive equations is
computationally prohibitive. Hence, a natural alternative is to
seek simple myopic sensing policy which is easy to compute
and implement that maximizes the expected immediate reward,
denoted by F (ΩA(t)) � E[Rπ(Ω(t))] with ΩA(t) � {ωi(t) :
i ∈ A(t)}. Let A(t) denote the set of channels sensed at slot t
under myopic policy, A(t) can be formally defined as follows:

A(t) = argmax
A(t)⊆N

F (ΩA(t)). (3)

In this paper, we focus on a class of regular functions
defined in [9]. Specifically, the expected immediate reward
function F (ΩA(t)) is assumed to be symmetrical, monoton-
ically non-decreasing and decomposable, defined by three
axioms in [9]. Under this condition, the myopic policy consists
of choosing the k channels with the largest belief value.
In the following sections we focus on the optimality of the
myopic sensing policy under imperfect sensing. As pointed
out in the remark following equations (1), the main technical
difficulties compared to the perfect sensing case are the non-
linear mapping from ωi(t) to ωi(t + 1) and the dependency
of the belief value update on the observation outcome.

III. ANALYSIS ON OPTIMALITY OF MYOPIC SENSING

POLICY UNDER IMPERFECT SENSING

The goal of this section is to establish closed-form condi-
tions under which the myopic sensing policy, despite of its
simple structure, achieves the system optimum under imper-
fect sensing. To this end, we set up by defining an auxiliary
function and studying its structural properties, which serve as
a basis in the study of the optimality of the myopic sensing
policy. We then establish the main result on the optimality
followed by the illustration on how the obtained result can be
applied via two concrete application examples.
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For the convenience of discussion, we state some notations
before presenting the analysis:

• N (m) denotes the first m channles in belief vector;
• Given E ⊆ M ⊆ N , Pr(M, E) �

∏
i∈E

(1 −

ε)ωi(t)
∏

j∈M\E
[1− (1− ε)ωj(t)];

• PE
11 denotes the vector of length |E| with each element

being p11;
• Φ(l,m) � [τ(ωi(t)) : l ≤ i ≤ m] where the components

are sorted by belief value; Φi(l,m) � [τ(ωj(t)) : l ≤
j ≤ m, j �= i, ωj(t) ≥ ωi(t)]; Φj(l,m) � [τ(ωi(t)) : l ≤
i ≤ m, i �= j, ωj(t) > ωi(t)]; Φ

j
i (l,m) � [τ(ωh(t)) : l ≤

h ≤ m,h �= i, h �= j, ωj(t) > ωh(t) ≥ ωi(t)];
• Given E ⊆ M ⊆ N , QM,E � [τ(ϕ(ωi(t))) : i ∈
M\E ] where the components are sorted by belief value;
Q

M,E,l � [τ(ϕ(ωi(t))) : i ∈ M \ E \ {l} and ωi(t) ≥
ωl(t)]; QM,E,l � [τ(ϕ(ωi(t))) : i ∈ M \ E \
{l} and ωi(t) < ωl(t)];

• Let ω−i � {ωj : j ∈ A, j �= i} and⎧⎨
⎩
Δmax � max

ω−i∈[0,1]k−1
{F (1, ω−i)− F (0, ω−i)},

Δmin � min
ω−i∈[0,1]k−1

{F (1, ω−i)− F (0, ω−i)}.

A. Definition and Properties of Auxiliary Value Function

Inspired by the form of the value function Vt(Ω(t)) and the
analysis in [8], we define the auxiliary value function with
imperfect sensing.

Definition 1 (Auxiliary Value Function under Imperfect Sens-
ing). The auxiliary value function, denoted as Wt(Ω(t))
(1 ≤ t ≤ T , t+ 1 ≤ r ≤ T ) is recursively defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

WT (Ω(T )) = F (ΩA(T ));

Wr(Ω(r)) = F (ΩA(r))

+β
∑

E⊆A(r) Pr(A(r), E)Wr+1(ΩE(r + 1));

Wt(Ω(t)) = F (ΩN (k)(t))

+β
∑

E⊆N (k) Pr(N (k), E)Wt+1(ΩE(t+ 1)),

(4)

where ΩE(t + 1) and ΩE(r + 1) are generated by
〈Ω(t),N (k), E〉 and 〈Ω(r),A(r), E〉, respectively, according
to (1), and then sorted by belief value.

The above recursively defined auxiliary value function gives
the expected discounted accumulated reward of the following
sensing policy: in slot t sense the first k channels in the belief
vector and then sense the channels in A(r) (t + 1 ≤ r ≤ T )
(i.e., adopt the myopic policy from slot t+1 to T ). If N (k) =
A(t), the above sensing policy is the myopic sensing policy
with Wt(Ω(t)) being the total reward from slot t to T .

In the subsequent analysis of this subsection, we prove some
structural properties of the auxiliary value function.

Lemma 3 (Symmetry). Given 0 ≤ ε ≤ (1−p11)p01

p11(1−p01)
, if F is

regular, the correspondent auxiliary value function Wt(Ω(t))
is symmetrical in ωi, ωj where i, j ∈ A(t) or i, j /∈ A(t) for
all t = 1, 2, · · · , T :

Wt(ω1, · · · , ωi, · · · , ωj, · · · , ωN)

= Wt(ω1, · · · , ωj, · · · , ωi, · · · , ωN).

Proof: The proof is given in the appendix.

Lemma 4 (Decomposability). Given 0 ≤ ε ≤ (1−p11)p01

p11(1−p01)
,

if F is regular, the correspondent auxiliary value function
Wt(Ω(t)) is decomposable for t = 1, · · · , T and ∀l ∈ N :

Wt(ω1, · · · , ωl, · · · , ωN) = ωlWt(ω1, · · · , 1, · · · , ωN )

+ (1− ωl)Wt(ω1, · · · , 0, · · · , ωN).

Proof: The proof is given in the appendix.
To demonstrate the property of decomposability of the aux-

iliary function which is crucial to the study of the optimality,
we provide an illustrative example in the following.

Example 1. Consider a system with k = 2, N = 3, T =
2, F (ΩA) = (1 − ε)

∑
i∈A ωi which is regular. Given the

belief value setting ω1 < ω2 < ω3, the auxiliary function
Wt(ω1, ω2, ω3) can be developed based on (4) as follows:

Wt(ω1, ω2, ω3) = (1− ε)(ω1 + ω2)

+ [(1− ε)ω1][(1− ε)ω2]Wt+1(p11, p11, τ (ω3))

+ [(1− ε)ω1][1− (1− ε)ω2]Wt+1(p11, ω3, τ (ϕ(ω2)))

+ [1− (1− ε)ω1][(1− ε)ω2]Wt+1(p11, ω3, τ (ϕ(ω1)))

+ [(1− 1− ε)ω1][1− (1− ε)ω2]Wt+1(ω3, τ (ϕ(ω2)), τ (ϕ(ω1)))

= (1− ε)(ω1 + ω2) + [(1− ε)ω1][(1− ε)ω2](1− ε)(p11 + p11)

+ [(1− ε)ω1][1− (1− ε)ω2](1− ε)(p11 + ω3)

+ [1− (1− ε)ω1][(1− ε)ω2](1− ε)(p11 + ω3)

+ [(1− 1− ε)ω1][1− (1− ε)ω2](1− ε)(ω3 + τ (ϕ(ω2)).

In the above function, let ω2 = 0, 1, we have

Wt(ω1, 0, ω3) = (1 − ε)(ω1 + 0)

+ [(1− ε)ω1][(1− ε)0]Wt+1(p11, p11, τ(ω3))

+ [(1− ε)ω1][1− (1− ε)0]Wt+1(p11, ω3, τ(ϕ(0)))

+ [1− (1− ε)ω1][(1− ε)0]Wt+1(p11, ω3, τ(ϕ(ω1)))

+ [(1− 1− ε)ω1][1− (1− ε)0]Wt+1(ω3, τ(ϕ(0)), τ(ϕ(ω1)))

= (1− ε)(ω1 + 0) + [(1 − ε)ω1][(1 − ε)0](1− ε)(p11 + p11)

+ [(1− ε)ω1][1− (1− ε)0](1− ε)(p11 + ω3)

+ [1− (1− ε)ω1][(1− ε)0](1− ε)(p11 + ω3)

+ [(1− 1− ε)ω1][1− (1− ε)0](1− ε)(ω3 + τ(ϕ(0))

Wt(ω1, 1, ω3) = (1 − ε)(ω1 + 1)

+ [(1− ε)ω1][(1− ε)1]Wt+1(p11, p11, τ(ω3))

+ [(1− ε)ω1][1− (1− ε)1]Wt+1(p11, ω3, τ(ϕ(1)))

+ [1− (1− ε)ω1][(1− ε)1]Wt+1(p11, ω3, τ(ϕ(ω1)))

+ [(1− 1− ε)ω1][1− (1− ε)1]Wt+1(ω3, τ(ϕ(1)), τ(ϕ(ω1)))

= (1− ε)(ω1 + 1) + [(1 − ε)ω1][(1 − ε)1](1− ε)(p11 + p11)

+ [(1− ε)ω1][1− (1− ε)1](1− ε)(p11 + ω3)

+ [1− (1− ε)ω1][(1− ε)1](1− ε)(p11 + ω3)

+ [(1− 1− ε)ω1][1− (1− ε)1](1− ε)(ω3 + τ(ϕ(1))).

We can check the decomposability by verifying that

Wt(ω1, ω2, ω3) = ω2Wt(ω1, 1, ω3) + (1 − ω2)Wt(ω1, 0, ω3).

Lemma 4 can be applied one step further to prove the
following corollary.
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Corollary 1. Given 0 ≤ ε ≤ (1−p11)p01

p11(1−p01)
, if F is regular, then

for any l,m ∈ N , t = 1, 2, · · · , T , it holds

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN)

−Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN )

= (ωl − ωm)
[
Wt(ω1, · · · , 1, · · · , 0, · · · , ωN )

−Wt(ω1, · · · , 0, · · · , 1, · · · , ωN )
]
.

B. Optimality of Myopic Sensing under Imperfect Sensing

In this section, we study the optimality of the myopic
sensing policy under imperfect sensing. We start by showing
the following important auxiliary lemmas (Lemma 5, 7 and 8)
and then establish the sufficient condition under which the
optimality of the myopic sensing policy is guaranteed.

Lemma 5. Given that (1) F is regular, (2) ε < p01(1−p11)
P11(1−p01)

,

and (3) β ≤ Δmin

Δmax

[
(1−ε)(1−p01)+

ε(p11−p01)

1−(1−ε)(p11−p01)

] , if p11 ≥
ωi ≥ p01, i ∈ N , l < m and ωl > ωm, ∀ 1 ≤ t ≤ T , it holds
that

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN )

≥ Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN ).

Lemma 6. Given that (1) F is regular, (2) ε < p01(1−p11)
P11(1−p01)

,

and (3) β ≤ Δmin

Δmax

[
(1−ε)(1−p01)+

ε(p11−p01)

1−(1−ε)(p11−p01)

] , if p11 ≥
ω1 ≥ · · · ≥ ωN ≥ p01, for any 1 ≤ t ≤ T , it holds that

Wt(ω1, · · · , ωk−1, ωk, · · · , ωN−1, ωN )

−Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1) ≤ (1−ωN)Δmax,

Based on Lemma 3, Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1) =
Wt(ωN , ω1, · · · , ωk−1, ωk, · · · , ωN−1), combined with
Lemma 6, we have the following lemma (Lemma 7):

Lemma 7. Given that (1) F is regular, (2) ε < p01(1−p11)
P11(1−p01)

,

and (3) β ≤ Δmin

Δmax

[
(1−ε)(1−p01)+

ε(p11−p01)

1−(1−ε)(p11−p01)

] , if p11 ≥
ω1 ≥ · · · ≥ ωN ≥ p01, for any 1 ≤ t ≤ T , it holds that

Wt(ω1, · · · , ωk−1, ωk, · · · , ωN−1, ωN )

−Wt(ωN , ω1, · · · , ωk−1, ωk, · · · , ωN−1) ≤ (1−ωN)Δmax,

Lemma 8. Given that (1) F is regular, (2) ε < p01(1−p11)
P11(1−p01)

,

and (3) β ≤ Δmin

Δmax

[
(1−ε)(1−p01)+

ε(p11−p01)

1−(1−ε)(p11−p01)

] , if p11 ≥
ω1 ≥ · · · ≥ ωN ≥ p01, for any 1 ≤ t ≤ T , it holds that

Wt(ω1, ω2, · · · , ωN−1, ωN)−Wt(ωN , ω2, · · · , ωN−1, ω1)

≤ (p11 − p01)Δmax
1− [β(1 − ε)(p11 − p01)]

T−t+1

1− β(1 − ε)(p11 − p01)
.

Lemma 5 states that by swapping two elements in Ω with
the former larger than the latter, the user does not increase
the total expected reward. Lemma 7 and 8, on the other hand,
give the upper bounds on the difference of the total reward
of the two swapping operations, swapping ωN and ωj (j =
N − 1, · · · , 1) and swapping ω1 and ωN , respectively. For
clarity of presentation, the detailed proofs of the three lemmas
are deferred to the Appendix. From a technical point of view,

it is insightful to compare the methodology in the proof with
that in the analysis presented in [7] for the perfect sensing case
with k = 1. The key point of the analysis in [7] lies in the
coupling argument leading to Lemma 3 in [7]. This analysis,
however, cannot be directly applied in the generic case with
imperfect sensing due to the non-linear update of the belief
vector as stated in the remark after equation (1). Hence, we
base our analysis on the intrinsic structure of the auxiliary
value function W and investigate the different ‘branches’ of
channel realizations to derive the relevant bounds, which are
further applied to study the optimality of the myopic sensing
policy, as stated in the following theorem.

Theorem 1. If p01 ≤ ωi(1) ≤ p11, i ∈ N , the my-
opic sensing policy is optimal if the following conditions
hold: (1) F is regular; (2) ε < p01(1−p11)

P11(1−p01)
; (3) β ≤

Δmin

Δmax

[
(1−ε)(1−p01)+

ε(p11−p01)

1−(1−ε)(p11−p01)

] .

Proof: It suffices to show that for t = 1, · · · , T , by
sorting Ω(t) in decreasing order such that ω1 ≥ · · · ≥ ωN ,
it holds that Wt(ω1, · · · , ωN ) ≥ Wt(ωi1 , · · · , ωiN ), where
(ωi1 , · · · , ωiN ) is any permutation of (1, · · · , N).

We prove the above inequality by contradiction. As-
sume, by contradiction, the maximum of Wt is achieved at
(ωi∗1 , · · · , ωi∗N ) �= (ω1, · · · , ωN ), i.e.,

Wt(ωi∗1 , · · · , ωi∗N ) > Wt(ω1, · · · , ωN). (5)

However, run a bubble sort algorithm on (ωi∗1 , · · · , ωi∗N ) by
repeatedly stepping through it, comparing each pair of adjacent
element ωi∗l and ωi∗l+1

and swapping them if ωi∗l < ωi∗l +1.
Note that when the algorithm terminates, the channel belief
vector are sorted decreasingly, that is to say, it becomes
(ω1, · · · , ωN). By applying Lemma 5 at each swapping, we
have Wt(ωi∗1 , · · · , ωi∗N ) ≤ Wt(ω1, · · · , ωN), which contra-
dicts to (5). Theorem 1 is thus proven.

As noted in [12], when the initial belief ωi(1) is set to
p01

p01+1−p11
as is often the case in practical systems, it can

be checked that p01 ≤ ωi(1) ≤ p11 holds. Moreover, even
the initial belief value does not fall in [p01, p11], all the the
belief values are bounded in the interval from the second slot
following Lemma 1. Hence our results can be extended by
treating the first slot separately from the future slots.

C. Discussion

In this subsection, we illustrate the application of the result
obtained above in two concrete scenarios and compare our
work with the existing results.

Consider the channel access problem in which the user is
limited to sense k channels and gets one unit of reward if
a sensed channel is in the idle state (i.e., receiving ACK),
thus the utility function can be formulated as F (ΩA) =
(1 − ε)

∑
i∈A ωi. Note that the optimality of the myopic

sensing policy under this model is studied in [12] for a subset
of scenarios where k = 1, N = 2. We now study the generic
case with k,N ≥ 2. To that end, we apply Theorem 1.
Notice in this example, we have Δmin = Δmax = 1 − ε.
We can then verify that when ε < p01(1−p11)

P11(1−p01)
, it holds

that Δmin

Δmax[(1−ε)(1−p01)+
ε(p11−p01)

1−(1−ε)(p11−p01)
]
> 1. Therefore, when
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the condition 1 and 2 holds, the myopic sensing policy is
optimal for any β. This result in generic cases significantly
extends the results obtained in [12] where the optimality of
the myopic policy is proved for the case of two channels and
only conjectured for general cases.

Next consider another special scenario where the user can
sense and access all channels that are sensed to be idle, and
gets one unit of reward if any of the channels has a successful
transmission. Under this model, the user wants to maximize its
expected throughput. More specifically, the slot utility function
F = F (ΩA) = 1−Πi∈A[1−(1−ε)ωi], which is regular. In this
context, we have Δmax = (1− ε)k−1pk−1

11 and Δmin = (1−
ε)k−1pk−1

01 . The third condition on for the myopic policy to

be optimal becomes β ≤ pk−1
01

pk−1
11 [(1−ε)(1−p01)+

ε(p11−p01)

1−(1−ε)(p11−p01)
]
.

Particularly, when ε = 0, β ≤ pk−1
01

pk−1
11 (1−p01)

. It can be noted
that even when there is no sensing error, the myopic policy is
not ensured to be optimal for any β.

IV. CONCLUSION

In this paper, we have investigated the problem of oppor-
tunistic channel access under imperfect channel state sensing.
We have derived closed-form conditions under which the
myopic sensing policy is ensured to be optimal. Due to
the generic RMAB formulation of the problem, the obtained
results and the analysis methodology presented in this paper
are widely applicable in a wide range of domains.

APPENDIX A
PROOF OF LEMMA 3

Recall Wt(Ω(t)) = F (ΩN (k)(t)) +
β
∑

E⊆N (k) Pr(N (k), E)Wt+1(ΩE(t + 1)), we prove
the lemma by distinguishing the following two cases:

• Case 1: i, j ∈ A(t). Noticing that (1) both F and∑
E⊆N (k)

Pr(N (k), E) =
∑

E⊆A(t)

Pr(A(t), E) are symmet-

rical w.r.t. ωi and ωj , (2) (ω1, · · · , ωi, · · · , ωj, · · · , ωN)
and (ω1, · · · , ωj , · · · , ωi, · · · , ωN) generate the same be-
lief vector ΩE(t+1) for any E , and (3) myopic policy is
adopted from slot t+1 to T , it holds that Wt+1(ΩE(t+1))
is symmetrical w.r.t. ωi and ωj .

• Case 2: i, j /∈ A(t). Noticing that (1) both F and∑
E⊆N (k)

Pr(N (k), E) =
∑

E⊆A(t)

Pr(A(t), E) are unre-

lated to ωi, ωj , (2) (ω1, · · · , ωi, · · · , ωj, · · · , ωN) and
(ω1, · · · , ωj, · · · , ωi, · · · , ωN ) generate the same belief
vector ΩE(t + 1) for any E , and (3) myopic policy is
adopted from slot t+1 to T , it holds that Wt+1(ΩE(t+1))
is symmetrical w.r.t. ωi and ωj .

Combing the analysis completes the proof.

APPENDIX B
PROOF OF LEMMA 4

We prove the lemma by backward induction. Firstly, it can
be checked that Lemma 4 holds for slot T .

Assume that Lemma 4 holds for slots t+1, · · · , T , we now
prove that it holds for slot t by distinguishing the following
two cases.

Case 1: l is not sensed in slot t, i.e. l ≥ k+1. In this case,
let M � N (k) = {1, · · · , k}, we have

Wt(ω1, · · · , ωl, · · · , ωn) = F (ω1, · · · , ωk)

+ β
∑
E⊆M

Pr(M, E)Wt+1(Ω
E
l (t+ 1)),

where

ΩE
l (t+ 1) =(PE

11,Φl(k + 1, N), τ(ωl),Φ
l(k + 1, N),QM,E).

Let ωl = 0 and 1, respectively, we have

Wt(ω1, · · · , 0, · · · , ωn) = F (ω1, · · · , ωk)

+ β
∑
E⊆M

Pr(M, E)Wt+1(Ω
E
l,0(t+ 1)),

Wt(ω1, · · · , 1, · · · , ωn) = F (ω1, · · · , ωk)

+ β
∑
E⊆M

Pr(M, E)Wt+1(Ω
E
l,1(t+ 1)),

where

ΩE
l,0(t+ 1) =(PE

11,Φl(k + 1, N), p01,Φ
l(k + 1, N),QM,E),

ΩE
l,1(t+ 1) =(PE

11,Φl(k + 1, N), p11,Φ
l(k + 1, N),QM,E).

To prove the lemma in this case, it is sufficient to prove

Wt+1(Ω
E
l (t+ 1))

= (1− ωl)Wt+1(Ω
E
l,0(t+ 1)) + ωlWt+1(Ω

E
l,1(t+ 1)). (6)

From the induction result, we have

Wt+1(Ω
E
l (t+ 1)) (7)

= τ (ωl) ·Wt+1(P
E
11,Φl(k + 1, N), 1,Φl(k + 1, N),QM,E)

+ (1− τ (ωl))Wt+1(P
E
11,Φl(k + 1, N), 0,Φl(k + 1, N),QM,E),

Wt+1(Ω
E
l,0(t+ 1)) (8)

= p01 ·Wt+1(P
E
11,Φl(k + 1, N), 1,Φl(k + 1, N),QM,E)

+ (1− p01)Wt+1(P
E
11,Φl(k + 1, N), 0,Φl(k + 1, N),QM,E),

Wt+1(Ω
E
l,1(t+ 1)) (9)

= p11 ·Wt+1(P
E
11,Φl(k + 1, N), 1,Φl(k + 1, N),QM,E)

+ (1− p11)Wt+1(P
E
11,Φl(k + 1, N1), 0,Φl(k + 1, N),QM,E).

Combing (7), (8), (9), we obtain (6).
Case 2: l is sensed in slot t, i.e. l ≤ k. Let M � N (k) \

{l} = {1, · · · , l − 1, l+ 1, · · · , k}, it follows (4) that

Wt(Ω(t)) = F (ω1, · · · , ωl, · · · , ωk)

+ β(1− ε)ωl

∑
E⊆M

Pr(M, E)Wt+1(P
E
11, p11,Φ(k + 1, N),Q

M,E,l
,QM,E,l)

+ β[1− (1− ε)ωl]
∑
E⊆M

Pr(M, E)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, τ(ϕ(ωl)),Q

M,E,l).

Let ωl = 0 and 1, respectively, we have

Wt(ω1, · · · , 0, · · · , ωn) = F (ω1, · · · , 0, · · · , ωk)

+ β
∑
E⊆M

Pr(M, E)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p01,Q

M,E,l),
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Wt(ω1, · · · , 1, · · · , ωn) = F (ω1, · · · , 1, · · · , ωk)

+ β(1 − ε)
∑
E⊆M

Pr(M, E)Wt+1(P
E
11, p11,Φ(k + 1, N),Q

M,E,l
,QM,E,l)

+ βε
∑
E⊆M

Pr(M, E)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p11,Q

M,E,l).

To prove the lemma in this case, it is sufficient to show

[1− (1− ε)ωl]

Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, τ(ϕ(ωl)),Q

M,E,l)

= (1− ωl)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p01,Q

M,E,l)

+ εωlWt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p11,Q

M,E,l). (10)

From the induction result, we have

Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, τ(ϕ(ωl)),Q

M,E,l) (11)

= τ(ϕ(ωl))Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 1,QM,E,l)

+ (1 − τ(ϕ(ωl)))Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 0,QM,E,l),

Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p01,Q

M,E,l) (12)

= p01Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 1,QM,E,l)

+ (1 − p01)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 0,QM,E,l),

Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, p11,Q

M,E,l) (13)

= p11Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 1,QM,E,l)

+ (1 − p11)Wt+1(P
E
11,Φ(k + 1, N),Q

M,E,l
, 0,QM,E,l).

Combing (11), (12), (13), we obtain (10).
Combing the above analysis completes our proof.

APPENDIX C
PROOF OF LEMMA 5, LEMMA 6, LEMMA 7 AND LEMMA 8

Due to the dependency among these lemmas, we prove them
together by backward induction.

We first show that Lemma 5 – 8 hold for slot T . It is
easy to verify that Lemma 5 holds.

We then prove Lemma 6, 7 and 8. Noticing the conditions
p01 ≤ ωN ≤ ωk ≤ p11 ≤ 1 in Lemma 7 and p01 ≤ ωN ≤
ω1 ≤ p11 in Lemma 8, we have

WT (ω1, · · · , ωN )−WT (ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1)

= F (ω1, · · · , ωk)− F (ω1, · · · , ωk−1, ωN )

= (ωk − ωN )[F (ω1, · · · , ωk−1, 1)− F (ω1, · · · , ωk−1, 0)]

≤ (1− ωN )Δmax,

WT (ω1, · · · , ωN )−WT (ωN , ω1, · · · , ωk−1, ωk, · · · , ωN−1)

= F (ω1, · · · , ωk)− F (ωN , ω1, · · · , ωk−1)

= (ωk − ωN )[F (ω1, · · · , ωk−1, 1)− F (ω1, · · · , ωk−1, 0)]

≤ (1− ωN )Δmax,

WT (ω1, · · · , ωN )−WT (ωN , ω2, · · · , ωN−1, ω1)

= F (ω1, · · · , ωk)− F (ωN , ω2, · · · , ωk)

= (ω1 − ωN )[F (1, ω2, · · · , ωk)− F (0, ω2, · · · , ωk)]

≤ (p11 − p01)Δmax.

Lemma 6, 7 and 8 thus hold for slot T .
Assume that Lemma 5 – 8 hold for slots T, · · · , t + 1,

we now prove that they hold for slot t.
We first prove Lemma 5. We distinguish the following

three cases:
Case 1: l,m /∈ N (k). This case follows Lemma 3.
Case 2: l ∈ N (k) and m /∈ N (k). In this case, M �

N (k)\{l}, it can be noted that QM,E = (QM,E,l,Q
M,E,l

) =

(QM,E,m,Q
M,E,m

) and (Φm(k + 1, N),Φm(k + 1, N)) =
(Φl(k+ 1,m− 1),Φl(m+ 1, N),Φl(k +1,m− 1),Φl(m+
1, N)). In this case, we have

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN ) − Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN )

= (ωl − ωm)

[Wt(ω1, 1, · · · , 0, · · · , ωN ) − Wt(ω1, · · · , 0, · · · , 1, · · · , ωN )]

= (ωl − ωm)
{
F (ω1, · · · , 1, · · · , ωk) − F (ω1, · · · , 0, · · · , ωk)

+ β
∑

E⊆M
Pr(M, E)

[

(1 − ε)Wt+1(P
E
11, p11,Φm(k + 1, N), p01,Φ

m(k + 1, N),QM,E )

+ εWt+1(P
E
11,Φm(k + 1, N), p01,Φ

m
(k + 1, N),Q

M,E,l
, p11,Q

M,E,l
)

− Wt+1(P
E
11,Φl(k + 1,m − 1),Φl(m + 1, N), p11,Φ

l(k + 1,m − 1),

Φl(m + 1, N),Q
M,E,m

, p01,Q
M,E,m)

]}

≥ (ωl − ωm)
{
Δmin + β

∑
E⊆M

Pr(M, E)
[
(1 − ε)Wt+1(p01,P

E
11, p11,Φm(k + 1, N),Φ

m
(k + 1, N),Q

M,E
)

+ εWt+1(p01,P
E
11,Φm(k + 1, N),Φm(k + 1, N),QM,E , p11)

− Wt+1(P
E
11, p11,Φl(k + 1, m − 1),Φl(m + 1, N),

Φ
l
(k + 1,m − 1),Φ

l
(m + 1, N),Q

M,E
, p01)

]}

= (ωl − ωm)
{
Δmin + β

∑
E⊆M

Pr(M, E)
[
(1 − ε)Wt+1(p01,P

E
11, p11,Φm(k + 1, N),Φm(k + 1, N),QM,E )

+ εWt+1(p01,P
E
11,Φm(k + 1, N),Φm(k + 1, N),QM,E , p11)

− Wt+1(P
E
11, p11,Φm(k + 1, N),Φm(k + 1, N),QM,E , p01)

]}

≥ (ωl − ωm)
[
Δmin − β

∑
E⊆M

Pr(M, E)·
(
(1 − ε)(1 − p01)Δmax

+ ε(p11 − p01)Δmax
1 − [β(1− ε)(p11 − p01)]

T−t

1 − β(1 − ε)(p11 − p01)

)]

≥ (ωl − ωm)
∑

E⊆M
Pr(M, E) ·

[
Δmin

− β
(
(1 − ε)(1 − p01)Δmax +

ε(p11 − p01)Δmax

1 − (1 − ε)(p11 − p01)

)]
≥ 0,

where the first inequality follows the induction result of
Lemma 5, the second inequality follows the induction result
of Lemma 7 and 8, the forth inequality follows the condition
in the lemma.

Case 3: l,m ∈ N (k). This case follows Lemma 3.
Lemma 5 is thus proven for slot t.
We then proceed to prove Lemma 6. We start with the

first inequality. We develop Wt w.r.t. ωk and ωN according to
Lemma 4 as follows:

Wt(ω1, · · · , ωk−1, ωk, · · · , ωn−1, ωn)

−Wt(ω1, · · · , ωk−1, ωn, ωk, ..., ωn−1)

= ωkωn

[
Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 1)

−Wt(ω1, · · · , ωk−1, 1, 1, ωk+1, · · · , ωn−1)
]
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+ ωk(1− ωn)[Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 0)

−Wt(ω1, · · · , ωk−1, 0, 1, ωk+1, · · · , ωn−1)]

+ (1 − ωk)ωn[Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 1)

−Wt(ω1, · · · , ωk−1, 1, 0, ωk+1, · · · , ωn−1)]

+ (1 − ωk)(1 − ωn)[Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 0)

−Wt(ω1, · · · , ωk−1, 0, 0, ωk+1, · · · , ωn−1)]. (14)

We proceed the proof by upbounding the four terms in (14).
For the first term, we have

Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 1)

−Wt(ω1, · · · , ωk−1, 1, 1, ωk+1, · · · , ωn−1)

= β
∑

E⊆N (k−1)

Pr(N (k − 1), E)
[
(1− ε)Wt+1(P

E
11, p11,Φ(k + 1, N − 1), p11,Q

N (k−1),E)

+ εWt+1(P
E
11,Φ(k + 1, N − 1), p11,Q

N (k−1),E , p11)

− (1− ε)Wt+1(P
E
11, p11, p11,Φ(k + 1, N − 1),QN (k−1),E)

− εWt+1(P
E
11, p11,Φ(k + 1, N − 1),QN (k−1),E , p11)

]
≤ 0,

where, the inequality follows the induction of Lemma 5.
For the second term, we have

Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 0)

−Wt(ω1, · · · , ωk−1, 0, 1, ωk+1, · · · , ωn−1)

=F (ω1, · · · , ωk−1, 1)− F (0, ω1, · · · , ωk−1)

+ β
∑

E⊆N (k−1)

Pr(N (k − 1), E)
[
(1− ε)Wt+1(P

E
11, p11,Φ(k + 1, N − 1), p01,Q

N (k−1),E)

+ εWt+1(P
E
11,Φ(k + 1, N − 1), p01,Q

N (k−1),E , p11)

−Wt+1(P
E
11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
≤F (ω1, · · · , ωk−1, 1)− F (0, ω1, · · · , ωk−1)

+ β
∑

E⊆N (k−1)

Pr(N (k − 1), E)
[
(1− ε)Wt+1(P

E
11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

+ εWt+1(P
E
11,Φ(k + 1, N − 1),QN (k−1),E , p11, p01)

−Wt+1(P
E
11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
=F (ω1, · · · , ωk−1, 1)− F (0, ω1, · · · , ωk−1)

+ β
∑

E⊆N (k−1)

Pr(N (k − 1), E)
[
εWt+1(P

E
11,Φ(k + 1, N − 1),QN (k−1),E , p11, p01)

− εWt+1(P
E
11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
≤Δmax

following the induction of Lemma 5.
For the third term, we have

Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 1)

−Wt(ω1, · · · , ωk−1, 1, 0, ωk+1, · · · , ωn−1)

= F (ω1, · · · , ωk−1, 0)− F (1, ω1, · · · , ωk−1)

+ β
∑

E⊆N (k−1)

Pr(N (k − 1), E)
[
Wt+1(P

E
11,Φ(k + 1, N − 1), p11,Q

N (k−1),E , p01)

− (1− ε)Wt+1(P
E
11, p11, p01,Φ(k + 1, N − 1),QN (k−1),E)

− εWt+1(P
E
11, p01,Φ(k + 1, N − 1),QN (k−1),E , p11)

]
≤ −Δmin + β

∑
E⊆N (k−1)

Pr(N (k − 1), E)
[
Wt+1(P

E
11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

− (1− ε)Wt+1(p01, p11,P
E
11,Φ(k + 1, N − 1),QN (k−1),E)

− εWt+1(p01,P
E
11,Φ(k + 1, N − 1),QN (k−1),E , p11)

]
≤ −Δmin + β

∑
E⊆N (k−1)

Pr(N (k − 1), E)
[
(1 − ε)(1− p01)Δmax

+ ε(p11 − p01)Δmax
1− [β(1 − ε)(p11 − p01)]

T−t

1− β(1 − ε)(p11 − p01)

]
≤

∑
E⊆N (k−1)

Pr(N (k − 1), E)·
[
−Δmin + β

[
(1− ε)(1 − p01)Δmax+

ε(p11 − p01)Δmax
1

1− (1− ε)(p11 − p01)

]] ≤ 0,

where the first inequality follows the induction result of
Lemma 5, the second equality follows the induction result
of Lemma 7 and 8, the forth inequality is due the condition
in Lemma 7.

For the fourth term, we have

Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 0)

−Wt(ω1, · · · , ωk−1, 0, 0, ωk+1, · · · , ωn−1)

=β
∑

E⊆N (k−1)

Pr(N (k − 1), E)·
[
Wt+1(P

E
11,Φ(k + 1, N − 1), p01,Q

N (k−1),E , p01)

−Wt+1(P
E
11, p01,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
≤β

∑
E⊆N (k−1)

Pr(N (k − 1), E)·
[
Wt+1(P

E
11,Φ(k + 1, N − 1),QN (k−1),E , p01, p01)

−Wt+1(p01,P
E
11,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
≤β(1− p01)Δmax,

where the first inequality follows Lemma 5, the second follows
the induction result of Lemma 7.

Combing the above results of the four terms, we have

Wt(ω1, · · · , ωN )−Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1)

≤ωk(1 − ωN) ·Δmax + (1− ωk)(1− ωN ) · (1− p01)βΔmax

≤ωk(1 − ωN)Δmax + (1− ωk)(1− ωN )Δmax

≤(1− ωN )Δmax,

which completes the proof of Lemma 6.
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Based on Lemma 3, Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1) =
Wt(ωN , ω1, · · · , ωk−1, ωk, · · · , ωN−1), combined with
Lemma 6, we conclude the proof of Lemma 7.

Finally, we prove Lemma 8. To this end, denote M �
{2, · · · , k}, we have

Wt(ω1, · · · , ωN ) − Wt(ωN , ω2, · · · , ωN−1, ω1)

=(ω1 − ωN )[
Wt(1, ω2, · · · , ωN−1, 0) − Wt(0, ω2, · · · , ωN−1, 1)

]

=(ω1 − ωN )
{
F (1, ω2, · · · , ωk) − F (0, ω2, · · · , ωk)

+ β
∑

E⊆M
Pr(M, E)·

[
(1 − ε)Wt+1(P

E
11, p11,Φ(k + 1, N − 1), p01,Q

M,E)

+ εWt+1(P
E
11,Φ(k + 1, N − 1), p01, p11,Q

M,E)

− Wt+1(P
E
11,Φ(k + 1, N − 1), p11,Q

M,E , p01)
]}

≤(ω1 − ωN )
{
Δmax + β

∑
E⊆M

Pr(M, E)
[
(1 − ε)Wt+1(P

E
11, p11,Φ(k + 1, N − 1), p01,Q

M,E)

+ εWt+1(P
E
11,Φ(k + 1, N − 1), p11,Q

M,E , p01)

− Wt+1(P
E
11,Φ(k + 1, N − 1), p11,Q

M,E , p01)
]}

=(ω1 − ωN )
{
Δmax + β

∑
E⊆M

Pr(M, E)
[
(1 − ε)Wt+1(P

E
11, p11,Φ(k + 1, N − 1), p01,Q

M,E)

− (1 − ε)Wt+1(P
E
11,Φ(k + 1, N − 1), p11,Q

M,E , p01)
]}

≤(ω1 − ωN )
{
Δmax + β

∑
E⊆M

Pr(M, E)
[
(1 − ε)Wt+1(P

E
11, p11,Φ(k + 1, N − 1),Q

M,E
, p01)

− (1 − ε)Wt+1(p01,P
E
11,Φ(k + 1, N − 1),QM,E , p11)

]}

≤(p11 − p01)
[
Δmax + β

∑
E⊆M

Pr(M, E)

(1 − ε)
1 − [β(1− ε)(p11 − p01)]

T−t

1 − β(1 − ε)(p11 − p01)
(p11 − p01)Δmax

]

=
∑

E⊆M
Pr(M,E)(p11 − p01)

[
Δmax + β(1− ε)

1 − [β(1 − ε)(p11 − p01)]
T−t

1 − β(1 − ε)(p11 − p01)
(p11 − p01)Δmax

]

=
∑

E⊆M
Pr(M,E)(p11 − p01)Δmax

[
1 + β(1 − ε)(p11 − p01)

1 − [β(1 − ε)(p11 − p01)]
T−t

1 − β(1 − ε)(p11 − p01)

]

=
1 − [β(1− ε)(p11 − p01)]

T−t+1

1 − β(1 − ε)(p11 − p01)
(p11 − p01)Δmax,

where the first two inequalities follows the induction result of
Lemma 5, the third inequality follows the induction result of
Lemma 8.

We thus complete the whole process of proving Lemma 5–
8.
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