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Abstract—Tag population estimation has recently attracted
significant research attention due to its paramount importance on
a variety of radio frequency identification (RFID) applications.
However, most, if not all, of existing estimation mechanisms
are proposed for the static case where tag population remains
constant during the estimation process, thus leaving the more
challenging dynamic case unaddressed, despite the fundamental
importance of the latter case on both theoretical analysis and
practical application. In order to bridge this gap, we devote
this paper to designing a generic framework of stable and
accurate tag population estimation schemes based on Kalman
filter for both static and dynamic RFID systems. Technically, we
first model the dynamics of RFID systems as discrete stochastic
processes and leverage the techniques in extended Kalman filter
(EKF) and cumulative sum control chart (CUSUM) to estimate
tag population for both static and dynamic systems. By employing
Lyapunov drift analysis, we mathematically characterise the
performance of the proposed framework in terms of estimation
accuracy and convergence speed by deriving the closed-form
conditions on the design parameters under which our scheme can
stabilise around the real population size with bounded relative
estimation error that tends to zero with exponential convergence
rate.

Index Terms—RFID, tag population estimation, extended
Kalman filtre, stochastic stability.

I. INTRODUCTION

A. Context and Motivation

Recent years have witnessed an unprecedented development
and application of the radio frequency identification (RFID)
technology. As a promising low-cost technology, RFID is
widely utilized in various applications ranging from inven-
tory control [1][2], supply chain management [3] to track-
ing/location [4][5]. A standard RFID system has two types of
devices: a set of RFID tags and one or multiple RFID readers
(simply called tags and readers). A tag is typically a low-
cost microchip labeled with a unique serial number (ID) to
identify an object. A reader, on the other hand, is equipped
with an antenna and can collect the information of tags within
its coverage area.

Tag population estimation and counting is a fundamental
functionality for many RFID applications such as warehouse
management, inventory control and tag identification. For
example, quickly and accurately estimating the number of
tagged objects is crucial in establishing inventory reports for
large retailers such as Wal-Mart [6]. Due to the paramount
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practical importance of tag population estimation, a large body
of studies [7][8][9][10][11] have been devoted to the design
of efficient estimation algorithms. Most of them, as reviewed
in Sec. II, are focused on the static scenario where the tag
population is constant during the estimation process. However,
many practical RFID applications, such as logistic control, are
dynamic in the sense that tags may be activated or terminated
as specialized in C1G2 standard [12], or the tagged objects
may enter and/or leave the reader’s covered area frequently,
thus resulting in tag population variation. In such dynamic
applications, a fundamental research question is how to design
efficient algorithms to dynamically trace the tag population
quickly and accurately.

B. Summary of Contributions
In this paper, we develop a generic framework of stable

and accurate tag population estimation schemes for both static
and dynamic RFID systems. By generic, we mean that our
framework both supports the real-time monitoring and can
estimate the number of tags accurately without any prior
knowledge on the tag arrival and departure patterns. Our
design is based on the extended Kalman filter (EKF) [13],
a powerful tool in optimal estimation and system control. By
performing Lyapunov drift analysis, we mathematically prove
the efficiency and stability of our framework in terms of the
boundedness of estimation error.

The main technical contributions of this paper are articulat-
ed as follows. We formulate the system dynamics of the tag
population for both static and dynamic RFID systems where
the number of tags remains constant and varies during the
estimation process. We design an EKF-based population esti-
mation algorithm for static RFID systems and further enhance
it to dynamic RFID systems by leveraging the cumulative sum
control chart (CUSUM) to detect the population change. By
employing Lyapunov drift analysis, we mathematically char-
acterise the performance of the proposed framework in terms
of estimation accuracy and convergence speed by deriving the
closed-form conditions on the design parameters under which
our scheme can stabilise around the real population size with
bounded relative estimation error that tends to zero within
exponential convergence rate. To the best of our knowledge,
our work is the first theoretical framework that dynamically
traces the tag population with closed form conditions on the
estimation stability and accuracy.

II. RELATED WORK

Due to its fundamental importance, tag population esti-
mation has received significant research attention, which we
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briefly review in this section.

A. Tag Population Estimation for Static RFID systems

Most of existing works are focused on the static scenario
where the tag population is constant during the estimation
process. The central question there is to design efficient
algorithms quickly and accurately estimating the static tag
population. Kodialam et al. design an estimator called PZE
which uses the probabilistic properties of empty and collision
slots to estimate the tag population size [14]. The authors then
further enhance PZE by taking the average of the probability
of idle slots in multiple frames as an estimator in order to
eliminate the constant additive bias [7]. Han et al. exploit
the average number of idle slots before the first non-empty
slots to estimate the tag population size [15]. Later, Qian et
al. develop Lottery-Frame scheme that employs geometrically
distributed hash function such that the jth slot is chosen with
prob. 1

2j+1 [9]. As a result, the first idle slot approaches
around the logarithm of the tag population and the frame size
can be reduced to the logarithm of the tag population, thus
reducing the estimation time. Subsequently, a new estimation
scheme called ART is proposed in [10] based on the average
length of consecutive non-empty slots. The design rational of
ART is that the average length of consecutive non-empty slots
is correlated to the tag population. ART is shown to have
smaller variance than prior schemes. More recently, Zheng et
al. propose another estimation algorithm, ZOE, where each
frame just has a single slot and the random variable indicating
whether a slot is idle follows Bernoulli distribution [11]. The
average of multiple individual observations is used to estimate
the tag population.

We would like to point out that the above research work
does not consider the estimation problem for dynamic RFID
systems and thus may fail to monitor the system dynamics
in real time. Specifically, in typical static tag population
estimation schemes, the final estimation result is the average
of the outputs of multi-round executions. When applied to
dynamic tag population estimation, additional estimation error
occurs due to the variation of the tag population size during
the estimation process.

B. Tag Population Estimation for Dynamic RFID systems

Only a few propositions have tackled the dynamic scenario.
The works in [16] and [17] consider specific tag mobility
patterns that the tags move along the conveyor in a constant
speed, while tags may move in and out by different workers
from different positions, so these two algorithm cannot be
applicable to generic dynamic scenarios. Subsequently, Xiao
et al. develop a differential estimation algorithm, ZDE, in
dynamic RFID systems to estimate the number of arriving
and removed tags [18]. More recently, they further generalize
ZDE by taking into account the snapshots of variable frame
sizes [19]. Though the algorithms in [18] and [19] can monitor
the dynamic RFID systems, they may fail to estimate the tag
population size accurately, because they must use the same
hash seed in the whole monitoring process, which cannot
reduce the estimation variance. Using the same seed is an

effective way in tracing tag departure and arrival. However,
it may significantly limit the estimation accuracy, even in the
static case.

Besides the limitations above, prior works do not provide
formal analysis on the stability and the convergence rate.
To fill this vide, we develop a generic framework for tag
population estimation in dynamic RFID systems. By generic,
we mean that our framework can both support real-time
monitoring and estimate the number of tags accurately without
the requirement for any prior knowledge on the tag arrival
and departure patterns. As another distinguished feature, the
efficiency and stability of our framework is mathematically
established.

III. TECHNICAL PRELIMINARIES

In this section, we briefly introduce the extended Kalman
filter and some fundamental concepts and results in stochastic
process which are useful in the subsequent analysis.

A. Extended Kalman Filter

The extended Kalman filter is a powerful tool to estimate
system state in nonlinear discrete-time systems. Formally, a
nonlinear discrete-time system can be described as follows:

zk+1 = f(zk, xk) + w∗k (1)
yk = h(zk) + u∗k, (2)

where zk+1 ∈ Rn denotes the state of the system, xk ∈ Rd
is the controlled inputs and yk ∈ Rm stands for the measure-
ment observed from the system. The uncorrelated stochastic
variables w∗k ∈ Rn and u∗k ∈ Rm denote the process noise
and the measurement noise, respectively. The functions f and
h are assumed to be the continuously differentiable.

For the above system, we introduce an EKF-based state
estimator given in Definition 1.

Definition 1 (Extended Kalman filter [13]). A two-step
discrete-time extended Kalman filter consists of state predic-
tion and measurement update, defined as

1) Time update (prediction)
ẑk+1|k = f(ẑk|k, xk) (3)
Pk+1|k = Pk|k +Qk, (4)

2) Measurement update (correction)
ẑk+1|k+1 = f(ẑk+1|k, xk) +Kk+1vk+1 (5)
Pk+1|k+1 = Pk+1|k (1−Kk+1Ck+1) (6)

Kk+1 =
Pk+1|kCk+1

Pk+1|kCk+1
2 +Rk+1

, (7)

where vk+1 = yk+1 − h(ẑk+1|k) (8)

Ck+1 =
∂h(zk+1)

∂zk+1

∣∣∣∣
zk+1=ẑk+1|k

. (9)

Remark. In the above definition of extended Kalman filter,
the parameters can be interpreted in our context as follows:
• ẑk+1|k is the prediction of zk+1 at the beginning of frame
k+1 given by the previous state estimate, while ẑk+1|k+1

is the estimate of zk+1 after the adjustment based on the
measure at the end of frame k + 1.
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• vk+1, referred to as innovation, is the measurement
residual in frame k+1. It represents the estimated error
of the measure.

• Kk+1 is the Kalman gain. With reference to equation (5),
it weighs the innovation vk+1 w.r.t. f(ẑk+1|k, xk).

• Pk+1|k and Pk+1|k+1, in contrast to the linear case,
are not equal to the covariance of estimation error of
the system state. Here, we will refer to them as pseudo-
covariance.

• Qk and Rk are two tunable parameters which play the
role as that of the covariance of the process and mea-
surement noises in linear stochastic systems to achieve
optimal filtering in the maximum likelihood sense. We will
show later that Qk and Rk also play an important role
in improving the stability and convergence of our EKF-
based estimators.

B. Boundedness of Stochastic Process

In order to analyse the stability of an estimation algorithm,
we need to check the boundedness of the estimation error
defined as follows:

ek|k−1 , zk − ẑk|k−1. (10)
Due to probabilistic nature of the estimation algorithm, the

estimation process is a stochastic process. Thus, we further
introduce the following two mathematical definitions [20] [21]
on the boundedness of stochastic process.

Definition 2 (Boundedness of Random Variable). The stochas-
tic process of the estimation error ek|k−1 is said to be bounded
with probability one (w.p.o.), if there exists X > 0 such that

lim
k→∞

sup
k≥1

P{|ek|k−1| > X} = 0. (11)

Definition 3 (Boundedness in Mean Square). The stochastic
process ek|k−1 is said to be exponentially bounded in the mean
square with exponent ζ, if there exist real numbers ψ1, ψ2 > 0
and 0 < ζ < 1 such that

E[e2
k|k−1] ≤ ψ1e

2
1|0ζ

k−1 + ψ2. (12)

To investigate the boundedness defined in Definition 2
and 3, we introduce the following lemma [22].

Lemma 1. Given a stochastic process Vk(ek|k−1) and con-
stants β, β, τ>0 and 0<α≤1 with the following properties:

βe2
k|k−1 ≤ Vk(ek|k−1) ≤ βe2

k|k−1, (13)
E[Vk+1(ek+1|k)|ek|k−1]− Vk(ek|k−1) ≤ −αVk(ek|k−1) + τ,

(14)
then for any k ≥ 1 it holds that
• the stochastic process ek|k−1 is exponentially bounded in

the mean square, i.e.,

E[e2
k|k−1] ≤ β

β
E[e2

1|0](1− α)k−1 +
τ

β

k−2∑
j=1

(1− α)j

≤ β

β
E[e2

1|0](1− α)k−1 +
τ

βα
, (15)

• the stochastic process ek|k−1 is bounded w.p.o..

From Lemma 1, if we can construct Vk(ek|k−1), a function
of ek|k−1, such that both its drift and Vk(ek|k−1)

e2
k|k−1

are bounded,

i.e, (14) and (13) hold, then ek|k−1 is also bounded and the
convergence rate depends on constant α mostly. Besides, it
can be noted that Lemma 1 can only be implemented offline.
To address this limit, we adjust Lemma 1 to an online version
with time-varying parameters, which can be proven by the
same method as in [21] and [23].

Lemma 2. If there exist a stochastic process Vk(ek|k−1) and
real numbers β∗, βk, τk>0 and 0<α∗k≤1 with the following
properties:

V1(e1|0) ≤ β∗e2
1|0, (16)

βke
2
k|k−1 ≤ Vk(ek|k−1), (17)

E[Vk+1(ek+1|k)|ek|k−1]−Vk(ek|k−1) ≤ −α∗kVk(ek|k−1)+τk;
(18)

then for any k ≥ 1 it holds that
• the stochastic process ek|k−1 is exponentially bounded in

the mean square, i.e.,

E[e2
k|k−1] ≤ β∗

βk
E[e1|0

2]
k−1∏
i=1

(1− α∗i )

+
1

βk

k−2∑
i=1

τk−i−1

i∏
j=1

(1− α∗k−j), (19)

• the stochastic process ek|k−1 is bounded w.p.o..

Remark. The conditions in Lemma 2 can be interpreted as
follows: To prove the boundedness of ek|k−1, it is sufficient
by constructing a function Vk(ek|k−1) such that both its drift,
i.e, (18), and Vk(ek|k−1)

e2
k|k−1

, i.e, (16), (17), are bounded.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a RFID system consisting of a reader and a mass of
tags operating on one frequency channel. The number of tags
is unknown a priori and can be constant or dynamic (time-
varying), which we refer to as static and dynamic systems,
respectively throughout the paper. The MAC protocol for the
RFID system is the standard framed-slotted ALOHA protocol,
where the standard Listen-before-Talk mechanism is employed
by the tags to respond the reader’s interrogation [24].

The reader initiates a series of frames indexed by an integer
k ∈ Z+. Each individual frame, referred to as a round, consists
of a number of slots. The reader starts frame k by broadcasting
a begin-round command with frame size Lk, persistence
probability rk and a random seed Rsk. When a tag receives
a begin-round command, it uses a hash function h(·), Lk,
Rsk, and its ID to generate a random number i in the range
[0, Lk−1] and reply in slot i of frame k with probability rk.1

Since every tag picks its own response slot individually,
there may be zero, one, or more than one tags transmitting in
a slot, which are referred to as idle, singleton, and collision
slots, respectively. The reader is not assumed to be able to
distinguish between a singleton or a collision slot, but it can
detect an idle slot. We term both singleton and collision slots
as occupied slots throughout the paper. By collecting all replies

1The outputs of the hash function have a uniform distribution such that the
tag can choose any slot within the round with the equal probability.
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in a frame, the reader can generate a bit-string Bk illustrated
as Bk = {· · · |0|0|1|0|1|1| · · · }, where ‘0’ indicates an idle
slot, and ‘1’ stands for an occupied one.

Subsequently, the reader finalizes the current frame by
sending an end round command. Based on the number of
idle slots, i.e., the number of ‘0’ in Bk, the reader runs the
estimation algorithm, detailed in the next section, to trace the
tag population.

B. Tag Population Estimation Problem

Our objective is to design a stable and accurate tag popula-
tion estimation algorithm for both static and dynamic systems.
By stable and accurate we mean that
• the estimation error of our algorithm is bounded in the

sense of Definition 2 and 3 and the relative estimation
error tends to zero;

• the estimated population size converges to the real value
with exponential rate.

Mathematically, we consider a large-scale RFID system of
a reader and a set of tags with the unknown size zk in frame
k which can be static or dynamic. Denote by ẑk|k−1 the prior
estimate of zk in the beginning of frame k. At the end of frame
k, the reader updates the estimate ẑk|k−1 to ẑk|k by running the
estimation algorithm. Our designed estimation scheme need to
guarantee the following properties:

• lim
zk→∞

∣∣∣∣ ẑk|k−1 − zk
zk

∣∣∣∣ = 0;

• the converges rate is exponential.

V. TAG POPULATION ESTIMATION: STATIC SYSTEMS

In this section, we focus on the baseline scenario of static
systems where the tag population is constant during the
estimation process. We first establish the discrete-time model
for the system dynamics and the measurement model using
the bit string Bk observed during frame k. We then present
our EKF-based estimation algorithm.

A. System Dynamics and Measurement Model

Consider the static RFID systems where the tag population
stays constant, the system state evolves as

zk+1 = zk, (20)
meaning that the number of tags zk+1 in the system in frame
k + 1 equals that in frame k.

In order to estimate zk, we leverage the measurement on
the number of idle slots during a frame. To start, we study the
stochastic characteristics of the number of idle slots.

Assume that the initial tag population z0 falls in the interval
z0 ∈ [z0, z0], yet the exact value of z0 is unknown and
should be estimated. The range [z0, z0] can be a very coarse
estimation that can be obtained by any existing population
estimation method. Recall the system model that in frame k,
the reader probes the tags with the frame size Lk. Denote by
variable Nk the number of idle slots in frame k, that is, the
number of ‘0’s in Bk, we have the following results on Nk
according to [14], [25].

Lemma 3. If each tag replies in a random slot among the Lk
slots with probability rk, then it holds that Nk ∼ N [µ, σ2]
for large Lk and zk, where µ = Lk(1 − rk

Lk
)zk and σ2 =

Lk(Lk − 1)(1− 2rk
Lk

)zk + Lk(1− rk
Lk

)zk − Lk2(1− rk
Lk

)2zk .

Lemma 4. For any ε∗ > 0, there exists some M > 0, such
that if zk ≥M or Lk = ẑk|k−1 ≥M , then it holds that∣∣µ− Lke−rkρ∣∣ ≤ ε∗, (21)∣∣σ2 − Lk(e−rkρ − (1 + r2

kρ)e−2rkρ)
∣∣ ≤ ε∗, (22)

where ρ = zk
Lk

is referred to as the reader load factor.

Lemmas 3 and 4 imply that in large-scale RFID systems,
we can use Lke

−rkρ and Lk(e−rkρ − (1 + r2
kρ)e−2rkρ) to

approximate µ and σ2.
At the end of each frame k, the reader gets a measure yk

of the idle slot frequency defined as

yk =
Nk
Lk

. (23)

Recall Lemma 3, it holds that yk is a Normal distributed
random variable specified as follows: E[yk] = e−rkρ and
V ar[yk] = 1

Lk
(e−rkρ − (1 + r2

kρ)e−2rkρ). Since there are zk
tags reply in frame k with probability rk, the probability that
a slot is idle, denoted as p(zk), can be calculated as

p(zk) = (1− rk
Lk

)zk ≈ e−
rkzk
Lk . (24)

Notice that for large zk, p(zk) can be regarded as a continu-
ously differentiable function of zk.

Using the language in the Kalman filter, we can write yk
as follows:

yk = p(zk) + uk, (25)

where, based on the statistic characteristics of yk, uk is a
Gaussian random variable with zero mean and variance

V ar[uk] =
1

Lk
(e−rkρ − (1 + r2

kρ)e−2rkρ). (26)

We note that uk measures the uncertainty of yk.
To summarise, the discrete-time model for static RFID

systems is characterized by (20) and (25).

B. Tag Population Estimation Algorithm

Noticing that the system state characterised by (20) and (25)
is a discrete-time nonlinear system, we thus leverage the two-
step EKF described in Definition 1 to estimate the system
state. In (7), the Kalman gain Kk increases with Qk while
decreases with Rk. As a result, Qk and Rk can be used to
tune the EKF such that increasing Qk and/or decreasing Rk
accelerates the convergence rate but leads to larger estimation
error. In our design, we set Qk to a constant q > 0 and
introduce a parameter φk as follows to replace Rk to facilitate
our demonstration:

Rk = φkPk|k−1Ck
2. (27)

It can be noted from (7) and (27) that Kk is monotonously
decreasing in φk, i.e., a small φk leads to quick convergence
with the price of relatively high estimation error. Hence,
choosing the appropriate value for φk consists of striking a
balance between the convergence rate and the estimation error.
In our work, we take a dynamic approach by setting φk to a
small value φ but satisfying (62) at the first few rounds (J
rounds) of estimation to allow the system to act quickly since
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the estimation in the beginning phase can be very coarse. After
that we set φk to a relatively high value φ to achieve high
estimation accuracy.

Now, we present our tag population estimation algorithm
in Algorithm 1 where P0|0, q can be set to some constants
straightforward since the performance mostly depends on φk
and kmax is the time horizon during which the system needs to
be monitored, e.g., if the RFID system needs to be monitored
from time T1 to T2, then at T1, kmax is simply set as T2−T1.
The major procedures can be summarised as:

1) In the beginning of frame k: prediction (line 3). The
reader first predicts the number of tags based on the
estimation at the end of frame k−1. The predicted value
is defined as ẑk|k−1. Then the reader sets the persistence
probability rk following Lemma 8 and zk is set to ẑk|k−1.

2) Line 4-5. The reader launches the Listen-before-talk
protocol as introduced in IV-A in order to receive the
feedbacks from tags.

3) At the end of frame k: correction (line 6-14). The reader
computes Nk based on Bk and further calculates yk
and vk from Nk. It then updates the prediction with the
corrected estimate ẑk|k following (5).

We will theoretically establish the stability and accuracy of
the algorithm in Sec. VII.

Algorithm 1 Tag population estimation (static cases): executed
by the reader

Input: z0, P0|0, q, J , L, φ, φ, maximum number of rounds
kmax

Output: Estimated tag population set Sz = {ẑk|k : k ∈
[0, kmax]}

1: Initialisation: ẑ0|0 ← z0, Q0 ← q, Sz = {ẑ0|0}
2: for k = 1 to kmax do
3: ẑk|k−1 ← ẑk−1|k−1, Lk ← L, rk ← 1.59Lk/ẑk|k−1,

Pk|k−1 ← Pk−1|k−1 +Qk−1

4: Generate a new random seed Rsk and broadcast (Lk,
rk, Rsk)

5: Run Listen-before-Talk protocol
6: Obtain the number of idle slots Nk, and compute yk

and vk using (23) and (8)
7: Qk ← q
8: if k ≤ J then
9: φk ← φ

10: else
11: φk ← φ
12: end if
13: Calculate Rk and Kk using (27) and (7)
14: Update ẑk|k and Pk|k using (5) and (6)
15: Sz ← Sz ∪ {ẑk|k}
16: end for

VI. TAG POPULATION ESTIMATION: DYNAMIC SYSTEMS

In this section, we further tackle the dynamic case where
the tag population may vary during the estimation process.
The objective for the dynamic systems is to promptly detect
the global tag papulation change and accurately estimate the

quantity of this change. To that end, we first establish the
system model and then present our estimation algorithm.

A. System Dynamics and Measurement Model

In dynamic RFID systems, we can formulate the system
dynamics as

zk+1 = zk + wk, (28)

where the tag population zk+1 in frame k+1 consists of two
parts: i) the tag population in frame k and ii) a random
variable wk which accounts for the stochastic variation of
tag population resulting from the tag arrival/departure during
frame k. Notice that wk is referred to as process noise in
Kalman filters and the appropriate characterisation of wk is
crucial in the design of stable Kalman filters, which will be
investigated in detail later. Besides, the measurement model is
the same as the static case. Hence, the discrete-time model for
dynamic RFID systems can be characterized by (28) and (25).

B. Tag Population Estimation Algorithm

In the dynamic case, we leverage the two-step EKF to
estimate the system state combined with the CUSUM test to
further trace the tag population fluctuation.

Algorithm 2 Tag population estimation (unified framework):
executed by the reader

Input: z0, P0|0, q, J , L, φ, φ, maximum number of rounds
kmax

Output: Estimation set Sz = {ẑk|k : k ∈ [0, kmax]}
1: Initialisation: ẑ0|0 ← z0, Q0 ← q, Sz = {ẑ0|0}
2: for k = 1 to kmax do
3: ẑk|k−1←ẑk−1|k−1, Lk←L, Pk|k−1←Pk−1|k−1+Qk−1,

rk←min(1, 1.59Lk/ẑk|k−1),
4: Generate a new seed Rsk and broadcast (Lk, Rsk) and

run Listen-before-Talk protocol
5: Obtain the number of idle slots Nk, and compute yk

and vk using (23) and (8)
6: Qk ← q
7: if k ≤ J then
8: φk ← φ
9: else

10: Execute Algorithm 3
11: φk ← output of Algorithm 3
12: end if
13: Calculate Rk and Kk using (27) and (7), and update

ẑk|k and Pk|k using (5) and (6)
14: Sz ← Sz ∪ {ẑk|k}
15: end for

Our main estimation algorithm is illustrated in Algorithm 2.
The difference compared to the static scenario is that tag
population variation needs to be detected by the CUSUM test
presented in Algorithm 3 in the next subsection and the output
of Algorithm 3 acts as a feedback to φk, meaning φk is no
more a constant after the first J rounds as the static case due
to the tag population variation. Specifically, if a change on the
tag population is detected in frame k, φk is set to φ to quickly
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react to the change, otherwise φk sticks to φ to stabilize the
estimation. We note that in the case where zk is constant,
Algorithm 2 degenerates to Algorithm 1.

C. Detecting Tag Population Change: CUSUM Test

The CUSUM Detection Framework. We leverage the
CUSUM test to detect the change of tag population and further
adjust φk. CUSUM test is a sequential analysis technique
typically used for change detection [26]. It is shown to be
asymptotically optimal in the sense of the minimum detec-
tion time subject to a fixed worst-case expected false alarm
rate [27].

In the context of dynamic tag population detection, the
reader monitors the innovation process vk = yk − p(ẑk|k−1).
If the number of the tags population is constant, vk equals to
uk which is a Gaussian process with zero mean. In contrast,
upon the system state changes, i.e., tag population changes,
vk drifts away from the zero mean. In our design, we use Φk
as a normalised input to the CUSUM test by normalising vk
with its estimated standard variance, specified as follows:

Φk =
vk√

(Pk|k−1 +Qk−1)Ck
2 + V ar[uk]

∣∣
zk=ẑk|k−1

. (29)

The reader updates the CUSUM statistics g+
k and g−k as

follows:
g+
k = max{0, g+

k−1 + Φk −Υ}, (30)

g−k = min{0, g−k−1 + Φk + Υ}, (31)

g+
k = g−k = 0, if δ = 1, (32)

where g+
0 =0 and g−0 = 0. And Υ≥0, referred to as reference

value, is a filter design parameter indicating the sensitivity of
the CUSUM test to the fluctuation of Φk, Moreover, by δ we
define an indicator flag indicating tag population change:

δ =

{
1 if g+

k > θ or g−k < −θ,
0 otherwise,

(33)

where θ > 0 is a pre-specified CUSUM threshold.
The detailed procedure of the change detection is illustrated

in Algorithm 3 where ϕ1(δ) shown in (37)is used to assign
the value to φk according to whether the system state changes.

Algorithm 3 CUSUM test: executed by the reader in frame k
Input: Υ, θ
Output: φk

1: Initialisation: g+
0 ← 0, g−0 ← 0

2: Compute Φk using equation (29)
3: g+

k ← (30), g−k ← (31)
4: if g+

k > θ or g−k < −θ then
5: δ ← 1, φk ← ϕ1(δ), g+

k ← 0, g−k ← 0
6: else
7: δ ← 0, φk ← ϕ1(δ)
8: end if
9: Return φk

Parameter tuning in CUSUM test. The choice of the
threshold θ and the drift parameter Υ has a directly impact
on the performance of the CUSUM test in terms of detection

delay and false alarm rate. Formally, the average running
length (ARL) L(µ∗) is used to denote the duration between
two actions [28]. For a large θ, L(µ∗) is approximated as

L(µ∗) =

{
Θ(θ), if µ∗ 6= 0,

Θ(θ2), if µ∗ = 0,
(34)

where µ∗ denotes the mean of the process Φk.
In our context, ARL corresponds to the mean time between

two false alarms in the static case and the mean detection delay
of the tag population change in the dynamic case. It is easy
to see from (34) that a higher value of θ leads to lower false
alarm rate at the price of longer detection delay. Therefore, the
choices of θ and Υ consists of a tradeoff between the false
alarm rate and the detection delay.

Recall that Φk can be approximated to a white noise
process, i.e, Φk ∼ N [µ∗, σ∗2] with µ∗ = 0, σ∗ = 1 if the
system state does not change. Generically, as recommended
in [29], setting θ and Υ as follows achieves good ARL from
the engineering perspective.

θ = 4σ∗, (35)
Υ = µ∗ + 0.5σ∗. (36)

In the CUSUM framework, we set φk by ϕ1(δ) as follows:

ϕ1(δ) =

{
φ, if δ = 1,

φ, if δ = 0.
(37)

The rationale is that once a change on the tag population
is detected in frame k, φk is set to φ to quickly react to
the change, while φk sticks to φ when no system change is
detected.

Finally, we conclude this section by summarizing the algo-
rithm parameter settings.

TABLE I
ALGORITHM PARAMETER SETTINGS

Parameters Settings
P0|0, J, q constants as shown in Sec. IX
kmax required monitoring time as shown in Sec. IX
φk following Algorithm 3 while satisfying (62)
Lk, rk Lk = L, rk = min(1, 1.59L/ẑk|k−1) with constant L
θ,Υ based on (35) and (36) following [29]

VII. PERFORMANCE ANALYSIS

In this section, we establish the stability and the accuracy of
our estimation algorithms for both static and dynamic cases.

A. Static Case

Our analysis is composed of two steps. We first derive
the estimation error and then establish the stability and the
accuracy of Algorithm 1 in terms of the boundedness of
estimation error.

Computing Estimation Error. We first approximate the
non-linear discrete system by a linear one. To that end, as the
function p(zk) is continuously differentiable at zk = ẑk|k−1,
using the Taylor expansion, we have

p(zk) = p(ẑk|k−1) + Ck(zk − ẑk|k−1) + χ(zk, ẑk|k−1), (38)
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where Ck = − rkρ

erkρẑk|k−1
, (39)

χ(zk, ẑk|k−1) =
∞∑
j=2

1

erkρj!
(rkρ−

rkρzk
ẑk|k−1

)j . (40)

Regarding the convergence of χ(zk, ẑk|k−1) in (40), assume
that

zk = a′kẑk|k−1, (41)

we can obtain the following boundedness of the residual for
the case |a′k − 1| < 1

rkρ
:

|χ(zk, ẑk|k−1)| =
∞∑
j=0

(ẑk|k−1 − zk)2(rkρ)j+2

erkρẑ2
k|k−1(j + 2)!

∣∣∣1− zk
ẑk|k−1

∣∣∣j
≤

(rkρ)2(ẑk|k−1 − zk)2

2e(rkρ)akẑ2
k|k−1

, (42)

where ak = 1− (rkρ)|1− a′k|. (43)
Recall the definition of the estimation error in (10) and

using (20), (3) and (5), we can derive the estimation error
ek+1|k as follows:
ek+1|k = zk+1 − ẑk+1|k = zk − ẑk|k
= zk − ẑk|k−1 −Kk

[
Ck(zk − ẑk|k−1) + χ(zk, ẑk|k−1) + uk

]
= (1−KkCk)ek|k−1 + sk +mk, (44)

where sk and mk are defined as
sk = −Kkuk, (45)
mk = −Kkχ(zk, ẑk|k−1). (46)

Boundedness of Estimation Error. Having derived the
dynamics of the estimation error, we now state the main result
on the stochastic stability and accuracy of Algorithm 1.

Theorem 1. Consider the discrete-time stochastic system
given by (20) and (25) and Algorithm 1, the estimation error
ek|k−1 defined by (10) is exponentially bounded in mean
square and bounded w.p.o., if the following conditions hold:

1) there are positive numbers q, q, φ and φ such that the
bounds on Qk and φk are satisfied for every k≥0, as in

q ≤ Qk ≤ q, (47)

φ ≤ φk ≤ φ, (48)
2) The initialization must follow the rules

P0|0 > 0, (49)
|e1|0| ≤ ε (50)

with positive real number ε > 0.

Remark. By referring to the design objective posed in Sec-
tion IV, Theorem 1 prove the following properties of our
estimation algorithm:
• the estimation error of our algorithm is bounded in mean

square and the relative estimation error tends to zero;
• the estimated population size converges to the real value

with exponential rate.
Moreover, the conditions in Theorem 1 can be interpreted

as follows:
1) The inequalities (47) and (48) can be satisfied by the

configuring the correspondent parameters in Algorith-
m 1, which guarantees the boundedness of the pseudo-
covariance Pk|k−1 as shown later.

2) The inequality (49) consists of establishing positive
Pk|k−1 for every k ≥ 1.

3) As a sufficient condition for stability, the upper bound ε
may be too stringent. As shown in the simulation results,
stability is still ensured even with a relatively large ε.

Before the proof of Theorem 1, we first state several
auxiliary lemmas to streamline the proof and show how to
apply these lemmas to prove Theorem 1 subsequently.

Lemma 5. Under the conditions of Theorem 1, if P0|0 > 0,
there exist p

k
, pk > 0 such that the pseudo-covariance Pk|k−1

is bounded for every k ≥ 1, i.e.,
p
k
≤ Pk|k−1 ≤ pk. (51)

Proof: Recall (4) and (6), we have Pk|k−1 ≥ Qk−1, and
Pk|k−1 = Pk−1|k−2(1−Kk−1Ck−1) +Qk−1

= Pk−1|k−2 −
P 2
k−1|k−2C

2
k−1

Pk−1|k−2Ck−1
2 +Rk−1

+Qk−1. (52)

Following the design of Rk in (27) and by iteration, we further
get

Pk|k−1 = Pk−1|k−2

(
1− 1

1 + φk−1

)
+Qk−1 = P1|0

·
k−1∏
i=1

(
1− 1

1 + φi

)
+
k−2∑
i=0

Qi

k−2∏
j=i

(
1− 1

1 + φj+1

)
+Qk−1.

Since φk and Qk are controllable parameters, we can set
φk ≤ φ and Qk ≤ q for every k ≥ 0 in Algorithm 1, where
φ, q > 0. Consequently, we have

Pk|k−1 ≤ P1|0

(
1− 1

1 + φ

)k−1

+ q

k−1∑
j=1

(
1− 1

1 + φ

)j
+

Qk−1 ≤ (P0|0 +Q0)

(
1− 1

1 + φ

)k−1

+ qφ+Qk−1 (53)

Let pk = ((P0|0 +Q0)
(

1− 1
1+φ

)k−1

+ qφ+Qk−1 and p
k

=

Qk−1, we have p
k
≤ Pk|k−1 ≤ pk.

Lemma 6. Let αk , 1
1+φk

, it holds that

(1−KkCk)2

Pk+1|k
e2
k|k−1 ≤ (1− αk)

e2
k|k−1

Pk|k−1
, ∀k ≥ 1. (54)

Proof: From (52), we have
Pk+1|k = Pk|k−1 (1−KkCk) +Qk

≥ Pk|k−1 (1−KkCk) . (55)
By substituting it into the left-hand side of (54) and using the
fact that Rk = φkPk|k−1Ck

2 for every k ≥ 1, we get
(1−KkCk)2

Pk+1|k
e2
k|k−1 ≤

(1−KkCk)2

Pk|k−1 (1−KkCk)
e2
k|k−1

≤ (1−KkCk)
ek|k−1

2

Pk|k−1
≤
(

1− 1

1 + φk

)
e2
k|k−1

Pk|k−1
.

We are thus able to prove (54).

Lemma 7. Let bk ,
rkρ(4akφk + 1− ak)

4a2
kφk(1 + φk)ẑk|k−1Pk|k−1

, it holds

that
mk[2(1−KkCk)ek|k−1 +mk]

Pk+1|k
≤ bk|ẑk|k−1 − zk|3. (56)



0090-6778 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2016.2592524, IEEE
Transactions on Communications

8

Proof: From (46), we get the following expansion

mk[2(1−KkCk)ek|k−1 +mk]

Pk+1|k

=
−Pk|k−1Ckχ(zk, ẑk|k−1)

Pk+1|k(Pk|k−1Ck
2 +Rk)

·

[
2

(
1−

Pk|k−1Ck
2

Pk|k−1Ck
2 +Rk

)

· ek|k−1 −
Pk|k−1Ck

Pk|k−1Ck
2 +Rk

χ(zk, ẑk|k−1)

]
.

It then follows from (39), (41) and (55) that
mk[2(1−KkCk)ek|k−1 +mk]

Pk+1|k
≤
−Pk|k−1Ck(rkρ)2

2erkρakẑ2
k|k−1Pk|k−1

(ẑk|k−1 − zk)2

(1−KkCk)(Pk|k−1Ck
2 +Rk)

[
2−

2Pk|k−1Ck
2

Pk|k−1Ck
2 +Rk

· |ẑk|k−1 − zk| −
Pk|k−1Ck

Pk|k−1Ck
2 +Rk

(rkρ)2(ẑk|k−1 − zk)2

2e1.59akẑ2
k|k−1

]

≤ rkρ(4akφk + 1− ak)

4a2
kφk(1 + φk)ẑk|k−1Pk|k−1

|ẑk|k−1 − zk|3.

We are thus able to prove (56).

Lemma 8. E
[

sk
2

Pk+1|k

∣∣ek|k−1

]
≤

2.46ẑk|k−1

φk(1 + φk)rkPk|k−1
when

rkρ = 1.59.

Proof: From (45), we have E
[

s2k
Pk+1|k

∣∣ek|k−1

]
=

K2
kE[u2

k]
Pk+1|k

. With (7), (26) and (55), we have E
[

s2k
Pk+1|k

∣∣ek|k−1

]
≤ e

2rkρẑk|k−1(e−rkρ−(1+r2kρ)e
−2rkρ)

φk(1+φk)Pk|k−1ρr
2
k

.

Since item E
[

s2k
Pk+1|k

∣∣ek|k−1

]
influences the estimation ac-

curacy, we set the optimal persistence probability to minimize
this item. Denote Λ(rk) = e2rkρ

r2k
(e−rkρ − (1 + r2

kρ)e−2rkρ),
we have

dΛ

drk
=

(rkρ− 2)erkρ + 2

r3
k

.

Since rkρ > 0 and d((rkρ−2)erkρ+2)
drkρ

= (rkρ − 1)erkρ which
is greater zero if rkρ > 1 and is smaller than zero if rkρ < 1,
and 1) if rkρ = 1, dΛ

drk
< 0; 2) if rkρ = 0, dΛ

drk
= 0; 3) if

rkρ = 2, dΛ
drk

> 0, there exists a unique solution rkρ ∈ (1, 2)

for dΛ
drk

= 0 such that Λ(rk) is minimized. Searching in (1, 2),
we find the optimal rkρ = 1.59. Therefore, we can obtain that

E

[
s2
k

Pk+1|k

∣∣ek|k−1

]
≤

2.46ẑk|k−1

φk(1 + φk)rkPk|k−1
, ξk, (57)

which completes the proof.
Armed with the above auxiliary lemmas, we next prove

Theorem 1.
Proof of Theorem 1: First, we construct the following

Lyapunov function to define the stochastic process:

Vk(ek|k−1) =
e2
k|k−1

Pk|k−1
,

which satisfies (4) and (49) as Pk|k−1 > 0.
Next, we use Lemma 2 to develop the proof. Because it

follows from Lemma 5 that the properties (16) and (17) in
Lemma 2 are satisfied, the main task left is to prove (18).

From (44), expanding Vk+1(ek+1|k) leads to

Vk+1(ek+1|k) =
e2
k+1|k

Pk+1|k
=

[(1−KkCk)ek|k−1 + sk +mk]2

Pk+1|k

=
(1−KkCk)2

Pk+1|k
e2
k|k−1 +

mk[2(1−KkCk)ek|k−1 +mk]

Pk+1|k

+
2sk[(1−KkCk)ek|k−1 +mk]

Pk+1|k
+

s2
k

Pk+1|k
.

Furthermore, by Lemmas 6, 7 and 8 and some algebraic
operations, we have

E
[
Vk+1(ek+1|k)|ek|k−1

]
− Vk(ek|k−1)

≤ −αkVk(ek|k−1) + bk|ek|k−1|3 + ξk. (58)
To obtain the same formation with (18), we further proceed
to bound the second term in bk in (58) as follows:

bk|ek|k−1|3 ≤ ςαkVk(ek|k−1), (59)
where 0 < ς < 1 is preset controllable parameter. To
prove the above inequality, we need to prove |ek|k−1| ≤

4ςa2kφk ẑk|k−1

1.59(4akφk+1.59|a′k−1|) . Since |ek|k−1| = |a′k − 1|ẑk|k−1, it
suffices to show

|a′k − 1| ≤ 4ςa2
kφk

1.59(4akφk + 1.59|a′k − 1|)
, (60)

which is equivalent to (1 − 4φk − 4φkς)ak
2 + (4φk −

2)ak + 1 ≤ 0 because of (43). With some algebraic op-

erations, we obtain 1) 1−2φk−2
√
φk(φk+ς)

1−4φk(1+ς) < ak ≤ 1, if

φk < 1
4(1+ς) ; and 2) 2φk−1+2

√
φk(φk+ς)

4φk(1+ς)−1 ≤ ak ≤ 1, if
φk > 1

4(1+ς) ; and 3) 1+ς
1+2ς ≤ ak ≤ 1, if φk = 1

4(1+ς) .

Since it holds that 2φk−1+2
√
φk(φk+ς)

4φk(1+ς)−1 < 1+ς
1+2ς for every ς

and 2φk−1+2
√
φk(φk+ς)

4φk(1+ς)−1 will decrease monotonically to 1
1+ς

for a large φk, we have in the worst case for φk ≥ 1
4(1+ς) ,

1 + ς

1 + 2ς
≤ ak ≤ 1. (61)

It follows from the analysis that if we set

φk ≥
1

4(1 + ς)
, (62)

(60) can be satisfied. Moreover, it holds that

|a′k − 1| ≤ 0.63ς

1 + 2ς
. (63)

That is,
|ek|k−1| ≤ εk, (64)

where εk , 0.63ς
1+2ς ẑk|k−1. By setting φk in (62), for |ek|k−1| ≤

εk, we thus have

E
[
Vk+1(ek+1|k)|ek|k−1

]
− Vk(ek|k−1)

≤ −(1− ς)αkVk(ek|k−1) + ξk. (65)
Therefore, we are able to apply Lemma 2 to prove Theo-

rem 1 by setting ε = 0.63ς
1+2ς ẑ1|0, β∗ = 1

Q0
, α∗k = (1 − ς)αk,

βk = 1
pk

and τk = ξk.

Remark. Theorem 1 also holds in the sense of Lemma 1 (the
off-line version of Lemma 2) by setting the parameters in (15)
as β = 1

Q0
, α = 1−ς

1+φ
≤ α∗k, β = (P0|0 +Q0 + q(φ+ 1) ≥ pk,

and τ = Q0ẑmax
φ(1+φ) ≥ ξk, where ẑmax is the maximum estimate.

We conclude the analysis on the performance of our es-
timation algorithm for the static case with a more profound
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investigation on the evolution of the estimation error |ek|k−1|.
More specifically, we can distinguish three regions:

• Region 1:
√

2.46Mẑk|k−1

φk(M−1)rk(1−ς) ≤ |ek|k−1| ≤ εk. By
substituting the condition into the right hand side
of (65), we obtain: −(1 − ς)αkVk(ek|k−1) + ξk ≤
− (1−ς)αk

M Vk(ek|k−1), where M > 1 is a positive con-
stant and can be set beforehand. It then follows that
E[Vk+1(ek+1|k)|ek|k−1] ≤

(
M−(1−ς)αk

M

)
Vk(ek|k−1).

Consequently, we can bound E[e2
k|k−1] as:

E[e2
k|k−1] ≤ pk

Q0
E[e1|0

2]
k−1∏
i=1

(1− α∗i ) (66)

with α∗k = (1−ς)αk
M . It can then be noted that

E[e2
k|k−1]→ 0 at an exponential rate as k →∞.

• Region 2:
√

2.46ẑk|k−1

φkrk(1−ς) ≤ |ek|k−1| <
√

2.46Mẑk|k−1

φk(M−1)rk(1−ς) .

In this case, we have − (1−ς)αk
M Vk(ek|k−1) <−(1 −

ς)αkVk(ek|k−1) + ξk≤0. It then follows from Lemma 2
that

E[e2
k|k−1] ≤ pk

Q0
E[e1|0

2]
k−1∏
i=1

(1− α∗i )

+ pk

k−2∑
i=1

ξk−i−1

i∏
j=1

(1− α∗k−j).

Hence, when k →∞, E[e2
k|k−1] converges at exponential

rate to pk
∑k−2
i=1 ξk−i−1

∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1),

which is decoupled with the initial estimation error and it

thus holds
E[ek|k−1]

zk
= Θ

( 1
√
zk

)
→ 0 when zk →∞.

• Region 3: 0 ≤ |ek|k−1| <
√

2.46ẑk|k−1

φkrk(1−ς) . In this case, we
can show that the right hand side of (65) is positive, i.e.,
−(1 − ς)αkVk(ek|k−1) + ξk > 0. It also follows from
Lemma 2 that

E[e2
k|k−1] ≤ pk

Q0
E[e1|0

2]
k−1∏
i=1

(1− α∗i )

+ pk

k−2∑
i=1

ξk−i−1

i∏
j=1

(1− α∗k−j).

Hence, when k → ∞, E[e2
k|k−1] converges exponen-

tially to pk
∑k−2
i=1 ξk−i−1

∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1),

which is decoupled with the initial estimation error and it

thus holds
E[ek|k−1]

zk
≤ Θ

( 1
√
zk

)
→ 0 when zk →∞.

Combining the above three regions, we get the following
results on the convergence of the expected estimation error
E[ek|k−1]: (1) if the estimation error is small (Region 3), it
will converge to a value smaller than Θ(

√
ẑk|k−1) as analysed

in Region 3; (2) if the estimation error is larger (Region 1),
it will decrease as analysed in Region 1 and fall into either
Region 2 or Region 3 where E[ek|k−1]≤ Θ(

√
ẑk|k−1) such

that the relative estimation error E[ek|k−1]

zk
→0 when zk→∞.

B. Dynamic Case

Our analysis on the stability of Algorithm 2 for the dynamic
case is also composed of two steps. First, we derive the
estimation error. Second, we establish the stability and the
accuracy of Algorithm 2 in terms of the boundedness of
estimation error.

We first derive the dynamics of the estimation error as
follows:

ek+1|k = (1−KkCk)ek|k−1 + sk +mk, (67)

which differs from the static case (44) in sk. In the dynamic
case, we have

sk = wk −Kkuk (68)

Next, we show the boundedness of the estimation error in
Theorem 2.

Theorem 2. Under the conditions of Theorem 1, consider the
discrete-time stochastic system given by (28) and (25) and
Algorithm 2, if there exist time-varying positive real number
λk, σk > 0 such that

E[wk] ≤ λk, (69)

E[wk
2] ≤ σk, (70)

then the estimation error ek|k−1 defined by (10) is exponen-
tially bounded in mean square and bounded w.p.o..

Remark. Note that the condition E[wk] ≤ λk always holds
for E[wk] < 0, we thus focus on the case that E[wk] ≥ 0. In
the proof, the explicit formulas of λk and σk are derived. As in
the static case, the conditions may be too stringent such that
the results still hold even if the conditions are not satisfied, as
illustrated in the simulations.

The proof of Theorem 2 is also based on Lemmas 6, 7
and 8, but due to the introduction of wk into sk, we need
another two auxiliary lemmas on E[sk] and E[s2

k].

Lemma 9. If E[wk] ≥ 0, then there exists a time-varying real
number dk > 0 such that

E
[2sk[(1−KkCk)ek|k−1 +mk]

Pk+1|k

∣∣∣ek|k−1

]
≤ dk|ek|k−1|E[wk].

Proof: When E[wk] ≥ 0, from E[vk] = 0, (41), (55) and
the independence between wk and ek|k−1, we can derive

E

[
2sk[(1−KkCk)ek|k−1 +mk]

Pk+1|k

∣∣∣ek|k−1

]
≤ 2E[wk]

1 + φk
φkPk|k−1

[
φk|ek|k−1|

1 + φk
+

1.59|ek|k−1|2

2ak(1 + φk)ẑk|k−1

]
≤ E[wk]

2akφk + (1− ak)

akφkPk|k−1
|ek|k−1|.

By setting

dk =
2akφk + (1− ak)

akφkPk|k−1
, (71)

we thus complete the proof.

Lemma 10. There exists a time-varying parameter ξ∗k > 0

such that E
[

sk
2

Pk+1|k

∣∣ek|k−1

]
≤ ξ∗k .
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Proof: By (68), we have s2
k = w2

k − 2Kkwkuk +K2
ku

2
k.

Since wk and uk are uncorrelated and ek|k−1 does not depend
on either wk or uk, we have

E

[
s2
k

Pk+1|k

∣∣ek|k−1

]
=

E[w2
k]

Pk+1|k
+
K2
kE[u2

k]

Pk+1|k
. (72)

Substituting (7), (55) and using Lemma 8, noticing that
E[uk] = 0, we get E

[
s2k

Pk+1|k

∣∣ek|k−1

]
≤ (1+φk)E[w2

k]
φkPk|k−1

+
2.46ẑk|k−1

φk(1+φk)rkPk|k−1
. Finally, by setting ξ∗k as

ξ∗k =
1 + φk
φkPk|k−1

E[wk
2] +

2.46ẑk|k−1

φk(1 + φk)rkPk|k−1
, (73)

we complete the proof.
Armed with the above lemmas, we next prove Theorem 2

by utilizing the same method with the proof of Theorem 1.
Proof of Theorem 2: Recall (45) and (68), we notice

that the only difference between the estimation errors of
Algorithms 2 and 1 is sk. Therefore, it suffices to study the
impact of wk on Vk(ek|k−1).

It follows from Lemmas 6, 7, 8, 9 and 10 that

E
[
Vk+1(ek+1|k)|ek|k−1

]
− Vk(ek|k−1)

≤ −αkVk(ek|k−1) + bk|ek|k−1|3 + dk|ek|k−1|E[wk] + ξ∗k.

Furthermore, bounding the second item in bk as (59) and given
φk in (62), yields

E
[
Vk+1(ek+1|k)|ek|k−1

]
− Vk(ek|k−1)

≤ −(1− ς)αkVk(ek|k−1) + dk|ek|k−1|E[wk] + ξ∗k

for |ek|k−1| ≤ εk.
And we can thus prove Theorem 2 by setting ε = 0.63ς

1+2ς ẑ1|0,
β∗ = 1

Q0
, α∗k = (1 − ς)αk, τk = ξ∗k + dk|ek|k−1|λk and

βk = 1
pk

.
We conclude the analysis on the performance of our esti-

mation algorithm for the dynamic case with a more profound
investigation on the evolution of the estimation error |ek|k−1|
and derive the explicit formulas for λk and σk. More specifi-
cally, we can distinguish three regions:

• Region 1:
√

9.84Mẑk|k−1

φk(M−1)rk(1−ς) ≤ |ek|k−1| ≤ εk. In this
case, the objective is to achieve

E
[
Vk+1(ek+1|k)|ek|k−1

]
− Vk(ek|k−1)

≤ − 1

M
(1− ς)αkVk(ek|k−1)

so that E[e2
k|k−1] is bounded as

E[e2
k|k−1] ≤ pk

Q0
E[e1|0

2]
k−1∏
i=1

(1− α∗i ). (74)

That is, it should hold that dk|ek|k−1|E[wk] + ξ∗k ≤
M−1
M (1− ς)αkVk(ek|k−1). To that end, we firstly let the

following inequalities hold{
dk|ek|k−1|E[wk] ≤ M−1

2M (1− ς)αkVk(ek|k−1),

ξ∗k ≤ M−1
2M (1− ς)αkVk(ek|k−1).

(75)

Secondly, substituting (71), (73) into (75) leads to

E[wk] ≤
akφk(1− ς)|ek|k−1|

(1 + φk) (2akφk + 1− ak)
, (76)

E[wk
2] ≤

φk(M − 1)rk(1− ς)|ek|k−1|
2

2M(1 + φk)2

−
2.46ẑk|k−1

(1 + φk)2
. (77)

Thirdly, let

φk(M − 1)rk(1− ς)|ek|k−1|
2

2M(1 + φk)2
≥

4.92ẑk|k−1

(1 + φk)2
, (78)

and we thus have

|ek|k−1| ≥

√
9.84Mẑk|k−1

φk(M − 1)rk(1− ς)
, ε̃, (79)

E[wk
2] ≤

2.46ẑk|k−1

(1 + φk)2
, σk. (80)

The rational behind can be interpreted as follows: i) the
right term of (77) cannot be less than zero and ii) there
always exists the measurement uncertainty in the system.
Consequently, the impact of tag population change plus
the measurement uncertainty should equal in order of
magnitude that of only measurement uncertainty, which
can be achieved by establishing E[wk

2] ≤ K2
kE[uk

2]
and (78) with reference to (72) and (73).

However, since a′k and ak are unknown a priori, we
thus need to transform the right hand side of (76) to
a computable form. From (61), we get 1

ak
− 1 ≤ ς

1+ς
such that it holds for the right hand side of (76) that
akφk(1−ς)|ek|k−1|

3(1+φk)(2akφk+1−ak) ≥
φk(1−ς)ε̃

3(1+φk)(2φk+ ς
1+ς )

.
Finally, let

E[wk] ≤ φk(1− ς)ε̃

3(1 + φk)
(

2φk + ς
1+ς

) , λk, (81)

we can establish (74) and thus get that E[e2
k|k−1]→ 0 at

an exponential rate when k →∞.
• Region 2:

√
9.84ẑk|k−1

φkrk(1−ς) ≤ |ek|k−1| <
√

9.84Mẑk|k−1

φk(M−1)rk(1−ς) .
Given ε̃, λk and σk as in Region 1, in this case, we have
−(1 − ς)αkVk(ek|k−1) + dk|ek|k−1|E[wk] + ξ∗k ≤ 0. It
then follows from Lemma 2 that

E[e2
k|k−1] ≤ pk

Q0
E[e1|0

2]
k−1∏
i=1

(1− α∗i )

+ pk

k−2∑
i=1

τk−i−1

i∏
j=1

(1− α∗k−j).

Hence, when k →∞, E[e2
k|k−1] converges exponentially

to pk
∑k−2
i=1 τk−i−1

∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1) and

it thus holds that E[ek|k−1]

zk
= Θ( 1√

zk
)→ 0 for zk →∞.

• Region 3: 0 ≤ |ek|k−1| <
√

9.84ẑk|k−1

φkrk(1−ς) . The circum-
stances in this region are very complicated due to E[wk]
and E[wk

2], we here thus just consider the worst case
that E[wk] = λk and E[wk

2] = σk. Consequently, we
have −(1− ς)αkVk(ek|k−1)+dk|ek|k−1|E[wk]+ξ∗k > 0,
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and it then follows from Lemma 2 that

E[e2
k|k−1] ≤ pk

Q0
E[e1|0

2]
k−1∏
i=1

(1− α∗i )

+ pk

k−2∑
i=1

τk−i−1

i∏
j=1

(1− α∗k−j).

Hence, when k →∞, E[e2
k|k−1] converges at exponential

rate to pk
∑k−2
i=1 τk−i−1

∏i
j=1 (1− α∗k−j) ∼ Θ(ẑk|k−1),

and thus E[ek|k−1]

zk
≤ Θ( 1√

zk
)→ 0 for zk →∞.

Note that for the case that E[wk] < λk and E[wk
2] < σk,

the range of Region 3 will shrink and the range of Region
2 will largen.

Integrating the above three regions, we can get the similar
results on the convergence of the expected estimation error
E[ek|k−1] as in the static case.

VIII. DISCUSSION

This section discusses the application of the proposed
algorithm to the unreliable channel and multi-reader scenario.

Error-prone channel. The unreliable channel may corrupt
an idle slot into a busy slot and vice versa. We consider the
random error model as [30]. Let t0 and t1 (0 ≤ t1, t2 < 0.5)
be the false positive rate that an empty slot turns into a
busy slot and the false negative rate, respectively. For notation
convenience, we mark parameters in the perfect channel model
with a superscript ∗ to define their counterparts under the
imperfect channel model. With some straightforward algebraic
operations, we have

p∗(Zk) = t1 + (1− t0 − t1)p(Zk), (82)

V ar∗[uk] = (1− t0 − t1)2V ar[uk]. (83)

We can compute the new Kalman gain K∗k as

K∗k =
1

(1− t0 − t1)
Kk. (84)

The ideal channel case is equivalent to the case where t0 =
t1 = 0. It is then straightforward to derive the stability in the
case of imperfect channel by using p∗(Zk), V ar∗[uk] and K∗k .
In this regard, we find that Theorem 1 and 2 still hold under the
same conditions, meaning that our approach is robust against
channel errors.

Multi-reader case. In multi-reader scenarios, we leverage
the same approach as [31]. The main idea is that a back-
end server can be used to synchronize all readers such that
the RFID system with multiple readers operates as the single-
reader case. Specially, the back-end server calculates all the
parameters and sends them to all readers such that they
broadcast the same parameters to the tags. Subsequently, each
reader sends its bitmap to the back-end server. Then the
back-end server applies OR operator on all bitmaps, which
eliminates the impact of the duplicate readings of tags in the
overlapped interrogation region.

IX. NUMERICAL ANALYSIS

In this section, we conduct extensive simulations to evaluate
the performance of the proposed tag population estimation
algorithms by focusing on the relative estimation error denoted
as REEk =

∣∣∣ zk−ẑk|k−1

zk

∣∣∣. Specifically, unless otherwise spec-
ified, we simulate in sequence both static and dynamic RFID
systems where the initial tag population are z0 = 104 with
the following default parameters: q = 0.1, P0|0 = 1, J = 3,
θ = 4 and Υ = 0.5 with reference to (35) and (36), L = 1500,
φ = 0.25 and φ = 100 such that (62) always holds. Since the
proposed algorithms do not require collision detection, we set
a slot to 0.4ms as in the EPCglobal C1G2 standard [12]. We
will discuss the effect of φ and φ on the performance in next
section.

A. Algorithm Verification

In the subsection, we show the impact of φ and φ on the
system performance. To that end, with REE0=0.5, we keep
zk=104 in static scenario while the tag population varies in
order of magnitude from

√
ẑk|k−1 to 0.4ẑk|k−1 in different

patterns in dynamic scenario. Specifically, we set φ=100 while
varying φ=0.25, 0.5, 1 in Fig. 1, 2, and fix φ=0.25 with
varying φ=1, 10, 100 in Fig. 3, 4. As shown in the figures,
a smaller φ leads to rapider convergence rate while the bigger
φ, the smaller the deviation. Thus, we choose φ=0.25 and
φ=100 in the rest of the simulation.

Moreover, we make the following observations. First, as
derived in Theorem 2, the estimation is stable and accurate
facing to a relative small population change, i.e., around the
order of magnitude

√
ẑk|k−1. Second, the proposed scheme

also functions nicely even when the estimation error is as high
as 0.4ẑk|k−1 tags as shown in Fig. 2 and 4. This is due to the
CUSUM-based change detection which detects state changes
promptly such that a small value is set for φk, leading to rapid
convergence rate.

B. Algorithm Performance

In this section, we evaluate the performance of the proposed
EKF-based estimator, referred to as EEKF here, in comparison
with [7] in static scenario and with [19] in dynamic scenario.

1) Static System (zk = 104): We evaluate the performance
by varying initial relative error as
• REE0=

z0−ẑ0|0
z0

=0.2 implies a small initial estimation
error and satisfies (64) with 0.5≤ς< 1.

• REE0 = 0.5 means a medium initial estimation error.
• REE0 = 0.8 means a large initial estimation error.

In this three case, we simulate EZB with the optimal pa-
rameters as specified in [7] with the accuracy 0.95, specif-
ically, when REE0=0.2, frame size L = 35, the number
of trails n = 70 and persistence probability p′ = 0.0057;
when REE0=0.5, then L=66, n=43 and p′=0.0113; when
REE0=0.8, then L=215, n=20 and p′=0.0449. For legible
presentation, we set the simulation time here to 215 ∗ 30
based on the case REE0=0.8, then kmax = 185, 97, 30,
respectively. Note that we use the same frame size with each
case of EZB.
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Fig. 1. Static:φ=100.
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Fig. 2. Dynamic:φ=100.

0 5 10 15 20 25
0.9

0.92

0.94

0.96

0.98

1

Time (frame)

N
um

be
r 

of
 t

ag
s(

×1
04 )

 

 

Actual

φ=1

φ=10

φ=100

Fig. 3. Static:φ=0.25.
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Fig. 5. Algorithm performance under different initial estimation errors.

Fig. 5 illustrates the estimation processes with different ini-
tial estimation errors. As shown in the figures, the estimation
ẑk|k−1 converges towards the actual number of tags within
very short time in all cases, despite the initial estimation error.
Though EZB is faster than EEKF to stabilize around the actual
size with the error less than 0.05, EEKF achieves smaller
deviation.

TABLE II
EXECUTION TIME

Algorithm Variation of tag population (×103)
10→12.5 →6.737 →9.364 →7.049 →8.616

JREP 3.2768 3.2768 3.2768 3.2768 3.2768
EEKF 1.2 1.2 1.2 0.6 0.6

2) Dynamic system: In this subsection, we evaluate the
performance of EEKF for dynamic systems by comparing with
the start-of-the-art solution JREP [19] in terms of execution
time to achieve the required accuracy. To that end, we refer
to the simulation setting in [19]. Specifically, the initial es-
timation error is 10%. The tag population size changes by
following the normal distribution with the mean of 10000
and the variance of 20002 and the accuracy requirement is
95%. By taking 5 samplings, we obtain the results as listed in
Table II. As shown in Table II, EEKF is more time-efficient
than JREP. This is because the persistence probability in JREP
is set to optimise the power-of-two frame size, which increases
the variance of the number of empty slots and leads to the
performance degradation. In contrast, EEKF can minimise this
variance while promptly detecting the tag population changes.

X. CONCLUSION

In this paper, we have addressed the problem of tag es-
timation in dynamic RFID systems and designed a generic
framework of stable and accurate tag population estimation

schemes based on Kalman filter. Technically, we leveraged the
techniques in extended Kalman filter (EKF) and cumulative
sum control chart (CUSUM) to estimate tag population for
both static and dynamic systems. By employing Lyapunov drift
analysis, we mathematically characterised the performance of
the proposed framework in terms of estimation accuracy and
convergence speed by deriving the closed-form conditions on
the design parameters under which our scheme can stabilise
around the real population size with bounded relative estima-
tion error that tends to zero within exponential convergence
rate.
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