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Finding Needles in a Haystack: Missing Tag
Detection in Large RFID Systems

Jihong Yu, Lin Chen, Rongrong Zhang, Kehao Wang

Abstract—Radio frequency identification (RFID) technology
has been widely used in missing tag detection to reduce and
avoid inventory shrinkage. In this application, promptly finding
out the missing event is of paramount importance. However,
existing missing tag detection protocols cannot efficiently handle
the presence of a large number of unexpected tags whose IDs are
not known to the reader, which shackles the time efficiency. To
deal with the problem of detecting missing tags in the presence
of unexpected tags, this paper introduces a two-phase Bloom
filter-based missing tag detection protocol (BMTD). The proposed
BMTD exploits Bloom filter in sequence to first deactivate the
unexpected tags and then test the membership of the expected
tags, thus dampening the interference from the unexpected tags
and considerably reducing the detection time. Moreover, the
theoretical analysis of the protocol parameters is performed to
minimize the detection time of the proposed BMTD and achieve
the required reliability simultaneously. In addition, we derive a
critical threshold on the unexpected tag size for the execution of
first phase in BMTD. Extensive experiments are then conducted
to evaluate the performance of the proposed BMTD. The results
demonstrate that the proposed BMTD significantly outperforms
the state-of-the-art solutions.

I. INTRODUCTION

A. Background

Recent years have witnessed an unprecedented development
of the radio frequency identification (RFID) technology. As a
promising low-cost technology, RFID is widely utilized in var-
ious applications ranging from inventory control [27] [28] [4],
supply chain management and logistics [14] [32] [7] [26] [16]
to tracking/location [24] [34] [10]. In these applications, an
RFID system typically consists of one or several RFID readers
and a large number of RFID tags. Specially, the RFID reader
is a device equipped with a dedicated power source and an
antenna and can collect and process the information of tags
within its coverage area. An RFID tag, on the other hand,
is a low-cost microchip labeled with a unique serial number
(ID) to identify an object and can receive and transmit the
radio signals via the wireless channel. More specifically, the
tags are generally classified into two categories: passive and
active tags. Passive tags are energized by the radio wave of
the reader, while active tags have power sources and relatively
long communication range.
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B. Motivation and problem statement

According to the statistics presented in [23], inventory
shrinkage, a combination of shoplifting, internal theft, admin-
istrative and paperwork error, and vendor fraud, resulted in
44 billion dollars in loss for retailers in 2014. Fortunately,
RFID technology can be used to reduce the cost by monitoring
products for its low cost and non-line-of-sight communication
pattern. Obviously, the first step in the application of loss
prevention is to determine whether there is any missing tag.
Hence, quickly finding out the missing tag event is of practical
importance.

The presence of unexpected tags, however, prolongs the
detection time and even leads to miss detection. Here, we
present two examples to motivate the presence of unexpected
tags in realistic scenarios.
• Example 1. Consider a retail store with expensive goods

and a much larger amount of inexpensive goods, and an
RFID system is deployed to monitor the goods. Because
of the higher value of expensive products, they are
expected to be detected more frequently, but the tags
of inexpensive goods also response the interrogation of
readers, which influences the decision of readers.

• Example 2. Consider a large warehouse rented to multiple
companies where the products of the same company may
be placed in different zones according to their individual
categories, such as child food and adult food, chilled food
and ambient food. When detecting the tags identifying
products from one company, readers also receive the
feedbacks from the tags of other companies.

Missing expected tag

Unexpected tag

Present expected tag

Reader

Fig. 1. Missing tag detection with the presence of unexpected tags.

In both examples, how to effectively reduce the impact
of unexpected tags is of critical importance in missing tag
detection. In this paper, we consider a scenario, as depicted
in Fig. 1, where each product is affixed by an RFID tag. The
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reader stores the IDs of expected tags. The problem we address
is how to detect missing expected tags in the presence of a
large number of unexpected tags in the RFID systems in a
reliable and time-efficient way.

C. Prior art and limitation

Prior related work can be classified into three categories
from the perspective of detecting missing tags: missing tag
detection protocols, tag identification protocols, and tag esti-
mation protocols.

There are two types of missing tag detection proto-
cols: probabilistic [33] [18] [19] [31] and determinis-
tic [15] [35] [17]. The probabilistic protocols find out a
missing tag event with a certain required probability if the
number of missing tags exceeds a given threshold, thus they
are more time-efficient but return weaker results in comparison
with the deterministic protocols that report all IDs of the
missing tags. Actually, they can be used together such that a
probabilistic protocol is executed in the first phase as an alarm
that reports the absence of tags and then a deterministic proto-
col is executed to report IDs of missing tags. Unfortunately, all
missing tag detection protocols except RUN [31] work on the
hypothesis of a perfect environment without unexpected tags
and thus fail to effectively detect missing tags in the presence
of unexpected tags. Although RUN [31] is tailored for missing
tag detection in the RFID systems with unexpected tags, all
unexpected tags may always participate in the interrogation,
which leads to the significant degradation of the performance
when the unexpected tag population size scales.

Tag identification protocols [21] [22] [13] [30] can identify
all tags in the interrogation region. To detect missing tags,
tag identification protocols can be executed to obtain the IDs
of the tags present in the population and then the missing
tags can be found out by comparing the collected IDs with
those recorded in the database. However, they are usually time-
consuming [15] and fail to work when it is not allowed to read
the IDs of tags due to privacy concern.

Tag estimation protocols [25] [29] [37] [5] are used to
estimate the number of tags in the interrogation region. If
many expected tags are absent in RFID systems without
unexpected tags, a missing tag event may be detected by
comparing the estimation and the number of expected tags
stored in the database. However, the estimation error may
be misinterpreted as missing tags and cause detection error,
especially when there are only a few missing tags. Moreover,
the estimation protocol cannot handle the case with a large
number of unexpected tags.

D. Proposed solution and main contributions

Motivated by the detrimental effects of unexpected tags on
the performance of missing tag detection, we devise a reliable
and time-efficient protocol named Bloom filter-based missing
tag detection protocol (BMTD). Specifically, BMTD consists
of two phases, each consisting of a number of rounds.
• In each round of the first phase, the reader fist constructs

a Bloom filter by mapping all the expected tag IDs into it
such that each tag has multiple representative bits. Then

the constructed Bloom filter is broadcasted to all tags.
If at least one representative bit of a tag is ’0’s, it finds
itself unexpected and will not participate in the rest of
BMTD. Thus, the number of active unexpected tags is
considerably reduced.

• Subsequently, in each round of the second phase, the
reader constructs a Bloom filter by aggregating the feed-
backs from the remaining tags and uses it to check
whether any expected tag is absent from the population.

The major contributions of this paper can be articulated as
follows. First, we propose a new solution for the important and
challenging problem of missing tag detection in the presence
of a large number of unexpected tags by employing Bloom
filter to filter out the unexpected tags and then detect the
missing tags. Second, we perform the theoretical analysis for
determining the optimal parameters used in BMTD that mini-
mize the detection time and also meet the required reliability,
among which we unveil the fundamental relationship between
the performance of the detection algorithm and unexpected
tag size and derive a critical threshold on the unexpected tag
size for the execution of filtering phase. Third, we perform
extensive simulations to evaluate the performance of BMTD.
The results show that BMTD significantly outperforms the
state-of-the-art solutions.

The remainder of the paper is organised as follows. Section
II gives a brief overview of related work. In Section III,
we formally present the missing tag detection problem and
describe the design goal and requirements. In Section IV
and V, we elaborate the designed protocol and perform the
theoretical analysis of the parameter configuration, respec-
tively. In Section VI, we introduce the method to estimate the
unexpected tag population size. Then the extensive simulations
are conducted in Section VII. Finally, we conclude our paper
in Section VIII.

II. RELATED WORK

Extensive research efforts have been devoted to detecting
missing tags by using probabilistic method [33] [18] [19] [31]
and deterministic method [15] [35] [17]. Next, we briefly
review the existing solutions of missing tag detection problem.

The objective of probabilistic protocols is to detect a missing
tag event with a predefined probability. Tan et al. initiate
the study of probabilistic detection and propose a solution
called TRP in [33]. TRP can detect a missing tag event by
comparing the pre-computed slots with those picked by the
tags in the population. Different from our BMTD, TRP does
not take into account the negative impact of unexpected tags.
Follow-up works [18] [19] employ multiple seeds to increase
the probability of the singleton slot. Same to TRP, they are
required to know all the tags in the population. The latest
probabilistic protocol called RUN is proposed in [31]. The
difference with previous works lies in that RUN considers the
influence of unexpected tags and can work in the environment
with unexpected tags. However, RUN does not eliminate the
interference of unexpected tags fundamentally such that the
false positive probability does not decrease with respect to the
unexpected tag population size, which shackles the detection
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efficiency especially in the presence of a large number of
unexpected tags. In addition, the first frame length is set to
the double of the cardinality of the expected tag set in RUN,
which is not established by theoretical analysis and leads to
the failure of estimation method in RUN when the number of
the unexpected tags is far larger than that of the expected tags.

The objective of deterministic protocols is to exactly iden-
tify which tags are absent. Li et al. develop a series of
protocols in [15] which intend to reduce the radio collision
and identify a tag not in the ID level but in the bit level.
Subsequently, Zhang et al. propose another series of determine
protocols in [35] of which the main idea is to store the bitmap
of tag responses in all rounds and compare them to determine
the present and absent tags. But how to configure the protocol
parameters is not theoretically analyzed. More recently, Liu et
al. [17] enhance the work by reconciling both 2-collision and
3-collision slots and filtering the empty slots such that the time
efficiency can be improved. None of existing deterministic
protocols, however, have been designed to work in the chaotic
environment with unexpected tags. In this scenario, because
unexpected tags may reply in the same slots with missing
expected tags, the reader cannot detect missing tags in these
slots, resulting in the failure of existing protocols.

Bloom filter is employed to solve tag searching problem in
RFID systems [36], [6], while we address a different problem
of detecting missing event in RFID system, the tag searching
protocols thus cannot be used directly to efficiently solve our
problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Consider a large RFID system consisting of a single RFID
reader and a large number of RFID tags. The reader broadcasts
the commands and collects the feedbacks from the tags. In the
RFID system, the tags can be either battery-powered active
ones or lightweight passive ones that are energized by radio
waves emitted from the reader. In this paper, we first take
account of the single-reader case and then extend the proposed
protocol to the multi-reader case.

The communications between the readers and the tags
follow the Listen-before-talk mechanism [9]: A reader initiates
communication first by sending commands and broadcasting
the parameters to tags, such as the frame size, random seeds,
and then each tag responds in its chosen time slot. Consider
an arbitrary time slot, if no tag replies in this slot, it is called
an empty slot; otherwise, it is called a nonempty slot. Only one
bit is needed to distinguish an empty slot from a nonempty
slot: ‘0’ for an empty slot with an ideal channel while ‘1’ for
a nonempty slot with a busy channel.

During the communications, the tag-to-reader transmission
rate and the reader-to-tag transmission rate may differ with
each other and are subject to the environment. In practice, the
former can be either 40kb/s ∼ 640kb/s in the FM0 encoding
format or 5kb/s ∼ 320kb/s in the modulated subcarrier en-
coding format, while the later is normally about 26.7kb/s ∼
128kb/s [8].

B. Problem formulation

In the considered RFID system, we use E to denote the
set of IDs of the expected tags which are expected to be
present in a population and target tags to be monitored. In the
RFID system, we assume that an unknown number of tags,
m, out of these |E| tags are missing. Note that | · | stands
for the cardinality of a set. Denote by Er the set of IDs of
the remaining |E| − m tags that are actually present in the
population. Let U be the set of IDs of unexpected tags within
the interrogation region of the reader which does not need to
be monitored. The reader may neither knows exactly the IDs
of unexpected tags nor does it know the cardinality of U.

Let M be a threshold on the number of missing expected
tags. We use Psys to denote the probability that the reader can
detect a missing event. The optimum missing tag detection
problem is formally defined as follows.

Definition 1 (Optimum missing tag detection problem). Given
|U| unexpected tags where both |U| and the IDs of tags in
U are unknown, the optimum missing tag detection problem
is to devise a protocol of minimum execution time capable
of detecting a missing event with probability Psys ≥ α if
m ≥ M , where α is the system requirement on the detection
reliability.

Table I summaries the main notations used in the paper.

TABLE I
MAIN NOTATIONS

Symbols Descriptions
E set of target tags that need to be monitored
Er tags that are actually present in the population
U set of unexpected tags
α required detection reliability
m number of missing expected tags
M threshold to detect missing tags
Psys prob. of detecting a missing event in BMTD
J number of rounds in Phase 1
lj length of the j-th frame of Phase 1
kj number of hash functions in the j-th frame of Phase 1
sj random seed used in the j-th frame of Phase 1
Ur set of remaining active unexpected tags after Phase 1
N∗ number of remaining active tags after Phase 1
P1,j false positive rate in the j-th frame of Phase 1
T1 time cost of Phase 1
W number of rounds in Phase 2
fw length of the w-th frame of Phase 2
Rw number of hash functions in the w-th frame of Phase 2
dw random seed used in the w-th frame of Phase 2
P2,w false positive rate in the w-th frame of Phase 2
T2 time taken to execute W rounds in Phase 2
T theoretical execution time
q prob. of detect a missing tag in a given slot of Phase 2
Z random variable for slot of the first detection
E[TD] expected detection time of BMTD

IV. BLOOM FILTER-BASED MISSING TAG DETECTION
PROTOCOL

A. Design rational and protocol overview

To improve the time efficiency of detecting missing tags
in the presence of a large number of unexpected tags in the
population, we limit the interference of unexpected tags in our
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protocol. To achieve this goal, we employ a powerful technique
called Bloom filter which is a space-efficient probabilistic data
structure for representing a set and supporting set membership
queries [3] to rule out the unexpected tags in the set U,
which efficiently reduces their interference and thus the overall
execution time. Following this idea, we propose a Bloom filter-
based Missing Tag Detection protocol (BMTD), by which
Bloom filters are sequentially constructed by the reader and
by the feedbacks from the active tags in the RFID system.

The BMTD consists of two phases: 1) the unexpected tag
deactivation phase and 2) the missing tag detection phase.
• The first phase is divided into J rounds where the reader

constructs J Bloom filters by mapping the recorded IDs
in the reader to deactivate the unexpected tags after
identifying them.

• The second phase is divided into W rounds. The reader
constructs W Bloom filters according to the responses of
the remaining active tags and uses the Bloom filters to
detect any missing event. Our protocol either detects a
missing event or reports no missing event if the reader
does not detect a missing event after W rounds.

We elaborate the design of the BMTD in the rest of this
section.

B. Phase 1: unexpected tag deactivation

In Phase 1, we use Bloom filters to reduce the number of
active unexpected tags. Specifically, in the j-th round of Phase
1 (j = 1, 2, ..., J), the reader first constructs a Bloom filtering
vector by mapping the expected tags in set U into an lj-bit
array using kj hash functions with random seed sj . Here,
we denote the lj-bit Bloom filter vector as BF1,j(E). How
the values of lj , kj are chosen and how J is calculated are
analysed in Sec. V on parameter optimisation.

Then, the reader broadcasts the lj-bit Bloom filtering vector,
kj and sj to all tags. Upon receiving BF1,j(E), kj , and sj ,
each tag maps its ID to kj bits pseudo-randomly at positions
h1(ID), h2(ID), · · · , hkj (ID), and checks the corresponding
positions in BF1,j(E). If all of kj bits are 1, then the tag
regards itself expected by the reader. If any of kj bits is 0, the
tag regards that it is unexpected and then remains silent in the
rest of the time.

Let Uj denote the set of the remaining active unexpected
tags after the j-th round of Phase 1, and let Uj ∩ BF1,j(E)
denote the set of unexpected tags that pass the membership test
of BF1,j(E). Since the Bloom filter has no false negatives, the
set of remaining active tags can be represented as Er∪Uj−1∩
BF1,j(E).

After J rounds when Phase 1 is terminated, the number of
remaining active unexpected tags, termed as |Ur|, is |UJ ∩
BF1,J(E)|. The present tag population size can be written as
|Er ∪ Ur|. Subsequently, the reader enters Phase 2.

C. Phase 2: missing tag detection

In the second phase, we still employ Bloom filter to detect
a missing tag event. Note that the parameters that the reader
broadcasts in each round in Phase 2 except random seeds are

identical. In the w-th round of Phase 2 (w = 1, 2, ...,W ), the
reader first broadcasts the parameters containing the Bloom
filter size fw, the number of hash functions Rw, and a new
random seed dw. How their values are chosen and how W is
calculated are analysed in Sec. V on parameter optimisation.

After receiving the configuration parameters, each tag in the
set Er ∪Ur selects Rw slots at the indexes hv(ID) (1 ≤ v ≤
Rw) in the frame of fw slots and transmits a short response
at each of the Rw corresponding slots. As a consequence, a
Bloom filter is formed in the air by the responses from the
remaining active tags. In each round, there are two types of
slots: empty slots and nonempty slots.

According to the responses from the tags, the reader encodes
an fw-bit Bloom filter as follows: If the i-th slot is empty, the
reader sets i-th bit of the fw-bit vector to be ’0’, otherwise ’1’.
Consequently, a virtual Bloom filter is constructed using which
the reader then performs membership test. Let BF2,w(Er∪Ur)
denote the constructed Bloom filter in w-th round.

To perform membership test, the reader uses tag IDs from
the expected tag set E. Specifically, for each ID in E, the reader
maps it into Rw bits at positions hv(ID) (1 ≤ v ≤ Rw) in
BF2,w(Er∪Ur). If all of them are ’1’s, then the tag is regarded
as present. Otherwise, the tag is considered to be missing. If a
missing event is detected in w-round, the reader terminates the
protocol without executing the remaining rounds. Otherwise,
the reader initiates a new round until the protocol runs W
rounds. If the reader does not detect a missing event after W
rounds, it reports no missing event, i.e., the number of missing
tags m is less than the threshold M .

D. An illustrative example of BMTD

We present an illustrative example to show the execution
of BMTD. Consider an RFID system with 4 tags. We assume
that the reader needs to monitor tag 1 and tag 2 and thus
knows their IDs, i.e., E={ID1, ID2}, but it is not aware of
the presence of tag 3 and tag 4, who are unexpected, i.e.,
U={ID3, ID4}. In the example, tag 2 is missing from the
population.

As shown in (1) of Fig. 2(a), the reader first constructs a
Bloom filter BF1,j(E) by mapping IDs in E and broadcasts
a message containing BF1,j(E) and the values of kj and lj .
Here we assume J = 1, kj = 2 and lj = 6. After receiving
BF1,j(E), each tag checks if it is an expected tag. As shown
in (2) of Fig. 2(a), tag 1 finds itself expected due to the fact
that both h1(ID1) and h2(ID1) are equal to 1. However, tag 4
realizes that it is unexpected for h1(ID4) = 0 and deactivates
itself. Different from tag 4, actually unexpected tag 3 passes
the test and will participate in the rest of BMTD.

As depicted in (1) of Fig. 2(b), after the first phase, the
reader starts to detect missing tags by broadcasting parameters
fw and Rw. Here we assume W = 1, Rw = 2 and fw = 7.
By using fw and Rw, tag 1 and tag 3 generate a Bloom filter
vector, respectively, which is shown in (2) of Fig. 2(b). Then
they transmit following their individual Bloom filter vector.
By sensing the channel, the reader can encode a Bloom filter
and use it to check the IDs in E one by one. As shown in
(3) of Fig. 2(b), since the Bloom filter is constructed based on
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the responses of tag 1 and tag 3, tag 1 passes the test but tag
2 fails and is regarded as absent. Then the protocol reports a
missing event.
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Fig. 2. Example illustrating BMTD

V. PERFORMANCE OPTIMISATION AND PARAMETER
TUNING

In this section, we investigate how the parameters in the
BMTD are configured to minimise the execution time while
ensuring the performance requirement.

A. Tuning parameters in Phase 1

According to the property of Bloom filter, false negatives
are impossible. The false positive rate of the Bloom filter
BF1,j(E) in the j-th round in Phase 1, defined as P1,j , can
be calculated as follows [3]:

P1,j =

[
1−

(
1− 1

lj

)|E|kj]kj
≈ (1− e−|E|kj/lj )kj . (1)

By rearranging (1), we can express the Bloom filter size in
the j-th round as

lj =
−|E|kj

ln(1− P
1
kj

1,j )

. (2)

The total time spent in this round can thus be calculated as
lj ∗ tr, where tr denotes the per bit transmission time from
reader to tags.

We denote Cj the cost to detect and deactivate an unex-
pected tag as follows:

Cj =
ljtr

|U|(1− P1,j)
=

−tr|E|kj

|U|(1− P1,j) ln(1− P
1
kj

1,j )

. (3)

From the expression of Cj , it can be noted that Cj represents
the average time consumed to detect and deactive an unex-
pected tag in the j-th round. In our design we minimize Cj
so as to achieve the optimal time-efficiency. To minimize Cj ,
we first compute the derivative of Cj with respect to kj as
follows:

dCj
dkj

=

|E|tr
(
P

1
kj

1,j lnP1,j − kj(1− P
1
kj

1,j ) ln(1− P
1
kj

1,j )

)
|U|(1− P1,j)kj(1− P

1
kj

1,j ) ln
2(1− P

1
kj

1,j )

.

(4)
Furthermore, let dCj

dkj
= 0, we can obtain

P
1
kj

1,j =
1

2
, (5)

and the unique minimiser k∗j =
− lnP1,j

ln 2 as dCj
dkj

> 0 when

kj >
− ln p1,j

ln 2 , and dCj
dkj

< 0 when kj <
− ln p1,j

ln 2 . Therefore,

Cj reaches the minimum value when P
1
k∗
j

1,j = 1
2 . The optimum

Bloom filter size, denoted as l∗j , can be computed as

l∗j =
|E|k∗j
ln 2

. (6)

The time spent in the j-th round can be computed as
|E|trk∗j
ln 2 .

Therefore, the total execution time of Phase 1, denoted as T1,
can be derived as

T1 =
J∑
j=1

|E|trk∗j
ln 2

. (7)

k∗j (1 ≤ j ≤ J), as well as J , are set with the parameters
in Phase 2 to minimize the global execution time, as analyzed
in Sec. V-C and Sec. V-D.

Let N∗ be the number of tags still active after Phase 1 (i.e.,
J rounds), it holds that

N∗ = |E| −m+ |Ur|, (8)
where Ur is the set of unexpected tags still active after Phase
1. Recall (5), the expectation of N∗ can be derived as

E[N∗] = |E| −m+ |U|
J∏
j=1

P1,j = |E| −m+ |U|
(1
2

)∑J
j=1 k

∗
j .

(9)

B. Tuning parameters in Phase 2

Similar to Phase 1, the false positive rate of the w-th round
in Phase 2, defined as P2,w, can be calculated as

P2,w =

[
1−

(
1− 1

fw

)N∗Rw]Rw
≈ (1− e−N

∗Rw/fw)Rw .

(10)
Therefore, the Bloom filter size is

fw =
−N∗Rw

ln(1− P
1
Rw
2,w )

.

Moreover, the probability that at least one missing tag can
be detected in w-th round, denoted as Pd,w, can be computed
as

Pd,w = 1− Pm2,w. (11)

Following the analysis above, the probability Psys that the
reader is able to detect a missing event after at most W rounds
in Phase 2, can thus be written as

Psys = 1−
W∏
w=1

(1− Pd,w) = 1− PmW2,w . (12)

It follows from the system requirement that
Psys = 1− PmW2,w = α. (13)

As a result, we can obtain

fw =
−N∗Rw

ln(1− (1− α)
1

mWRw )
. (14)

In the following lemma, we derive the optimum frame size
of the Bloom filter fw which is broadcast by the reader in
each round of Phase 2.

Lemma 1. Let y , WRw, the optimum Bloom filter frame
size, denoted by f∗w, that achieves the detection requirement
while minimising the execution time of Phase 2, is as follows:

f∗w =
−N∗Rw

ln(1− (1− α)
1

my∗ )
(15)
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where y∗ = ln(1−α)
m ln 1

2

.

Proof. Denote by f the total length of all W Bloom filters in
the second phase, we thus have

f =
W∑
w=1

fw =
−N∗WRw

ln(1− (1− α)
1

mWRw )
. (16)

It can be checked that f depends on the product of W and
Rw which is the total number of hash functions used in Phase
2. To minimize the execution time, let y , WRw, we first
calculate the derivation of f with respect to y as follows:

df

dy
=

N∗(1− α)
1
my ln(1− α)

my(1− (1− α)
1
my ) ln2(1− (1− α)

1
my )
− N∗

ln(1− (1− α)
1
my )

.

Imposing df
dy = 0 yields

y =
ln(1− α)
m ln 1

2

.

Moreover, when y < ln(1−α)
m ln 1

2

, it holds that df
dy < 0; when

y > ln(1−α)
m ln 1

2

, it holds that df
dy > 0. Therefore, f achieves the

minimum at y∗ = ln(1−α)
m ln 1

2

. The minimum of fw, denoted by
f∗w can be computed by injecting y = y∗ into (14). The proof
is thus completed.

Remark. As the reader does not have prior knowledge on
m, the number of missing tags, in the design of BMTD, we
require that the detection performance requirement to be hold
for any m ≥M . Hence, f∗w and y∗ are as follows:

f∗w =
−N∗Rw

ln(1− (1− α)
1

My∗ )
, (17)

where y∗ =
ln(1− α)
M ln 1

2

, (18)

where we use m = M in N∗ and y∗, which is the hardest
case. Since N∗ = |E| − m + |Ur|, it can be checked that
the detection probability Psys is monotonically increasing and
P2,w is monotonically decreasing with respect to the number
of missing tags m, meaning that m =M makes the detection
hardest and any greater m will ease the hardness, it is thus
reasonable to use m =M in the rest of the analysis, because
if the reader can detect a missing tag event with probability
α when m = M , it will fulfill the detection with probability
Psys > α when m > M .

In addition, since y∗ is the total number of hash functions
used in Phase 2 and at least one round is executed so
as to detect a missing event, y∗ needs to be a positive
integer. Therefore, we set y∗=d ln(1−α)

M ln 1
2

e, which guarantees the
required detection performance requirement. Note that Rw and
W can be set as arbitrary positive integers.

Under the optimum parameter setting derived above, we
can calculate the time needed to execute W rounds of Phase
2, denoted by T2, as follows:

T2 =
−ttN∗y∗

ln(1− (1− α)
1

My∗ )
, (19)

where tt is the time needed by the tags to transmit one bit to
the reader. T2 sets an upper-bound on the execution time of
Phase 2.

C. Tuning k∗j and J to minimize worst-case execution time

In this subsection, we study how to set k∗j and J to
minimize the worst-case execution time, which corresponds to
the experience of the execution time where no missing event
is detected and hence all the W rounds in the second round
need to be executed. We denote the worst-case execution time
by T . In the following theorem, we derive the minimiser of
E[T ].

Theorem 1. Denote x ,
∑J
j=1 k

∗
j , x need to be set to x∗

as follows to minimise the worst-case execution time of the
BMTD:

x∗ =


0 |U| ≤ U0

ln
−tr|E| ln(1−(1−α

1
My∗ ))

tty
∗|U| ln2 2

− ln 2 |U| > U0

, (20)

where U0 , |E|tr ln(1−(1−α)
1

My∗ )
−tty∗ ln2 2

. That is, in regard to
minimise the worst-case execution time, when the number of
unexpected tags does not exceed a threshold U0, Phase 1 is not
executed, otherwise Phase 1 is executed with the parameters
k∗j and J set to

∑J
j=1 k

∗
j = x∗.

Proof. Recall the two phases of BMTD and (7), we can derive
the expectation of T as follows:

E[T ] = T1 + T2 =
J∑
j=1

|E|trk∗j
ln 2

+
−tty∗E[N∗]

ln(1− (1− α)
1

My∗ )

=
|E|tr
ln 2

J∑
j=1

k∗j +
−tty∗

(
|E| −M + |U|

(
1
2

)∑J
j=1 kj

)
ln(1− (1− α)

1
My∗ )

.

(21)
From (21), it can be noted that E[T ] is a function of x =∑J
j=1 k

∗
j . We then calculate the optimum x∗ that minimizes

E[T ]. To that end, we compute the derivation of E[T ] with
respect to x:

dE[T ]

dx
=
|E|tr
ln 2

+
tty
∗|U| ln 2

ln(1− (1− α)
1

My∗ )

(1
2

)x
. (22)

Since
(
1
2

)x ≤ 1, it thus holds for all x ≥ 0 that dE[T ]
dx ≥ 0 if

|E|tr
ln 2 + tty

∗|U| ln 2

ln(1−(1−α)
1

My∗ )
≥ 0, i.e.,

|U| ≤ |E|tr ln(1− (1− α)
1

My∗ )

−tty∗ ln2 2
= U0. (23)

It is worth noticing that E[T ] is a monotonic nondecreasing
function in this case with respect to x, we thus set x = 0 to
minimize the execution time, which means that if the number
of unexpected tags is smaller than the threshold U0, we should
remove the Phase 1 and only execute Phase 2.

In contrast, if |U| > U0, dE[T ]
dx can be negative, zero, or

positive. Setting dE[T ]
dx = 0, the optimal value of x to minimise

E[T ], defined as x∗, can be calculated as

x∗ =
ln −tr|E| ln(1−(1−α)

1
My∗ )

tty∗|U| ln2 2

− ln 2
.

Remark. Since x∗ represents the total number of hash
functions used in Phase 1, it needs to be a non-negative
integer. Therefore, we set x∗ either to its ceiling or floor
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integer depending on which one leads to a smaller E[T ]. The
parameters k∗j and J are set such that

∑J
j=1 k

∗
j = x∗.

D. Tuning k∗j and J to minimize expected detection time

The parameters derived in Theorem 1 establish that the
BMTD is able to detect a missing event with probability
equal to or greater than the system requirement α after W
rounds of Phase 2. However, in many practical scenarios, the
missing event may be detected in the round w < W when
the algorithm can be terminated. In this subsection, we derive
the parameter configuration (i.e., k∗j and J) that minimises
the expected detection time. To that end, we first calculate the
probability that at least one of the missing tags can be detected
for the first time in a given slot and use it to formulate the
expectation of the missing event detection time.

Lemma 2. The probability that a missing tag can be detected
in a given slot of Phase 1, denoted by q, is as follows:

q =
(
1− (1− (1− α)

1
y∗M )

M
N∗
)
·
(
1− (1− α)

1
y∗M

)
. (24)

A loose lower-bound for q, denoted as qmin, can be established
as follows:

qmin =
(
1− (

1

2
)

M
|E|−M+|U|

)
(1− (1− α)

1
y∗M ). (25)

Proof. A missing tag can be detected in a given slot only when
at least one missing tag is hashed to this slot and no tag in
Er∪Ur selects the same location. Consider the hardest case for
detecting a missing tag event, i.e., m =M , the probability that
at least one missing tag maps to the given slot can be given by(
1− (1− 1

f∗w
)MRw

)
. The probability that no tag in Er ∪ Ur

maps to that slot is equal to (1 − 1
f∗w

)N
∗Rw . Consequently,

multiplying the former by the later leads to q, i.e.:

q =

(
1− (1− 1

f∗w
)MRw

)
· (1− 1

f∗w
)N
∗Rw

≈ (1− e−
MRw
f∗w ) · e−

N∗Rw
f∗w

=
(
1− (1− (1− α)

1
y∗M )

M
N∗
)
· (1− (1− α)

1
y∗M ).

We then derive the lower-bound qmin. To that end, noticing
that q is negatively correlated with N∗ which falls into the
range

[
|E| −M, |E| −M + |U|

]
, we have

q ≥
(
1− (1− (1− α)

1
y∗M )

M
|E|−M+|U|

)
· (1− (1− α)

1
y∗M ).

On the other hand, noticing that y∗ = d ln(1−α)
M ln 1

2

e ≥ ln(1−α)
M ln 1

2

,

we have q ≥ qmin =
(
1−( 12 )

M
|E|−M+|U|

)
(1−(1−α)

1
y∗M ).

After calculating q, we next derive the expected missing
event detection time, denoted by E[TD].

Theorem 2. The expected missing event detection time E[TD]
is given by the following equation:

E[TD] =
|E|trx
ln 2

+ tt

|E|−M+|U|∑
N∗=|E|−M

1− (1− q)f − fq(1− q)f

q(
|U|

N∗ − |E|+M

)( 1

2x

)N∗−|E|+M(
1− 1

2x

)|U|−N∗+|E|−M
.

(26)

Proof. Recall (16), it holds that there are f = −N∗y∗

ln(1−(1−α)
1

My∗ )
slots in Phase 2. We next calculate the number of slots before
detecting the first missing tag. It is easy to check that the event
that in slot z the reader detects the first missing tag happens
if no missing tags is detected in the first z − 1 slots while at
least one missing tag is detected in slot z. Let Z denote the
random variable of z, we have

P{Z = z} = (1− q)z−1 ∗ q, (27)
which is geometrically distributed.

We can then compute the expectation of Z, conditioned by
N∗, as follows:

E[Z|N∗] =
f∑
z=1

z · P{Z = z}

=
1− (1− q)f − fq(1− q)f

q
. (28)

Moreover, it follows from the analysis of Phase 1 that the
probability that an unexpected tag is still active after Phase
1 is

∏J
j=1 P1,j . On the other hand, since Ur represents the

ID set of active unknown tags after Phase 1, recall (5) and∑J
j=1 k

∗
j = x, we can compute the probability of having u

active unexpected tags after Phase 1 as follows:

P{|Ur| = u} =
(
|U|
u

)( J∏
j=1

P1,j

)u(
1−

J∏
j=1

P1,j

)|U|−u
=

(
|U|
u

)( 1

2x

)u(
1− 1

2x

)|U|−u
. (29)

It can be noted that |Ur| follows the binomial distribution.
Recall the relationship between N∗ and |Ur| in (7), it holds
that

E[Z] =

|E|−M+|U|∑
N∗=|E|−M

E[Z|N∗]
(

|U|
N∗ − |E|+M

)
·

( 1

2x

)N∗−|E|+M
·
(
1− 1

2x

)|U|−N∗+|E|−M
(30)

Therefore, E[TD] can be derived as

E[TD] = T1 + E[Z] · tt =
|E|trx
ln 2

+ E[Z] · tt. (31)

Injecting E[Z] into E[TD] completes the proof.

After deriving E[TD] as a function of x, we seek the
optimum, denoted by x∗e , which minimizes E[TD]. To this
end, we first establish an upper-bound of x∗e in the following
lemma.

Lemma 3. It holds that x∗e ≤ 2tt ln 2
tr|E|qmin .

Proof. We write E[TD] as a function of x. Specifically, let
E[TD] = g(x). To prove the lemma, we show that for any
x > 2x0 it holds that g(x) ≥ g(x0) where x0 , tt ln 2

tr|E|qmin .
To this end, we first derive the bounds of g(x). Re-

call (27),(28), (30) and (31), we have

g(x) >
|E|trx
ln 2

,

g(x) ≤ |E|trx
ln 2

+
tt
qmin

.

For any x > 2x0, we then have

g(x) >
|E|trx
ln 2

>
2|E|trx0

ln 2
=
|E|trx0
ln 2

+
tt
qmin

≥ g(x0)
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The lemma is thus proved.

Lemma 3 shows that x∗e falls into the range [0, 2x0]. We
can thus search [0, 2x0] to find x∗e that minimises E[TD] and
then set J and k∗j such that

∑J
j=1 k

∗
j = x∗e .

E. BMTD parameter setting: summary

We conclude this section by streamlining the procedure of
the parameter setting in the BMTD:

1) Set parameters in Phase 2: given |E|, M , α and |U|,
compute f∗w and y∗ by (17) and (18), respectively, and
set Rw and W such that RwW = y∗;

2) Set parameters in Phase 1: compute x∗ by Theorem 1
if the objective is to minimise the worst-case execution
time; compute x∗e if the objective is to minimise the
expected detection time; then the set of k∗j and J is given
such that

∑J
j=1 k

∗
j = x∗ or

∑J
j=1 k

∗
j = x∗e .

Following the above two steps, we can obtain all parameters
in the BMTD.

We conclude this section by remarking a limitation of
BMTD, the incompatibility with the current RFID standard.
We note that all the state-of-the-art solutions except RUN are
not compatible with the current RFID standard, which dates
back to 2005 and did not envisioned advanced functionalities
such as missing tag detection at that time. However, BMTD
can be easily implemented on programmable tags, such as
WISP [2] or OpenBeacon [1], by programming tags to inter-
pret the filtering vector and select response slots which are
lightweight operations.

VI. CARDINALITY ESTIMATION

In order to execute the BMTD, the reader needs to estimate
the number of unexpected tags |U|. In our work, we use the
SRC estimator which is designed in [5] and is the current state-
of-the-art solution. Denote by |E| −m+ |U| the estimated
total number of tags in the system, then the cardinality
|U| can be approximated as |U| = |E| −m+ |U| − |E| if
m << |E|, |U|. Because the number of bits that set to one
in Bloom filter is concentrated tightly around the mean [20]
and [11], once the estimation |U| is obtained, we can calculate
the expectation of N∗ according to (9) with m =M and use
it as the estimator of N∗.

The SRC estimator consists of two phases: rough estima-
tion and accurate estimation. It is proven in [5] that SRC
can obtain a rough estimation n̂ which at least equals to
0.5(|E| −m+ |U|) after its first phase. In the second phase,
SRC can achieve that the relative estimation error is not greater
than ε which is referred to as confidence range with the
settings as follows: the frame size Lest = 65

(1−0.04ε)2 and the
persistence probability ppe = min{1, 1.6Lest/n̂}.

We then analyse the overhead introduced to estimate the
cardinality of U. As proven in [5], the overhead of SRC
estimator is at most O( 1

ε2 + log log(|U| + |E|)), which is
moderate for large-scale RFID systems with large |U| and |E|.

A. Fast detection of missing event

In our estimation approach, we require that m � |E|, |U|.
In case where m is close to |E|, |U|, the estimation may not be
accurate. Luckily, in this case, we can quickly detect a missing
event in the cardinality estimation phase due to large m.

Specifically, we analyze the SRC estimator’s capability of
detecting missing event under large m by comparing the pre-
computed slots with those selected by the present tags. Recall
the proof of Lemma 2, we can derive the detection probability
in any given slot, defined as qpre, as

qpre =

(
1−

(
1− ppe

Lest

)m) ∗ (1− ppe
Lest

)(U+E−m)

. (32)

Since the detections in different slots are independent of each
other, the probability of detecting at least one missing tag event
by the SRC estimator can be calculated as 1− (1− qpre)Lest
which is a increasing function of m.
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Fig. 3. qpre vs. m.

Fig. 3 illustrates the detection probability of SRC with the
various number of missing tags under different unexpected tag
population sizes. To obtain the figure, we set |E| = 103 and
ε = 0.1. It is observed that in the cases that |U| = 0.5 ∗ 104,
1 ∗ 104, 2 ∗ 104, SRC is able to detect at least a missing tag
event with probability one when m is not less than 100, 200,
600, which means that a missing event is detected by SRC and
the reader does not need to invoke the BMTD. In the other
side, in the cases that m is less than 100, 200, 600, it holds that
| |U||U| − 1|≤ 0.138, 0.132, 0.128, respectively. With reference to
the conclusion drawn from the Fig. 4, the BMTD can tolerate
these levels of estimation error.

B. Sensibility to estimation error

The estimation algorithm we use inevitably introduces error
on |U|, which may have a negative impact on the performance
of the BMTD. In order to investigate this impact, we next
illustrate the sensitivity of the detection time to the estimation
error.

Fig. 4 shows the theoretically calculated expected detection
time from (26) under different unexpected tag population sizes
and various levels of estimation error for M = 1. All results
here are normalized with respect to the expected detection
time without estimation error, which can be represented as
|E[TD]
E[TD] − 1|. As shown in the figure, the relative error of

detection time increases with the estimation error in all range
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of unexpected tag population. But it is worth noticing that
the relative error of detection time only increases by 5% at
most when | |U||U| − 1| ≤ 0.2, which is nearly same with that

without estimation error. Note that the slope before |U||U| = 1
changes because the calculated xe changes from 2 to 3 which
is optimal.

C. Enforcing detection reliability

Estimation error also has impact on the reliability of the
BMTD as Psys is calculated base on the estimated cardinality.

To enforce the detection reliability, we introduce more
rounds to execute additional Bloom filters. The scheme works
as follows: After receiving the Bloom filtering vector con-
structed by the active tags in the set Er ∪Ur in each round of
Phase 2, the reader first counts the actual number of ’1’ bits
in the filtering vector, defined as s1 and uses it to compute the
actual false positive probability, denoted by P̂2,w, as follows:

P̂2,w =
s1
f∗w
, (33)

because an arbitrary unexpected tag maps to a ’1’ bit with a
probability of s1 out of f∗w.

Following (13), we have the observed protocol reliability,
denoted by P̂sys, as follows:

P̂sys = 1− P̂MW
2,w . (34)

If P̂sys < α, the reader adds one more round in Phase 2 to
further detect the missing tag event until P̂sys ≥ α.

D. Discussion on Multi-reader Scenario

In large-scale RFID systems deployed in a large area,
multiple readers are deployed to ensure the full coverage
for a larger number of tags in the interrogation region. In
this scenario, we leverage the approach proposed in [12] and
employed in [31]. The main idea is that a back-end server
is used to synchronize all readers such that the RFID system
with multiple readers operates as the single-reader case.

Specially, the back-end server calculates all the parameters
involved in BMTD and constructs Bloom filter and sends them
to all readers such that they broadcast the same parameters and
Bloom filter to the tags. Because the parameters are identical
across readers, a tag in the overlapped region will choose the
same slots as in the single-reader case. Furthermore, each
reader sends its individual Bloom filtering vector back to

the back-end server. When the back-end server receives all
Bloom filtering vectors, it applies logical OR operator on all
received Bloom filtering vectors, which eliminates the impact
of the duplicate readings of tags in the overlapped interrogation
region. Consequently, a virtual Bloom filter is constructed by
the back-end server.

VII. PERFORMANCE EVALUATION

The problem addressed in this paper is to detect the missing
expected tags in the presence of a large number of unexpected
tags in a time-efficient and reliable way. In this section, we
evaluate the performance of the proposed BMTD. It has been
shown in [31] that existing missing detection protocols cannot
achieve the required reliability when there are unexpected tags
in the RFID systems except the latest RUN [31]. We thus
compare our proposed BMTD to RUN which is the only one
considering the presence of the unexpected tags in terms of the
actual reliability and the detection time. Note that the detection
time can be interpreted as the time taken to either detect the
fist missing tag event if a missing tag is found or complete
the execution if no missing tag is found.

The simulation parameters are set with reference to [19]
and [31]. Specifically, since both transmission rates from the
tags to the reader and the reader to the tags depend on physical
implementation and interrogation environment, we make the
same assumption as in [19] that tr = tt. Moreover, because
RUN is the baseline protocol, we use the similar simulation
scenarios and the same performance metrics as in [31] where
the time needed to detect a missing tag event is shown in
terms of the number of slots. To that end, we, without loss
of generality, assume tr = tt = 1 in (26) in the simulation.
Besides, we compute the optimal parameter values for RUN
by following its specifications.

In the simulation, we use SRC [5] armed with missing tag
detection function in this paper to estimate the unexpected tag
population size with the confidence rang ε = 0.1. And all
presented results are obtained by taking the average value of
100 independent trials under the same simulation setting.

We start by evaluating the performance of the BMTD by
optimizing the worst-case execution time and the expected
detection time.

A. Comparison between two strategies of BMTD

In this subsection, we compare the performance of two
strategies of the BMTD which are abbreviated to Worst-M and
Expected-M here, respectively. We set |E| = 1000, m = 100,
α = 0.9, |U| = 10000 : 5000 : 30000, M = 1 and 50.

Table II lists the results where the first and second elements
in the two-tuple (·, ·) denote the actual reliability and detection
time, respectively. It can be seen that Expected-M costs less
time than Worst-M to achieve the same reliability which is
greater than the system requirement on the detection reliability,
especially when M is small. Specifically, compared with
Worst-1, Expected-1 reduces the detection time by up to
51.92% when |U| = 10000. This is because x∗ = 5 is too
large for Phase 1 by optimizing the worst-case execution time,



0090-6778 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2666790, IEEE
Transactions on Communications

10

which wastes time. In contrast, minimizing the expected detec-
tion time relieves the influence of unexpected tag population
size on the time of Phase 2 and thus outputs a smaller x∗e = 2.
In the rest of our simulation, we configure the parameters of
the BMTD to minimise the expected detection time.

TABLE II
ACTUAL RELIABILITY AND DETECTION TIME OF BMTD

Strategy Number of unexpected tags
10000 15000 20000 25000 30000

Worst-1 (1,4108) (1,4441) (1,5013) (1,5453) (1,5510)
Expected-1 (1,1975) (1,3187) (1,3569) (1,3828) (1,4191)
Worst-50 (1,1357) (1,1841) (1,2753) (1,2762) (1,2995)
Expected-50 (1,1353) (1,1618) (1,2272) (1,2472) (1,2815)

B. Comparison between BMTD and RUN

1) Comparison under different number of missing tags:
In this subsection, we evaluate the performance of BMTD
under different number of missing tags, which stands for the
effectiveness and efficiency of BMTD. To that end, we set
|E| = 1000, |U| = 10000, m = 1 : 50 : 901, α = 0.9 and
0.99. Moreover, we set the threshold to M = 1.

Actual reliability: BMTD achieves the required reliability
for any missing tag population size when there are a large
number of unexpected tags in the RFID systems. Fig. 5(a)
and 5(b) illustrate the actual reliability of BMTD and RUN
for α = 0.9 and 0.99, respectively. It can be observed that
both BMTD and RUN achieve the reliability more than that
required by the system.
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Fig. 5. Actual reliability vs. number of missing tags

Detection time: BMTD is more time-efficient in compar-
ison to RUN. Fig. 6(a) and 6(b) show the detection time for
α = 0.9 and 0.99, respectively. For clearness, we further
highlight the caves from m = 51 to 901. As shown in
the figures, the detection time of BMTD is far shorter than
that of RUN and decreases with the number of missing tags
significantly. This is unsurprising. BMTD is able to deactivate
major unexpected tags, which greatly reduces the number of
active tags in the population, such that the presence of more
missing tags makes the detection much easier. In contrast,
RUN does not take into account the impact of unexpected
tag population size, leading to longer detection delay in the
presence of large number of unexpected tags.
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Fig. 6. Detection time vs. number of missing tags

2) Comparison under different number of unexpected tags:
In this subsection, we evaluate the performance of BMTD
under different number of unexpected tags, which represents
the generality of BMTD. To that end, we set |E| = 1000,
m = 50, M = 1, α = 0.9 and 0.99. Moreover, we select such
|U| = 1000, 5000 : 5000 : 30000 that various values of |U||E| are
covered in the simulation.

Actual reliability: BMTD achieves the reliability greater
than the required reliability for different cardinalities of un-
expected tag set. In the simulation, tt can be observed that
the actual reliability achieved by both BMTD and RUN when
α = 0.9 and 0.99, respectively, is equal to one.
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Fig. 7. Detection time vs. number of unexpected tags

Detection time: The BMTD outperforms the RUN consid-
erably in terms of detection time even in the scenario with the
small number of unexpected tag. Fig. 7(a) and 7(b) show the
detection time for α = 0.9 and 0.99, respectively. As shown
in the figures, BTMD is able to save time especially when
more unexpected tags are present in the population. Moreover,
the increase in detection time of BTMD is more slow than
that of RUN. This is due to the ability of BTMD that it
can detect the missing tag event when estimating the |U| and
determine whether to execute the unexpected tag deactivation
phase following Lemma 3, which is exactly ignored in RUN.

3) Comparison under different values of threshold: In this
subsection, we evaluate the performance of BMTD under dif-
ferent thresholds, which represents the tolerability of BMTD.
To that end, we set |E| = 1000, |U| = 10000, m = 100, α =
0.9 and 0.99. Moreover, we choose such M = 50 : 50 : 300
that the threshold can be greater or smaller than or equal to
the number of missing tags in the simulation.

Actual reliability: BMTD achieves better reliability than
the required reliability when m ≥ M . As shown in Fig. 8(a)
and 8(b), BMTD fails to achieve the required reliability only
when m < M , which does not have negative impact because
the objective of the missing tag detection protocol is to detect
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Fig. 8. Actual reliability vs. threshold

the missing tags only if the number of missing tags exceeds
the threshold M .

Detection time: BMTD can tolerate the deviation from the
threshold in terms of the detection time even when m < M .
Fig. 9(a) and 9(b) show the detection time for α = 0.9
and 0.99, respectively. It can be seen from the figures that
the detection time of BMTD almost does not vary with the
deviation. The detection time of RUN, by contrast, increases
substantially as the deviation increase when m < M . This is
because RUN terminates only when it runs optimal number of
frames since the first frame when the estimated value of |U|
does not vary by 0.1% in consecutive 10 frames if it does not
detect any missing tag in any frame, while BMTD stops once
the observed reliability P̂sys exceeds α.
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Fig. 9. Detection time vs. threshold

C. Impact of different estimation errors

In this subsection, we investigate the impact of estimation
error on the actual reliability and detection time. We set |E| =
1000,|U| = 10000, α = 0.9, M = 1 and m = 1, 10, 50.

Table III lists the results where the first and second elements
in the two-tuple (·, ·) denote the actual reliability and detection
time, respectively. It can be seen that the overall performance
is best when estimation error is 0.1. When the estimation error
is very low, namely 0.01, while BMTD has higher reliability,
it spends huge time on achieving the stringent requirement on
the estimation and is time-consuming. When the estimation is
relatively rough, namely 0.3, though BMTD achieves the lower
latency in some cases, it suffers from poor reliability which
even cannot satisfy the system requirement when m = 1.

VIII. CONCLUSIONS

This paper has investigated an important problem of de-
tecting missing tags in the presence of a large number of
unexpected tags in large-scale RFID systems. Specifically, we

TABLE III
ACTUAL RELIABILITY AND DETECTION TIME UNDER DIFFERENT

ESTIMATION ERRORS

Estimation error Number of missing tags
1 10 50

0.01 (0.98,35311) (1,32694) (1,33185)
0.1 (0.931,9966) (1,5467) (1,3467)
0.3 (0.88,9348) (0.98,5055) (1,4864)

aim at detecting a missing tag event in a reliable and time-
efficient way. This paper has proposed a two-phase Bloom
filter-based missing tag detection protocol (BMTD). In the
first phase, we employed Bloom filter to screen out and
then deactivate the unexpected tags in order to reduce their
interference to the detection. In the second phase, we further
used Bloom filter to test the membership of the expected tags
to detect missing tags. We also showed how to configure the
protocol parameters so as to optimize the detection time with
the required reliability. Furthermore, we conducted extensive
simulation experiments to evaluate the performance of the
proposed protocol and the results demonstrate the effectiveness
and efficiency of the propose protocol in comparison with the
state-of-the-art solution.
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