IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 2, FEBRUARY 2017

677

On Optimality of Myopic Policy in Multi-Channel
Opportunistic Access

Kehao Wang, Lin Chen, and Jihong Yu

Abstract— We consider the channel access problem arising in
opportunistic scheduling over fading channels, cognitive radio
networks, and server scheduling. The multi-channel communica-
tion system consists of N channels. Each channel evolves as a
time-nonhomogeneous multi-state Markov process. At each time
instant, a user chooses M channels to transmit information, and
obtains some reward, i.e., throughput, based on the states of
the chosen channels. The objective is to design an access policy,
i.e., which channels should be accessed at each time instant, such
that the expected accumulated discounted reward is maximised
over a finite or infinite horizon. The considered problem can be
cast into a restless multi-armed bandit (RMAB) problem, which
is PSPACE-hard, with the optimal policy usually intractable due
to the exponential computation complexity. Hence, a natural
alternative is to consider the easily implementable myopic policy
that only maximises the immediate reward but ignores the impact
of the current strategy on the future reward. In this paper, we
perform an analytical study on the performance of the myopic
policy for the considered RMAB problem, and establish a set of
closed-form conditions to guarantee the optimality of the myopic
policy.

Index Terms—Restless bandit, myopic policy, optimality,
stochastic order, multivariate analysis.

I. INTRODUCTION
A. Motivation

ONSIDER a communication system composed of N

independent channels each of which is modelled as
a time-nonhomogeneous X-state Markov chain with known
probability transition matrices. At each time period a user
opportunistically selects M channels to transmit information.
A reward depending on the states of those selected chan-
nels is obtained for each transmission. The objective is to
design a channel access policy that maximizes the expected
accumulated discounted reward collected over a finite or
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infinite time horizon. Mathematically, the considered channel
access problem can be cast into the restless multi-armed ban-
dit (RMAB) problem of fundamental importance in decision
theory [1]. As we know, RMAB problems arise in many
areas, such as wireless communication systems, manufacturing
systems, economic systems, statistics, biomedical engineering,
and information systems etc. [1], [2].

The considered problem can also be formulated as a
Partially Observed Markov Decision Process (POMDP) [3],
which can be solved by numerical methods for any channel
transmission matrix and reward process. However, the numer-
ical approach does not provide any meaningful insight into
optimal policy. Moreover, this numerical approach has huge
computational complexity. For the two reasons, we study some
instances of the generic RMAB in which the optimal policy
has a simple structure. Specially, we develop some sufficient
conditions to guarantee the optimality of the myopic policy;
that is, the optimal policy is to access the best channels each
time in the sense of stochastic dominance order.

B. Related Work

In the classic RMAB problem, a player chooses M out
of N arms, each evolving as a Markov chain, to activate each
time, and receives certain reward determined by the states of
the activated arms. The objective is to maximize the long-
run reward over an infinite (or finite) horizon by choosing
which M arms to activate each time. If only the activated
arms change their states, the problem is degenerated to the
multi-armed bandit (MAB) problem [4]. The MAB problem
is solved by Gittins by showing that the optimal policy has
an index structure [4], [5]. However, the RMAB problem is
proved to be PSPACE-Hard [6].

There exist two major thrusts in the research of the RMAB
problem. Since the optimality of the myopic policy is not
generally guaranteed, the first research thrust is to analyze
the performance difference between the optimal policy and
approximation policy [7]-[9]. Specifically, a simple myopic
policy, also called greedy policy, is developed in [7] which
yields a factor 2 approximation of the optimal policy for
a subclass of scenarios referred to as Monotone MAB. The
second thrust is to establish sufficient conditions to guarantee
the optimality of the myopic policy in some specific instances
of restless bandit scenarios, particularly in the context of
opportunistic communications of which some focus on the
case of two-state channel while others on multi-state channels.

For the case of two-state, Zhao et al. [10] partly obtained
the optimality for the case of independently and identically
distributed (i.i.d.) channels by analyzing the structure of the
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myopic policy. Then Ahmad et al. [15] derived the optimality
of the myopic sensing policy for the positively correlated i.i.d.
channels for accessing one channel each time, and further
extended the optimality to access multiple i.i.d. channels [12].
From another point, in [14], we extended [15] which used
i.i.d. channels to non i.i.d. ones, focused on a class of so-
called regular functions, and derived closed-form sufficient
conditions to guarantee the optimality of myopic policy. The
authors in [16] studied the myopic channel probing policy
for the similar scenario proposed, but only established its
optimality in the particular case of probing one channel
(M = 1) each time. In our previous work [17], we established
the optimality of myopic policy for the case of probing
M = N — 1 of N channels at each time instant and analyzed
the performance of the myopic probing policy by domination
theory. Furthermore, in [18], we studied the generic case of
probing arbitrary M channels at each time instant, and derived
closed form conditions on the optimality by dropping one of
the non-trivial conditions of [16].

For the complicated case of multi-state, the authors in [19]
established the sufficient conditions for the optimality of
myopic sensing policy in multi-state homogeneous channels
with a set of non-trivial assumptions. In [20], we studied the
same model, and showed the optimality of myopic policy in
accessing N — 1 of N channels without the fourth assumption.
In [21], we studied a special instance of multi-state case,
and proved the optimality of myopic policy under a set of
conditions.

C. Contribution of the Paper

Although the multi-state case is also the focus of our
work, there exists huge difference between [19], [20] and
our work from the viewpoint of channel model. Specifically,
on one hand, the channels are modelled to be heterogeneous
in our work, which means that probability transition matrix
of each channel is different from those of other channels,
while in [19] and [20] the probability transition matrices of
all channels are identical. On the other hand, the probability
transition matrix of each channel is time-nonhomogeneous,
i.e., the transition matrix at each time slot is different from
those matrices at other slots, while in [19], [20] the probability
transition matrix of each channel keeps the same in the whole
time horizon. Compared to our previous work [21], the special
instance considered in [21] is only one of three instances
studied in this work.

The difference in channel model brings about major difficul-
ties in optimising the expected accumulated discount reward
in heterogeneous channels from two aspects: i) how to obtain
a non-trivial upper performance bound for a pair of special
policies depending on multiple different stochastic matri-
ces under multivariate reward (corresponding to multi-state)
case; ii) how to determine the stochastic order of belief vectors
which characterise the available probabilities of all channels
when the transition matrices are non-homogeneous in time
horizon.

The two issues are resolved, respectively, by i) assuming
that each transmission matrix has a non-trivial eigenvalue with
X — 1 times, under which the first-order stochastic dominance
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is preserved and meanwhile, the upper performance bound
of each pair of special policies involved in transition matrix
is characterized by its non-trivial eigenvalue; ii) assuming
that there exists a deterministic stochastic dominance order
of transmission matrices at any time instance.

In particular, the contributions of this paper include:

o The structure of the myopic policy is shown to be a
decreasing-order list determined by the availability prob-
ability vectors of all channels provided that certain con-
ditions are satisfied for the probability transition matrices
of these channels.

o Multiple set of conditions concerning the structures of
probability transition matrices are obtained for different
scenarios to guarantee the optimality of the myopic
policy.

o The optimisation approach adopted in this work demon-
strates the advantage of branch-and-bound and directed
comparison.

D. Organization

The rest of the paper is organized as follows: Our model is
formulated in Section II. Section III studies the optimality of
the myopic policy. Section IV extends the optimality to other
cases. Then a numerical evaluation is verified in Section V.
Finally, the paper is concluded by Section VI.

Notation: (~)T and ()~ are the transpose and inverse of
matrix (or vector). Iy is the row vector with 1 in all elements.
e; is the row vector with 1 in the i-th element and O in other
elements. E = [ef, -+ -, eX]T s an unit matrix.

II. MODEL AND THE OPTIMIZATION PROBLEM
A. System Model

We consider a time-slotted multi-channel communica-
tion system consisting of N channels, denoted as N\ =
{1,2,---, N}, and the slot index is ¢. Each of channel,
i.e., n-th channel, is modelled as a time-nonhomogeneous X-
state Markov chain with probability transition matrix P (r),

PIY@ PO - pRO) P (1)
o WONSSIORRNCHON B B 40
PRI PRI - YD) Py (1)
where, Pg”) @, -, Pg?) (t) are row vectors.
We want to use this communication system to transmit
information. For that matter, at each time t =0,1,2,---, T,

we can select M channels, observe their states, and use them
to transmit information.
Let S,(f) denote the state of channel n at time ¢, then we

have the state vector S(t) = [S1(¢),---, Sy ()]. Let A(r)
denote the decision made at time r where 4(r) € Al and
|| = M.

Initially, before any channel selection is made, we assume
that we have probabilistic information about the state of each
of the N channels, i.e., obtaining the information by observing
their states of all channels. Specifically, we assume that at
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t = 0, the decision-maker knows the probability mass function
on the state space of each of the N channels, i.e., the decision-
maker knows

where,

w, (0) £ [(Wu1(0), wi2(0), -+, Wux (0)], n e,
Wy (0) £ P(S,(0) =x), x e X.

In general,

A(0) = p(Q0),
() = p(0-1, 41, Q(0)),

where, p is the mapping to current policy from belief vector,
observation history, and decision history,

O—1 = (0(0), 0(1), - -+, Ot — 1)),
/qt—l £ (ﬂ(o)’ ﬂ(l)’ e ,ﬂ([ - 1))»
O(t) £ (001 (t), ) OJM (t))»

and O, (1) = S5, (t) (om € A(t)) denotes the observation
state of channel ¢, at .

We assume that the reward obtained from accessing a
channel at slot # depends on the state of the channel chosen
at ¢, formally defined as follows:

R(Su (1)) = ry if Sp(t) = x, (1)

where, ry > --- > ry indicates that the reward obtained in the
high SINR channel state is larger than that in the low SINR,
and r £ [r1,---,rx] is an X-dimensional row vector.

B. Optimization Problem

The objective is to seek the optimal policy p* that max-
imizes the expected accumulated discounted reward over a
finite horizon:

T
p* = argmax E? |:z ,B’_IRPI Q@)
p

t=0

Q (0)} ; )

where, R, (€(7)) is the reward collected in slot 7 under the
policy p;, B is the discount factor (0 < f < 1), and p =
(po, p1,- -+, pr) are such that

a(r) = p:(Q0)), Ve,

Q) = [wi(t), wa (1), -+, wn(D)],

Wi (1) = [Wn1 (1), Wna (), -+ , Wux ()], n € A,
Wax (t) = P(S,(t) = x[O;—1, A4—1), x € X,

and w, (r + 1) is updated recursively using the following rule:

B PM (1), ne Aat), 0,() =x
e [wn(r)PW@, n & A). ¥

To get more insight on the structure of (2), we rewrite it in
the language of dynamic programming as follows:

VHQ(T) = maxa) B[ 2yeair) Wa ("],
Vi(Q(t)) =maxyq E Znez(z) w, ()T
+ B 20, QE)Ver QG +1) |,
F(a(t),Q(t))

“)

where,

X
x=1 szg

> I wa@-- T wixo,

Uf:le:ﬂ(t)iEAl jeAx

(A, Q@) =

V;(Q(2)) is the value function corresponding to the maximal
expected reward from time slot 7 to T (0 <t < T), Q(r+ 1)
follows the evolution in (3) given that the channels in the
subset Ay (x € X) are observed in state x. In particular, the
term F (A(t), Q(t)) corresponds to the expected accumulated
discounted reward starting from slot # + 1 to T, calculated
over all possible realizations of the selected channels (i.e., the
channels in 4(7)).

C. Myopic Policy

Theoretically, the optimal policy can be obtained by solving
the dynamic programming (4). It is difficult, however, due
to the tight coupling between the current action and the
future reward, and in fact obtaining the optimal solution
directly from the recursive equations (4) is computationally
prohibitive. Henceforce, a natural alternative is to seek a
simple myopic policy maximizing the immediate reward while
ignoring the impact of the current action on the future reward,
which is easy to compute and implement, formally defined as
follows:

a@r) = argmaxE[ Z w,,rT]. 5)

A1) neAa(t)

For the purpose of tractable analysis, we introduce some
partial orders used in the following sections.

Definition 1 (first order stochastic dominance, [22]): Let
(X) 2 {(wi, - ,wx) : S0 = Lw, -, wx >
0}. For wi, wy € II(X), then w; first order stochastically
dominates wp—denoted as wi>;w, if the following exists
for j =1,2,---,X,

X X
E Wi = E W2,
i=j i=j

Definition 2 (first order stochastic dominance matrix):
Let wi,---,wy € II(X) be any X belief vectors. Then
the matrix Q = [w; . wx]T is a first order stochastic
dominance matrix if wi<,wo<;--- <,Wx.

Based on the first order stochastic dominance, we have the
special structure of the myopic policy by (5), stated in the
following.

Definition 3 (Myopic Policy): The myopic policy p =
(po, p1, -+, pr) is the policy that selects the best M channels
(in the sense of first order stochastic dominance order) at each
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time. That is, if wg, (t)> - - - > Wg,, (¢), then the myopic policy
at ¢ is (1) = p Q1)) = {o1, -+ ,om}

IIT. ANALYSIS ON OPTIMALITY OF MYOPIC POLICY

To analyze the performance of the myopic policy conve-
niently, we first introduce an auxiliary value function [18] and
then prove a critical feature of the auxiliary value function.
Next, we give a simple assumption about transition matrix,
and show its special stochastic order based on the assumption.
Finally, by comparing different policies, we get some impor-
tant bounds, which serve as a basis to prove the optimality of
the myopic policy.

A. Value Function and its Properties

First, we define the auxiliary value function (AVF) as
follows:

(WHQT) = Xeai) wa(Dr,
WHQ(D) = Xyen Wl
+ B Z(A(x), Q)W (Q(2)),
F (A(0),Q(2))
t+1<7t<T
WAQM) = Xyeae WaOrT
+ B 2(A(), QU)W (Q + 1)),
F(a(1),Q(t))

(6)

Remark 1: (1) AVF characterizes the expected accumu-
lated discounted reward of the following special policy:
at slot ¢, the first M channels in A(¢) are accessed, and
then the channels in A(r) (f+1 <t < T) are accessed;

that is, the special policy (p;, pr+1, -+ , pr) is adopted
from slot 7 to T.
() If a(t) = A(t) (e, pp = pr), then WA(Q(t)) =

W,Q(Q(t)) is the total reward from slot ¢ to 7" under
the myopic policy p.
Lemma 1 (Decomposability): The auxiliary value function
WA (Q(1)) is decomposable for all t = 1,2,---, T, ie.,

W[ﬂ(wl"" s Wi, oo ,WN)

X
=D 0 W (Wi, e, WN).

j=1
Proof: See Appendix A. U

B. Structural Properties of Matrix of Transition Probabilities

In this section, we give an assumption on the matrix of
transition probabilities, and then points out some important
properties of the matrix which serve as a basis of deriving the
optimality of the myopic policy.

Proposition 1: Suppose that transition matrix P has X
eigenvalues 41 > A, > ... > Jlx and the corresponding
eigenvectors are vy, v, - - - , Vx, then we have

1) ilzlandvlz%;
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2) If w,, w, € I1(X), then the following holds for any A

210 ...0
T 02...0
(Wi — Wp) (V1 -+ Vx) T
0 0 ...x
A0 ...0
- 042 ... 0
=Wn —wWa)(vi - v | : @)
00...2x
Proof: See Appendix B. 0
Assumption 1: Assume that
) 2@ = =20 2 AW@) > 0 for PO@) (n €
Nt =1).
) () (S .
) Atany slot ¢, P, (t) < P, H@E=1,---,N—-1),
where ¢{, -+, ¢} is one permutation of {1,2,---, N} at
slot ¢.

Remark 2: The first part of Assumption 1 states the spe-
cial structure of transition matrix, i.e., having the positive
eigenvalue A"V () with X — 1 times, while the second part
guarantees monotonic structure in the sense of stochastic
order in terms of wy(¢), -+, wy () at any slot 7; that is, the
information states of all channels can be ordered stochastically
at all slots.

Proposition 2: Under Assumption 1, P (¢) is a first order
stochastic dominance matrix.

Proof: See Appendix C.
Proposition 3: Under Assumption 1,

O

at any slot f,

{wi(), -+ ,wpy(t)} can be ordered in the sense of first order
stochastic order; that is, Wi (1) <y W <5 - <y Wer ),
where, {¢{,¢3,---, ¢y} is a permutation of {1,2,---, N} at

slot 7.
Proof:  Considering e; <; w.(f) <; ex, we have
1

() () .
PU(0) <5 wot+1) < PYU(@0) (= 1,-- N) by (3),
Combining with Assumption 1, we have Wer (t+1) < Wt (t+

=g sswe (0 +1).

C. Optimality of Myopic Policy

Here, we derive some important bounds in the following
Lemma 2 and then establish the sufficient condition, based on
these bounds, to guarantee the optimality of the myopic policy.
Specifically, in Lemma 2, we consider two belief vectors ; =
(Q_;, w;) and Q; = (Q_;, w;) that differ only in one element,
i.e., wy<yw, and gives the lower bound as well as the upper
bound on W/ (Q)) — W().

Lemma 2: Under Assumption 1, 7 £ max{A® () : i €
Nl <t <Th Q2 (Qow) @ £ (Qop, W), Wi, Wi,
we have for 1 <t <T

o« (Al):if 4 =4,lc4 and € 4,

(W —wpr' < W(Q) — WA(Q)
T—t
< D (B (W —wr';
i=0
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e (A2r:if 24 =24,1¢ 42 andl ¢ 4,

0 < W (@) — W)
T—t
> B (W —wprT;

i=1

o (A3 ifA\{l}CcAa,leca andl ¢ A4,

IA

0 < WA Q) — W)

T—t
< > (BN (W —wpr'
i=0
Proof: The proof is given in Appendix D. ]

Remark 3: (A1) achieves its lower bound when / is chosen
at slot r while never chosen after ¢, and achieves the upper
bound when [ is chosen from ¢ to T. (A2) achieves its lower
bound when [ is never chosen from ¢, and achieves the upper
bound when / is not chosen at ¢ but always chosen from 7 + 1
toT.

Given Q, in the following lemma, we consider two policies
4; and 4, which differ in one element; thatis, [ € 4, m € 4,
24\ {l} = 4, \ {m}, and w;>3w,,, and establish sufficient
condition such that W;*(Q) > W, (Q).

Lemma 3: Under Assumption 1, given m € 2,, [ € 4,
Wi> Wy, and 4\ {1} = A, \ {m), if 3]/ (7) < 1, then
w(Q) > W (Q).

Proof: Let Q' denote the set of channel belief vectors
with W; = w,, and w; = w; for Vi # [ and i € 9(, then
W (Q) = W (Q). By Lemma 2, we have

W (Q) — W (Q)
= (W (Q) — W (@) — W™ (Q) — W, ()]

T—t
> (Wi = w)r! = > (B7) (Wi — wp)r!

i=1

T—1
= (w — wm)rT(l - Z(M)f) > 0.
i=1
O

Now, the main optimal theory about the myopic policy is
stated in the following.

Theorem 1: Under Assumption 1, the myopic policy is
optimal if 371" (67)" < 1 specifically, if T — oo, f7 < 1.

Proof: When T - o0, we prove the theorem by backward
induction. The theorem holds trivially for 7. Assume that it
holds for 7' — 1, --- ,f + 1, i.e., the optimal accessing policy
is to access the best channels (in the sense of stochastic
dominance in terms of available probability vector) from time
slot £ + 1 to 7. We now show that it holds for .

Suppose, by contradiction, that given Q = {w; ,---, W;,}
and wi> woy> -+ > Wy, the optimal policy is to access the
best channels from time slot  + 1 to T, and thus, at slot ¢, to
access channels 4(t) = {i1, - ,im} # A@) = {1,--- , M},
given that the latter, ﬁ(t), includes the best M channels
at slot ¢. There must exist i, and i; at slot ¢ such that
m < M <[ and w;, < w;, < w;. It then follows from
Lemma 3 that Wt{il,m,iM}(Q) < Wt{ll,"',lm—l,l/,lm+l,"',lM}(Q)’

which contradicts with the assumption that the latter is the
optimal policy. This contradiction completes our proof.
When T — oo, the proof follows straightforwardly by
noticing that > 2, q' =q/(1 —q) for any ¢ € (0, 1). 0
Corollary 1: When X = 2 and P™ () = P™ for any ¢, if
0< pg;) — p%) < 1, then the myopic policy is optimal.
Proof: Given X = 2, Assumption 1.1 is satisfied auto-
matically. Meanwhile, Assumption 1.2 is not necessary since
in this case the stochastic order (one kind of partial order)
structure of belief vector is degenerated into the total order
structure. In this case, we have

n n
Py 1—=py,
—1
f11=pl (1 ()0 ()) 11— pl
- n n
1 —Pg) 0 pyy —p1s 1 _Pg)

Therefore, when 0 < AW = pgé) — p%) < % the myopic
policy is optimal by Theorem 1. 0

D. Discussion

In [19], the authors considered the scheduling problem
with homogeneous channels, and proved the optimality of
myopic policy under four assumptions. In this paper, we
study the access problem with heterogeneous channels and
their probability transition matrices are non-homogeneous in
time slots. Therefore, the problem considered in this paper
is more generic from the viewpoint of restless bandit theory,
and accordingly, the approach adopted in this paper is different
from [19] to a large extent. In fact, due to different assumptions
concerning the structure of probability transition matrices, our
channel model cannot degenerate to that in [19] even though
heterogeneity is neglected in both channels and time slots.
One special case is X = 2 in which the results in [19] show
that the myopic policy is optimal for homogeneous channels
when A > 0, while our results show that the myopic policy
is optimal for heterogeneous channels when 0 < 2.0 < 0.5

(n € A).

IV. OPTIMALITY EXTENSION

In this section, we extend the optimality of myopic policy to
two cases: 1) each transition matrix has negative eigenvalues,
and 2) each matrix has negative or positive eigenvalues, except
the trivial eigenvalue ‘1’ stated in Proposition 1.

A. Optimality of Myopic Policy for Transition Matrix With
Negative Eigenvalues

Assumption 2: Assume that

) 2@ = =20 2 AW@) < 0 for PO@) (n €
N:)' t t
2) At any slot, Pl(gi)(t) < P)((g“")(t) (=1, ,N—1),

where ¢i,---, ¢} is one permutation of A’ at slot ¢.
Proposition 4: Under Assumption 2, w,,, w; € I1(X), and
W, > W), we have

o W [IL5 " PO @) 2w [T PO (), i = 1,
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050203 0.60.20.2 0.6 0.2 0.2 0.30.20.5
P[1]={10.10603 |,P[2]=1030502)},P[3]=]1050302]},P[4]=1{0.1040.5
0.1 0.2 0.7 0.30.20.5 050203 0.1 0.2 0.7
040204 030403 050203 0.1 0.40.5
P[5]=(1050104 |,P[6]={040303],P[7]=]060.103]},P[8]=1{030.20.5
050203 040402 0.6 0.2 0.2 030403
o W [I22 PO (0)<,w [T 2 PP (2),i = 0,1, - - 2) For any slot ¢,
Proof: See Appendix E. (]
. .. t t
Basod on Assumption 2 and Proposition 4, we have the max{P(g )(t) P(c )(t)} <, min{Pl(gi+1)(t), P)((QH')([)},
following lemma.
. : 7T A EETOTAN
Lemma 4: Under Assumption 2, 4 = max{—21'"(¢) : fori=1,---,N—1, where ¢!, --- , ¢k is one permu-

N, 1 <t <T}, Q= (Q,w), Q = (Q, W), wi<,W,
and ZiT;l'(ﬁI)i <1,wehavefor 1l <r<T
e« Blrifa =4a1lc4 andl € 4,
17
=D @D —wr!
i=1
L5
< WAQ) = WQ) < (1+ D (B (F—wpr';
i=1
e« B2:if a4 =4a,1¢4 and [ ¢ 4,
11
— > BDH = wrT
i=1
LT
< W Q) - WAQ) < D (BDH (W —wpr;
i=1
e B3):ifa\{l}ca,leca andl ¢ 4,
r
= > B = wrT

i=1

L5
< W Q) - WHQ) < (1+ Z (B (W —wpr'.
Proof: Please refer to Appendix F (]

Remark 4: (B1) achieves its lower bound when [ is chosen
at slot t,r 4+ 1,¢ + 3,---, and the upper bounds when / is
chosen from ¢,¢t+2,t+4,---. (B2) achieves its lower bound
when [ is chosen at slot + + 1,7 + 3, ---, and upper bounds
when [/ is chosen at t +2,1 + 4, ---

Theorem 2: Under Assumptior} t2 the myopic policy is
optimal if Zr 2 l(,b’z)z"_1 + Z}jj(ﬂﬁ)zi < 1, specifically,
if T — o0, fA < —.

Corollary 2: When X =2 and P®™(r) = P™ for any ¢, if

p%) — pg) < 0, then the myopic policy is optimal.

B. Optimality of Myopic Policy for Transition Matrix With
Negative or Positive Eigenvalues

Assumption 3: Assume that
1) 2800 == 2D @) 2 20 for PO (1) (n € ).

tation of A’ at slot z.
Combing the lower and upper bounds of both Lemma 2 and
Lemma 4, we have
Lemma 5: Under Assumption 3, 1 2 max{|A?D )| : i €
N, <t < T}. Given Q = (Q_;,w), Q; = (Q_;, W),
w;<,W;, we have for | <t <T

e« (Cly:if a4 =2a,1c2 and [ € 4,

T—t
(=D (BDH W —wr'
i=1 | . |
< WA @) — W Q) < D (BN (W —wpr';
i=0

e (C2):ifa =4a,1¢4 and[ ¢ 4,

T—t
= > (BN (Wi —wr'
i=1
) T—t )
< W(Q) — WAQ) < D (BAY (W — wpr';
i=1

o (C3):ifa\{l}calea andl ¢ 4,

T—1
= 2D (% = wr!
i=1
T—t
< W@ - W) < D (BT) (W — wpr'.
i=0
Remark 5: (C1) achieves its lower bound when 1) (r) <0,
D) = 0(t+1 <t < T)and [ is chosen at slot 7 =
t,t + 1,t +2,---,T, and achieves the upper bound when
AO(z)>0and [ is chosenatslot t =¢,7 4+ 1,7 +2,---,T.
(C2) achieves its lower bound when /1(1)([) < 0, /W)(r) >
0(t+1 <t <T)andlischosenatslott =¢t+1,t+2,---, T,
and upper bounds when A?)(r) > 0 and I is chosen at slot
t=t+1,t+2,---,T
Theorem 3: Under Assumpt10n 3, the myopic policy 1s
optimal if Z (ﬁ/l)’ 2, specifically, if T — oo, fA < —.
Corollary 3: When X = 2 and P™W(r) = P® for any ¢,

if —3 < Pgé) - p%) < 3, then the myopic policy is optimal.
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% 0. - : : =t Fixed

3 —&— Random
< 055 ,
=]

Q

£ 05 ; : : .
=}

]

=

=

Throughput (bits per slot)

S o7 .

5 —©— Myopic

; 06} —+— Fixed )
S g5l . > P - = r Random
ER S8 g % ———
£ 046 : : 1
=]

o

Foo 2 3 4 5 6 7 8 9 10

(c)

Fig. 1. Performance comparison of Myopic Policy, Fixed Policy, and Random
Policy for Case 1 (Fig. 1(a)), Case 2 (Fig. 1(b)), and Case 3 (Fig. 1(c)), where
X=3,N=2,M=1,=1,r=(0.0 0.5 1.0), and probability transition
matrices follow Tables. I, II, and III, respectively.

TABLE I
PROBABILITY TRANSITION MATRICES FOR CASE 1
A Yo 2 3 4 ... 9 10
[ | PA] P[2] PHA] P]2 P[] P2
3> [ P33 Pla P[3] PA4 P[E| P4
TABLE II
PROBABILITY TRANSITION MATRICES FOR CASE 2
. Yo 2 3 4 ... 9 10
T | PB| P6] PB| P6 P P6
> [ P7] P[] P[7] P8 P[7] P8

V. NUMERICAL SIMULATION

In this section, we study the average reward (corresponding
to the expected accumulated discount reward divided by T
when f = 1) performance of Myopic policy, Random policy
(randomly choosing a channel at each time slot), and Fixed
policy (choosing a fixed channel at all time slots) by three
simplest scenarios in which X =3, N =2, M =1, f =1,
r = (0.0 0.5 1.0), and
1) Case 1. The probability transition matrices are set
according to Table I, herein, l(l)(t) = 04 or
0.3, 2@(@r) = 0.1 or 0.2, which corresponds to the
conditions in Theorem 1.

2) Case 2. The probability transition matrices are set
according to Table II, herein, /1(1)(t) = -0.1, 22 () =
—0.1 or —0.2, which corresponds to the conditions in

Theorem 2.
3) Case 3. The probability transition matrices are set
according to Table III, herein, l(l)(t) = 04 or

0.3, 2@(r) = —0.1.

Fig. 1 shows that the average reward obtained by the myopic
policy outperforms both the fixed policy and the random policy
to various extents, since the myopic policy is optimal in the

TABLE III
PROBABILITY TRANSITION MATRICES FOR CASE 3
t
n 1 2 3 4 9 10
1 Pl1 P2 P[1 P2 P[1 P2
2 P[5 Pl6 P[5 Pl6 P[5 Pl6

above three cases. Considering the exponential complexity of
obtaining the optimal policy, the benefit of the myopic policy
is obvious.

VI. CONCLUSION

In this paper, we have investigated the scheduling problem
of multi-state channels arising in opportunistic communica-
tions. Generally, the problem can be formulated as a partially
observable Markov decision process or restless multi-armed
bandit, which is proved to be PSPACE-hard. In this paper,
for heterogeneous i.i.d. multi-state channels, we have derived
a set of closed form conditions to guarantee the optimality
of the myopic policy (choosing the best channels) in the
sense of stochastic dominance order. Specifically, the obtained
conditions only depend on discount factor and the eigenvalues
of all probability transmission matrices. Due to the generic
RMAB formulation of the problem, the derived results and the
analysis methodology proposed in this paper can be applied
in a wide range of domains. Some future research directions
include seeking the optimality of myopic policy under indirect
(or imperfect) observation with error, seeking simple index
policy for this problem under certain conditions, and finding
policy for restless bandit problem when channels are correlated
to certain extent.

APPENDIX A
PROOF OF LEMMA 1

We prove the lemma by backward induction. For T, we
have W7(Q(T)) = Znefq(T) w,(T)r" which is obviously
decomposable for w; (i € A). Suppose that the lemma holds
for T —1,---,¢t+ 1, we prove that it still holds for # by two
different cases.

Case 1: i € A(t).

Wt‘q(wl,... , Wi, oo awN)
= > waOr + BT (A0), QU)W Q1 + 1)
neAa(t)
= > waOrT + A0\ (i}, Q1)
neAa(t)
x> o (W Q7 (1 + 1), ¢, PO (1)) ®)
jex

X

Aa
zwl_]w[ (W17 7ej7"' 7WN)
—1

S Y e

j=1 neAa(t)

+AEEAWM\ (1), QOIW, Q@+ 1), e, PO(0))]
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= > waOr' + T\ i}, Q)

neAa(t)
x > o (WL Q7 (1 + 1), ¢, PO (1)), )
jex
By (8) and (9), we have WA(wi, -, Wi, -+ ,Wy) =
z;(:l CUijW{q(Wl, e €, »WN)~
Case 2: i ¢ A(1).
Wt‘q(wl’... , Wi, woe ,WN)
= > waorT + B2 (A0), QU)W Q1 + 1)
neAa(t)
= > waOrT + A0, QWA Q1 + 1),
neAa(t)
x wi(PY (1))
= > wior'
neAa(t)
+BEA0), 20) > wi PO el Wi @7 (1 +1), ¢)).
JEX
(10)

X
A

E o W (Wi, -+ ,ej, -, Wy)

j=1

X
_ Zw,-j[ > et + AZ(AM), QW@ + 1),
j=1

neAa(t)
xe ,»P“)(z))]
= > waor'
neAa(t)
+AE(AW), Q1)) D i (WL Q7 (2 + 1), ;PO (1))
JEX
= D wOr’ +AE(A0), Q1)
neAa(t)
x> w1 e PO (D)e] WA Q7 (¢ + 1), eq)
JEX kex
= Z w,,(t)rT
neAa(t) )
+AE(A), Q1) D wi)PV (1)e] W (Q (1 +1), &)
kex
(11)
By (10) and (11), we have WA(Wi, -+, Wi, -+, Wy) =

z;(:l CUijWIﬂ(W], e ’ej’ e ,WN).
Combing Case 1-2, we prove the lemma.

APPENDIX B
PROOF OF PROPOSITION 1

(1) For the property of 21 = 1 and v; = % it is easily
verified, i.e.,
pit pi2 - Pix 1
T P21 P22 o pax 1
PI, = .. . .
DX1 Px2 -+ DXX 1

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 2, FEBRUARY 2017

X
ijl P1,j 1
X
Zj:l D2,j _ 1 -1
= . = =1x-
' I
Zj:l PXx.j !

(2) For the property of replacing A1 with any value 4, we
have the LHS of (7)

A1 0...0
0A... 0
Wi = W)V v |
00 ...x

Ax (Wi — W) VY]
Ax (Wi =Wy ) VL]
(12)

= (W —=W)V] A2 (W —W,)V3
= [A1 (W — w1k

=10 Ax(wy, — Wn)V;-

A2 (Wi — W) V3
Ax Wy, — Wn)V-I);]-

For the RHS of (7), we have

A0...0
0y... 0
(W — Wp) (v -~ VX)T T
00 ...2x

= (Wi —Wa)V] 22 (W — Wy )0V] 2x (W —W,) VY]
= [A(Wp —wWo)I}

=[0 Za(wy, — Wn)V-zr

2x (Wi —Wy) VY]
(13)

22 (W —W)VY

Ax (W — Wn)V-}r(]o

By (12) and (13), we prove the equation (7).

APPENDIX C
PROOF OF PROPOSITION 2

According to Assumption 1, we have the determinant
[P (1) of P™(r) is not less than 0, ie., [PM™(r) =
(A ()X~ > 0. Thus, P™ can be decomposed as follows

P(”)(t)
10...0
04...0
=MWiva v ... (vivy oo vx) !
00...)
S e
= ﬁ ) . (Vi va oo vx)7
i e
e o
= ﬁ ) . (Vi va oo vx)T
e
P TR
LT v v
iy o)\ 0 0.0
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(I =Dgn A =Dgi2 ... 1= Dqix
4 1 | A=Dgin A =Dgiz ... 1= Dqix
B VX : : :
(1 =MDgnn 1 =Dqiz ... 1= Dqix
Pl(")(t)
B Pz(")(t)
P}((")(t)
where,
q11 412 ... q1x
. q21 422 ... 92X
Vivy -~ vx) = L )
gx1 g9x2 ... 4xx

It is easily to verify that Pl(") (1) <y Pz(") ) <5 -+ < P)((”) ()
if 2 > 0, and further P (¢r) is a first order stochastic
dominance matrix.

APPENDIX D
PROOF OF LEMMA 2

We prove the lemma by backward induction. For slot T', we
have
1) Forl € 4', 1 € 4, it holds that Wf/(Q;) - W) =
r(W; — wp);
2) Forl ¢ 4,1 ¢ 4, it holds that Wi¥ (Q)) — Wi () = 0;
3) Forl € 4',1 ¢ 4, it exists at least one channel m such
that W, > w,, > w;. It then holds that 0 < W;¥ (Q)) —
W2(Q) = (W, — wy)rT < (W, —wp)r'.
Therefore, Lemma 2 holds for slot 7.
Assume that Lemma 2 holds for 7 — 1, --- , ¢ + 1, then we
prove the lemma for slot 7.
We first prove the first case: 1 € 4', 1 € 4. By developing
w;(t + 1) in Q(r + 1) according to Lemma 1, we have:

FOLQ) = T\ (1, Q) D 1y () Wi (@1, €, PO (1)

jex

(14)

F(A,Q0) = @\ (1, Q)] D oy (0 Wirs (@1, ¢, PO (0)]
jex

(s)

Furthermore, we have considering X (4’ \ {I},Q)) = Z(4\
{1}, )
F(’q/a Q;) - F(-qa Ql)
= @\ {1, )| Xy (OWir1 (@1, e PO 1)
JjeX
- szj OWi1(Qy, ejP(l)(l))]
jex
X
L@\ 0, Y [@y0) — o)
j=2
x (Wi (@1, e PO0) = W1 (@1 e PO0)) |

X X
=@\ {l}, ) Z [Z(cbzi(t) — i (1))
j=2i=j
X (WtJr](Q,l, ejP(l)(t)) — W1 (Q-y, ejflp(l)(t))):l

(16)

where, the equality (a) is due to w, (1) =1 — Zf:z w,; (1).
Next, we analyze the term in the bracket,
Wi1(Q,e,PO@) — Wi1(Q,e; 1 PO(r)), of RHS
of (16) through three cases:
Case 1: if | € 4,1 € 4, according to the induction
hypothesis, we have

0 < W1 (Qr, ;PO(0)) — Wi (Qy, e, PO (1))
T—t—1

> (D (e —e;_ PO

i=0

IA

a7)

Case 2: if 1 ¢ 4,1 ¢ 4, according to the induction
hypothesis, we have

0 < Wir1(Qs, ;PO (1)) — W1 (Q_y, 6,1 PO (0))
T—t—1

> B (ej —e; PO

i=1

IA

(18)

Case 3: if | € 4/, 1 ¢ A, according to the induction
hypothesis, we have

0 < W1 (Qr, ;PO (1)) — Wi (Qy, e, PO (1))
T—t—1
> BN e —e; PO

i=0

IA

19)

Combining Case 1-3, we obtain the following:

0 < W1 (Qr, ;PO(0)) — Wi (Qy, e, PO (1))
T—t—1

> (D (e —e;_ PO

i=0

IA

(20)

Therefore, combining (16) and (20), we have

W Q) - W)

o
A

(Wi (1) — wi(O)rT + B (A, Q) — F (2, Q)

(Wi () — wi(t)r’

X X
+53[ D @) — o))
j=2 =]
T—t—1

x 2 (D (e — e )PV |

i=0

IA

T—t—1

®O=wxT+p| D B @O-wOPO 0]

i=0

T—t—1

< @O- w8 D ED 0 -wie) TR

i=0
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T—t
= (W10 =wi )"+ (BL) (i (0) —wi()r'
i=1
T—t ‘
= D BD (W) —wio)rT,
i=0
where, the inequality (a) is due to Assumption 1 and Propo-
sition 1.
To the end, we complete the proof of the first part, [ € 4/,
[ € 4, of Lemma 2.
Secondly, we prove the second case [ ¢ 4, [ ¢ 4, which
implies that in this case, 4'(r) = A4(r). Assuming k € 4(r),
we have:

Fa,Q)
= (A0 \ (K}, Q)] D oy (VWi (@ e, PD ()],

Jjex

D
F (A, Q)
= (A0 \ 1, Q) X o1 O Wi (@, ;PP 0)]

jex
(22)

Thus, considering X (A(r) \ {k}, Q) = Z(A(?) \ {k}, Q)), we
have

F(’q/a Q;) - F(-qa Ql)
= T(a0) \ k), )
[ o (Wi (@ €,P D (1) = Werr (24, €, PO (1)

jex
(23)

For the term in the bracket of RHS of (23), if
channel [ is never chosen for W,+1(Q’7k,ejP(k)(t)) and
W,+1(Q_k,ejP(k)(t)) from the slot + + 1 to the end of
time horizon of interest 7. That is to say, [ ¢ A4'(r) and
[ ¢ A4(r) for t +1 < r < T, and further, we have
W1 (Q ., e, PO () — W1 (Q_g, e;PO (1)) = 0; otherwise,
it exists t° (t +1 < t° < T) such that one of the following
three cases holds.

Case 1: 1 ¢ A4'(r) and [ ¢ A(r) for t
l €2 and | € a(1°);

Case 2: 1 ¢ A4'(r) and | ¢ 4(r) fort < r <1 — 1 while
I ¢ 4% and I € 4(:°) (Note that this case does not exist
according to the first order stochastic dominance of transition
matrix PO (r));

Case 3: 1 ¢ A'(r)and [ ¢ A(r) fort < r < 1° — 1 while
lea % and I ¢ a(:°).

For Case 1, according to the hypothesis (I € 4" and [ € 4),
we have

10 — 1 while

IA

r =

W0 (Q)(1%)) — W0 (€ (t%)
T—1t°
< D BN W) = wi)r!
i=0
T—1°

= D BN W) —wi) H PO ()T

i=0 T=t+1
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T—1t°
QS B ) — wio) GEY T
i=0
T—1t°
= D> B ) — wi) ) T
i=0
T—1—1
> BN () — wi ) GE)X
i=0
T—1—1
= 7 > B W) —wio)rT,
i=0
where, the equality (a) is due to Assumption 1 and Proposi-
tion 1.
For Case 2-3, by the induction hypothesis (I € 4,1 ¢ 4 or
leAa,l¢a), wehave the similar results with Case 1.
Combing the results of the three cases, we obtain

Wir1(Q e, PO (1)) — W1 (Q_, e, PO (1))

0 —t+

< Iril(ﬁi)i(wz (1) = wie))r'. (24)
Combing (241-):an (23), we have
W Q) — W) = B (A, Q) — F(4,Q)
< p7 Tiol(ﬂ7>f(w1 (1) = wi(e))r’

T—

Z(ﬁl) (Wi (1) = wi(O)r',

i=1
which completes the proof of Lemma 2 when [ ¢ 4’ and
[ ¢ 4.

Last, we prove the third case [ € 4'(¢) and [ ¢ 4(z), then

it exists at least one channel, and its belief vector denoted as
W, such that w;> w,,>,w;. We have

W (©Q) (1) — Wi (1))

= WA Wi, Wi W) = WAWE - Wi, W)
= WA (Wi, Wi, WY)

—W,ﬂ/(Wl,'“ S W =W, oo+, WN)

+, W;q(wl,--- SWI =W, oo, W)

— W Wi, W W) (25)

According to the induction hypothesis (I € 4’ and [ € 4),
the first term of the RHS of (25) can be bounded as follows:

0 =< W[ﬂ/(wla"' 9";‘719”' 9WN)
_Wtﬂ/(wla"' s W = Wy, v ,WN)
T—t _
< D BDiWi () — Wi ()r" (26)
i=0

Meanwhile, the second term of the RHS of (25) is inducted
by hypothesis (I ¢ 4’ and [ ¢ 4):

0 < Wt”q(wl,. W =Wy, WN)_WI"ZI(WI,. W, WN)
T—t
< D BN (W (1) = wi()r" 27)

i=1
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Therefore, we have, combining (25), (26) and (27),
T—t

0 < W (@) — WHQi@) < D (BD W) — w0’
i=0

Thus, we complete the proof of the third part, [ € 4'(r) and
[ ¢ A(t), of Lemma 2.
To the end, Lemma 2 is concluded.

APPENDIX E
PROOF OF PROPOSITION 4

According to the deriving process of Proposition 2, we have

MO +2D (1) (1) ()
pony = [ 17 O+ G0
.C’f(f) .cg(t) o .Cﬁ(t)—i-l(”)(t)
(28)

Thus, under Assumption 2, it is easily to verify that
P (1) 2y Py (1) 2 - =, PY (@) i 200(1) <0,

By some simple matrix operations, we have
W, Hf;lfl P™(z) and w; ]_[t;;]flP(”)(r) in the top of
the next page. (See (29) (30), at the top of the next page.)

Thus, if k¥ = 2i, then H’T“;z,l_l/l(”)(r) > 0, and
further, wy, H';;zti*l P™ (2)>,w, H';;zti*l P (7); otherwise,
T2 20 (z) < 0 and w,, [T522 PO (1) <,w, [T 2 PO (x).

APPENDIX F
PROOF OF LEMMA 4

We prove the lemma by backward induction. For slot T', we
have
1) Forl € 4,1 € 4, it holds that Wf/(Q;) - W) =
(W, —w)r';
2) Forl ¢ 4,1 ¢ 4, it holds that Wi¥ (Q)) — Wi () = 0;
3) Forl € 4,1 ¢ 4, it exists at least one channel m such
that wj > w,, > w;. It then holds that 0 < Wf/ Q) —
W?(Q]) < (W — W])I'T.
Therefore, Lemma 4 holds for slot 7.
Assume that Lemma 4 holds for 7 — 1, --- , ¢+ 1, then we
prove the lemma for slot 7.
We first prove the first case: 1 € 4', 1 € 4. By developing
wi(t + 1) in Q(r 4+ 1) according to Lemma 1, we have:

FOT,Q) = N\ 1 ) X ol 0O Win (@1, ¢ PO )],

JEX

(3D

FO,Q) = T\ 12 X oy 0 Wi (@1, e PO |
JEX

(32)

Furthermore, we have considering X (4’ \ {/},Q)) = X(4\
{1}, )

F(-q/’ Q;) - F(ﬂ, Ql)
= T@\ {1, )| X oy OWi1 (@1, e PO 1)

Jjex

= D o (OWi1(Q, ejP(l)(f))]
JEX
W @\ {1y, Q) > [(csz(t) — wj(1))

JeX\{1}
x (Wit (@r, € PO 0) = Wi (@1, e PO(0)) |, (33)

where, the equality (a) is due to w,, (1) =1 — Zf:z w,; (1).
By Proposition 4, we have ejP(l)(t)fselP(l)(t). Then we
analyze the term in the bracket, W;11(Q_;, e jP(l) 1) —
Wi 1(Q_;, et PO (1)), of RHS of (16) through three cases:
Case 1: if | € 4/, 1 € A4, according to the induction
hypothesis, we have

[ ==

—+ D> DM —e)POor"
i=1

< Wir1(Q—, e, PO(1)) — Wit (Q-y, e PO (1))
==l
< == > D e —epPP(r’. (34

i=1

Case 2: if 1 ¢ 4,1 ¢ 4, according to the induction
hypothesis, we have

| ==L

- > DY (e1— PP ()"

i=1

< Wis1(Q-, ;PO (1) — Wi (Qy, e PO (1))
==
< D B e —epPY(orT. (35)

i=1

Case 3: if | € 4/, 1 ¢ A4, according to the induction
hypothesis, we have

|5

— > (B (e —e)PO(o)rT

i=1

< Wit (Qr, ;PO (1) — W1 (Qp, PO (1))
r==
<—(—= > D" e —e)PP0r".  (36)
i=1
Combining Case 1-3, we obtain the following:
[ ==
—(1+ D (BD)(er —eppPD ()T
i=1
< Wir1(Q1, ¢ PO (1) = Wir1(Q, e PO (1))
r==1
< (37

> B e —epPP()r".
i=1
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t4k—1 [ 1+k—1 t+k—1 tk—1 tHk—1 tk—1 t+k—1
wo [[ PP@ =] D> @ [] 2@+ [] 220, D @ [T 22+ [] 4@ onx
T=t B T=t t/=1+1 T=t T=t t/=t+1 T=t
(29)
t+k—1 k-1 t+k—1 t+k—1 t+k—1 t+k—1 t+k—1
w [ PP =] > i@ [ *eH+ [] *@on.-. D> k@ [] 17+ [ 27 @aox
=t | =t /=141 /=t =t /=741 =t
(30)
Therefore, combining (33) and (37), we have the upper = (w;(t) — wl(t))rT
bound of (B1) | T
; B N2y () (o T
WA (@) — W) pla+ 2 (D) —wO)P 0r" |
i=
= (Wi(t) = wiO)r" + B(F (A, Q) — F (4, Q) = (Wi(t) — wi(0)r"
< (W) —wi@)r’ N

. —Alas X B E - wio) BT
+8 2 [@ 1) = oy ) o

> (Wi(t) — wi(t)r'

j=2
T—1—1 L%J
! , T\20 (% TEveT
X 0D - enPO ] - pla+ 2 D0 = w(O) T |
151
= @) -’ = (1=p1= X ED*HE0) = wi)rT
= i=1
=Bl 20 B @) = wi@)PO 0! Eq
: =1 ) = (1= > D HE@) = wio)r!
a i=0
< @) - wiepe s
(71 = (1= D (BDH*HW@) — wi@)r'. (39)
A D BP0 - wi0) BT i=I
i=1 Combining (38) and (39), we complete the proof of the first
== part, [ € 4, 1 € 4, of Lemma 4.
= (wWi(t) —w, (t))rT + (’[}1)21' (Wi (1) — w; (t))rT Secondly, we prove the second case [ ¢ 4, [ ¢ 4, which
o1 implies that in this case, 4'(r) = A(r). Assuming k € 4(r),
= we have:
= (Wj(0) = wi )’ + > (FDH Wi(0) = wio)r! FELQ) = 20\ 6, 9 D o (Wi (@,
i=1 jex
15 xe PO, (40)
=+ 2 (W (1) — T 38
( ; B (1) = wi)r G) Q- 20 K, Q)| S (W10

where, the inequality (a) is due to Assumption 2 and Propo- ® et
sition 4. xe P (0] (1)
Then, the lower bound of (B1)
, Thus, considering X(A(r) \ {k}, Q) = Z(A(r) \ {k}, Q)), we
W Q) — W Q) have

= (Wi(1) — wi(O)rT + B(F (A, Q) — F (4, Q)

Fa,Q)—r4a,Q
> W) —wiO)r' +4 D [(&sz(t) — (1)) Dl

jét = 20\ K, Q[ D0
151 jex
x[- 1+ z B (er — ej)P(l)(l)l’T]:I X (W,+1 Q. ejP(k)(t)) — W1 (Q_y, ejP(k)(t)))].

i=1 (42)
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For the term in the bracket of RHS of (23), if
channel [ is never chosen for Wt+1(Q’_k,ejP(k)(t)) and
W,+1(Q,k,ejP(k)(t)) from the slot + + 1 to the end of
time horizon of interest 7. That is to say, [ ¢ A4'(r) and
[ ¢ A4(r) for t +1 < r < T, and further, we have
W1 (Q ., e, PO () — W1 (Q_g, e;PO (1)) = 0; otherwise,
it exists 1 (t + 1 < t° < T) such that one of the following
three cases holds.

Case 1: 1 ¢ 4'(r) and [ ¢ A(r) for t
[ €41 and I € a(t%);

< 10 — 1 while

IA
~

Case 2: 1 ¢ A'(r)and [ ¢ A(r) fort < r < 1° — 1 while
I ¢ 24" and | € a(:°);
Case 3:1 ¢ a4'(r) and [ ¢ 4(r) fort < r <1 — 1 while

[ €4 @° and I ¢ 4(°).

For Case 1, according to the hypothesis (I € 4" and [ € A),
we have the upper bound only when w;(t?)>,w;(t°); that is,
Y >142.

Wio (Q)(t7)) — W0 (u(t?))

1752 )

A+ D BDH@) —wi@)r'

i=1

IA

152
=+ D D@0 —wi) (PO@) T
i=1
L%’OJ ‘ 0
(2 a+ Z (ﬁz)zl)(ﬁ’l(t) — wl(f))(i(l)E)’ —t, T
i=1

| =22

(b) e _
<A+ DL BDH@) - wi) @'

i=1

572

i=1
where, the equality (a) is due to Assumption 3 and Proposi-
tion 1, and (b) is due to 1© =7 + 2.
The lower bound is achieved when w;(19)<,w;(¢°); that is,

Y >t + 1. Thus,

Wio (Q)(t7)) — W0 (u(t?))

1752 )

> (14+ D B —wi))r!
i=1

LT—zzOJ

1+ Z (ﬁﬁ)zf)(vh ) —wi(1) (P(l) (t))’o"rT

i=1

701+ (B (i (1) — wi ()T,

v

1752 )

D+ > EDHE0 - we)GOE) T
i=1

| ==L

A+ > BD*HW) — wi@®)(APE)x’
i=1

| ==L

21+ > BDH@@) —wi@)r,

i=1

v

where, the equality (a) is due to Assumption 2 and Proposi-
tion 1, and (b) is due to 1* =1 + 1.
For Case 2-3, by the induction hypothesis (I € 4,1 ¢ 4 or
leAa,l¢a), wehave the similar results with Case 1.
Combing the results of the three cases, we obtain

Wit (Q, €, PO (1)) — Wi 1(Qk, e, PP (1))
= B W0 (Q)(1)) — W0 (@ ()]

| L=

< FTA+ D DM@ —wrT,  @3)
i=1
where, the inequality is due to 10 =1 + 2.
Wit (Q s, ;PO (0)) — W1 (Qr, ;PO (1))
= BT W0 (Q)(1%) — Wi (Qi(1°))]
| ==
> 21+ > B —wie)r’, (44

i=1
where, the inequality is due to 10 =7 + 1.
Combing (43) and (44), we have
w7 (@) — W)
= pF (A, Q) — F(2,))
155721

BD*A+ D BD*HF(@) — wi)r'
i=1

IA

1 5]
= > (BDY W) —wi)r',
i=1

and

WA (Q) — W) = B (A, Q) — F (2, Q)

[

>—pI(+ D (B (Wi (6)—wi(e)r'
i=1
1
== D> BV Vi —wr'
i=1
which completes the proof of Lemma 4 when [ ¢ 4’ and
[ ¢ 4.
The proof of the third case [ € 4'(¢) and [ ¢ A(r) is similar
with the corresponding part of Lemma 2.
To the end, Lemma 4 is concluded.
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