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In multi-channel wireless networks, a fundamental problem is to find node-disjoint paths 
minimising global cost or the maximum individual path cost, under the constraint that 
each path operates on a separate channel to maximise the fault tolerance and robustness 
against channel instability and malicious attacks. Meanwhile, the quality of service (QoS) 
requirement (e.g., in terms of end-to-end delay) needs to be satisfied on each path. 
In this paper, we provide a comprehensive formulation and analysis on this multi-path 
optimization problem by casting it to the problem k-disjoint path with different colours 
(k-DPDC). We further formulate the Restricted MinSum k-DPDC and Restricted MinMax 
k-DPDC to denote the problems of finding multiple node- and channel-disjoint paths 
minimising the global cost and the maximum individual path cost under the QoS constraint 
on the path end-to-end delay. Given the NP-hardness of both problems, we focus on 
directed acyclic graphs and propose fully polynomial-time approximation algorithms for 
both problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following fundamental path optimization problem arising from reliable and fault-tolerant routing in 
wireless communication networks. Given a wireless network composed of n nodes, each of which operates on one of 
λ orthogonal frequency channels (indexed from 1 to λ), except for some nodes containing the source node s and the 
destination node t which can access all the λ channels, we seek k ≤ λ node-disjoint paths from s to t satisfying the 
following constraints:

– Fault tolerance. We call a path P , channel c path, if P is composed of only nodes which can operate on channel c. 
Two paths P1 and P2 are channel-disjoint if there exist distinct c1 and c2 with 1 ≤ c1, c2 ≤ λ such that Pi (i = 1, 2) is 
a channel ci path. As the first constraint, we require that any pair of the k paths are channel-disjoint one to the other. 
From the engineering perspective, this constraint implies that as long as one channel is operational, we can ensure that 
the packets can arrive at the destination t , i.e., the k paths we seek can tolerate up to k − 1 channels problem, e.g., 
blocked by attackers.
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– Quality-of-service constraint. We require that the delay induced by each path is upper-bounded by a threshold D .
– Performance optimization. We require that the global performance of the k paths is optimal. Specifically, we consider 

two natural performance metrics widely used in wireless routing problems, (1) the sum of cost (e.g., in terms of energy 
consumption) of all the k paths and (2) the maximum cost of the k paths, both of which are explored in our study.

We emphasise that it is the combination of the above design requirements that makes our path optimization problem far 
from trivial and should be handled holistically.

2. Problem formulation

In this section, we formulate the path optimization problem posed in Introduction. We first formulate the k-disjoint path 
with different colours (k-DPDC) problem by casting channels to colours in which we seek k channel-disjoint paths. We then 
incorporate the constraints on fault tolerance and quality of service [8,13–15] under the two performance metrics identified 
in Introduction.

Given a wireless network and λ channels 1, 2, . . . , λ, assume that each node v (1) operates on only one channel i ∈ [1, λ]
or (2) operates on all channels. In cases (1) and (2), v is assigned the colour i and colour 0, respectively. So, the main 
problems can be defined in a general graph G and every node of G has a colour i ∈ [0, λ]. In this paper, we will consider 
the case that G is a directed acyclic graph (DAG). For a graph G with vertex set V (G) and edge set E(G), a partial λ-vertex 
colouring of G is a mapping col : V (G) → {0, 1, . . . , λ} such that there exist at least two vertices of the colour 0. If col(v) = 0
for every v ∈ V (G), the partial λ-vertex colouring of G is called an empty λ-colouring. Let P = 〈v1, v2, . . . , vl〉 be a path in G . 
If col(vi) = 0 for i = 0, 1, . . . , l, set col(P ) = 0; if the colour of some vertex in P is not 0 and there exists a colour c ∈ [1, λ]
such that col(vi) ∈ {0, c} for i = 0, 1, . . . , l, set col(P ) = c.

Definition 2.1 (k-DPDC problem). Given a graph G = (V (G), E(G)) with a partial λ-vertex colouring such that both the source 
vertex s and target vertex t have colour 0. Let k ≤ λ be a constant representing the number of vertex-disjoint paths to be 
found from s to t . The problem is to find k-vertex-disjoint st-paths P1, P2, . . . , Pk such that for each path Pi , col(Pi) exists 
and for any two different paths Pi and P j , we must have col(Pi) �= col(P j) or col(Pi) = col(P j) = 0.

We denote the k pairwise internally disjoint st-paths P1, P2, . . . , Pk as required in Definition 2.1 by k vertex-disjoint 
st-paths with different colours. Obviously, if G is a graph with an empty λ-colouring, then the k-DPDC problem is same as the 
k vertex-disjoint paths problem.

In the following, in order to seek k vertex-disjoint st-paths with different colours minimising the total and maximum 
path cost while satisfying the QoS constraint, we formulate the restricted MinSum k-DPDC problem and the restricted MinMax 
k-DPDC problem.

Definition 2.2 (Restricted MinSum k-DPDC problem). Given a graph G with a partial λ-vertex colouring, two distinct vertices 
s, t ∈ V (G) with colour 0, a positive integer D , a cost function c : E(G) → R

+ and a delay function d : E(G) → R
+ , where 

R
+ is a set of positive real numbers, we want to find k vertex-disjoint st-paths P1, P2, . . . , Pk with different colours such 

that 
∑k

i=1 c(Pi) is minimised and 
∑k

i=1 d(Pi) ≤ D , where c(Pi) = ∑
e∈E(Pi)

c(e) and d(Pi) is defined similarly.

When k = 1 and G is a graph with an empty λ-colouring, the restricted MinSum k-DPDC problem is the same as 
the restricted shortest path problem which is NP-complete [6]. Further assuming that G is a directed acyclic graph (DAG), 
Warburton proposed a polynomial approximation scheme firstly [18]. Then, using a technique called rounding-and-scaling 
[16], two simple fully polynomial approximation schemes (FPASs) were given in [11] and [3], respectively. We will give an 
FPAS for restricted MinSum k-DPDC problem (k ≥ 2) on a DAG in Section 4 of this paper.

Definition 2.3 (Restricted MinMax k-DPDC problem). Given a graph G with a partial λ-colouring, two distinct vertices s, t ∈
V (G) with colour 0, a positive integer D , a cost function c : E(G) → R

+ and a delay function d : E(G) →R
+ , we want to find 

k vertex-disjoint st-paths P1, P2, . . . , Pk with different colours such that max1≤i≤k c(Pi) is minimised and 
∑k

i=1 d(Pi) ≤ D .

When the partial λ-colouring of G is empty and the delay constraint is infinity, the restricted MinMax k-DPDC problem 
is the MinMax k-disjoint paths (MinMax k-DP) problem proposed by Li et al. [10]. They proved that this problem is strong 
NP-complete when k = 2. Further more, suppose that G is a DAG. Fleischer et al. developed an FPTAS for this problem [4]. 
An improved approximation scheme was given by Yu et al. [20]. Based on this, Wu gave a faster approximation scheme [19]. 
In Section 5, we investigate the restricted MinMax k-DPDC problem on a DAG and present an FPTAS.

3. Technical preliminaries

In this section, we give some useful notations firstly and then an important auxiliary graph proposed by Li et al. [10]
will be introduced. It is natural that a wireless network may be modelled by a directed graph G consisting of the vertex set 
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V (G) and the directed edge set E(G). For any two vertices u, v ∈ V (G), the directed edge (u, v) ∈ E(G) if and only if a data 
packet can be transmitted from u to v in the network. Let |V (G)| = n and |E(G)| = m. Each edge e ∈ E(G) has an associated 
cost c(e) ∈ R

+ and a delay d(e) ∈ R
+ . N−

G (v) = {u ∈ V (G − v) : (u, v) ∈ E(G)} is called the in-neighbourhood of v . Similarly, 
N+

G (v) = {u ∈ V (G − v) : (v, u) ∈ E(G)} is called the out-neighbourhood of v . For graph-theoretical terminology and notation 
not defined here we follow [1].

In this paper, we suppose that G is a DAG. Then, let u1, u2, . . . , u|V (G)| be a topological ordering of the vertices in 
V (G), i. e. (ui, u j) ∈ E(G) only if i < j [2]. Choose two vertices s, t ∈ V (G). Now we introduce an auxiliary directed graph 
Gk = (Vk, Ek) [10,12] of G as follows.

Vk = {〈v1, v2, . . . , vk〉 : vi ∈ V (G) and vi �= v j or vi = v j ∈ {s, t} for any i �= j},
Ek = {(〈v1, . . . vd−1, vd, vd+1 . . . , vk〉, 〈v1, . . . vd−1, v ′

d, vd+1 . . . , vk〉) : (vd, v ′
d) ∈ E(G) and

f (d) = min
1≤i≤k

f (i) where f (x) = y if vx = u y for 1 ≤ x ≤ k and 1 ≤ y ≤ |V (G)|}.

Then s∗ = 〈s, s, . . . , s〉 ∈ Vk and t∗ = 〈t, t, . . . , t〉 ∈ Vk .

Lemma 3.1 ([20]). We can construct Gk in O (nk+1) time such that |Vk| = O (nk) and |Ek| = O (nk+1).

Any edge e = (〈v1, . . . vd−1, vd, vd+1 . . . , vk〉, 〈v1, . . . vd−1, v ′
d, vd+1 . . . , vk〉) ∈ Ek is called a d-dimensional edge and edge 

(vd, v ′
d) is the corresponding edge in G . In addition, e is associated with a delay d0(e) = d((vd, v ′

d)) and k + 1 costs 
c0(e), c1(e), c2(e), . . . , ck(e), where c0(e) = c((vd, v ′

d)) and for every i ∈ [1, k],

ci(e) =
{

c((vd, v ′
d)) , if i = d ;

0 , if i �= d .

Then, using the following property (Lemma 3.2), the k vertex-disjoint st-paths problem on G with different kinds of 
restrictions can be reduced to a multi-weighted s∗t∗-path problem on Gk .

Lemma 3.2 ([20]). There are k pairwise internally disjoint st-paths P1, P2, . . . , Pk in G if and only if there is an s∗t∗-path P in Gk and 
Pi consists of all the edges which correspond to i-dimensional edges of P .

Lemma 3.2 implies that c0(P ) = ∑k
i=1 c(Pi), ci(P ) = c(Pi) for i = 1, 2, . . . , k and d0(P ) = ∑k

i=1 d(Pi). Recall that there is 
no directed cycle in G . Then, an important lemma about Gk is given as follows.

Lemma 3.3. Gk is a DAG.

Proof. For simplicity, we only prove the lemma for the case k = 2. By contradiction. Let C = (〈u1, v1〉, 〈u2, v1〉, . . . , 〈ui, v j〉,
〈ui, v j+1〉, . . . , 〈u1, v1〉) be a directed cycle in G2. Then for any i ∈ {1, 2}, all the corresponding edges of i-dimensional edges 
compose a subgraph Ci in G , where C1 = (u1, u2, . . . , ui, . . . , u1) and C2 = (v1, . . . , v j, v j+1, . . . , v1). Obviously, |N−

Ci
(w)| =

|N+
Ci

(w)| for every w ∈ V (Ci) and so Ci contains a directed cycle for i = 1, 2, a contradiction to the fact that G is a DAG. �
Since Gk is a DAG, it is possible to find a topological ordering w1, w2, . . . , w |Vk| of the vertices in Vk , i. e. i < j for every 

(wi, w j) ∈ Ek .
For any vertex v = 〈v1, v2, . . . , vk〉 ∈ Vk and i ∈ [1, k], set coli(v) = col(vi). Let P be a path in Gk . The i-dimensional path 

Pi of P consists of all the edges corresponding to i-dimensional edges of P . If col(Pi) exists, then col(Pi) is said to be the 
i-dimensional colour of P , denoted by coli(P ). When coli(P ) exists for each i ∈ [1, k], we say that P has property P if for 
any different indices i, j ∈ [1, k], coli(P ) �= col j(P ) or coli(P ) = col j(P ) = 0. Then following corollary of Lemma 3.2 holds 
obviously.

Corollary 3.4. There are k-disjoint st-paths P1, P2, . . . , Pk with different colours in G if and only if there is an s∗t∗-path P with 
property P in Gk and Pi (i = 1, 2, . . . , k) is the i-dimensional path of P .

4. The restricted MinSum k-DPDC problem

Denote by O P T (G) the total cost of an optimal solution for this problem. In Section 4.1, for the special case that 
c(e) ∈ N

+ for each e ∈ E(G), where N+ is the set of non-negative integer, we propose an algorithm to compute O P T (G). 
Then, using this algorithm and the technique named rounding-and-scaling [5,7,9,17], an FPTAS for the restricted MinSum 
k-DPDC problem in a general case c(e) ∈ R

+ is presented in Section 4.2.
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Procedure 1 The computation of Mwi [C].

1. Mwi [C] := Mwi [C − 1], T wi [C] := ∞;
2. if Cwi �= ∅ and Nwi �= ∅, do
3. for each X ∈ Cwi , do
4. T wi [C, X] := ∞;
5. for each w j ∈ Nwi such that X ∈ Cw j , do
6. if T w j [C − c0((w j, wi)), X] + d0((w j, wi)) < T wi [C, X], do
7. T wi [C, X] := T w j [C − c0((w j, wi)), X] + d0((w j, wi));
8. end if
9. end for

10. if T wi [C, X] < T wi [C], do
11. T wi [C] := T wi [C, X];
12. end if
13. end for
14. end if

4.1. Restricted MinSum k-DPDC problem when c(e) ∈N
+

In this section, we suppose that c(e) ∈ N
+ for each e ∈ E(G). By Corollary 3.4, in order to obtain O P T (G) of the restricted 

MinSum k-DPDC problem, we need to find an s∗t∗-path P with property P in Gk such that c0(P ) is minimal and d0(P ) ≤ D . 
Recall that w1, w2, . . . , w |Vk| is a topological ordering of the vertices in Vk such that i < j for every (wi, w j) ∈ Ek . For clarity 
of presentation, we assume that w1 = s∗ and w |Vk | = t∗ . We now list the main steps.

Step 1. Given an integer C , for any wi ∈ Vk , let Mwi [C] be the minimal d0-weight of s∗wi -path P which satisfies property 
P and the constraint c0(P ) ≤ C . We will compute Mwi [C] in this step.

Step 2. Note that min{C : Mt∗ [C] ≤ D} is the optimal solution O P T (G) for the restricted MinSum k-DPDC problem when 
c(e) ∈N

+ for each e ∈ E(G).

4.1.1. The computation of Mwi [C]
For any wi ∈ Vk , let Cwi be a subset of U = {〈x1, x2, . . . , xk〉 : 1 ≤ xa �= xb ≤ λ for any a �= b} such that 〈x1, x2, . . . , xk〉 ∈ Cwi

if and only if there exists an s∗ wi -path P in Gk such that colα(P ) = xα when colα(P ) �= 0 for each α ∈ [1, k].
According to the above definition, if X = 〈x1, x2, . . . , xk〉 ∈ Cw j where w j ∈ Vk and N+

Gk
(w j) �= ∅, then there is an 

s∗w j-path P in Gk such that colα(P ) = xα when colα(P ) �= 0 for each α ∈ [1, k]. Choose wi ∈ N+
Gk

(w j). Suppose that 
colα(wi) = xα when colα(wi) �= 0 for each α ∈ [1, k]. Thus P ′ = P + (w j, wi) is an s∗wi -path and colα(P ′) = xα when 
colα(P ′) �= 0 for each α ∈ [1, k]. Obviously, X ∈ Cwi and P ′ satisfies property P . Hence, we have that if C = ⋃

w j∈N−
Gk

(wi)
Cw j , 

then

Cwi = {〈x1, x2, . . . , xk〉 ∈ C : colα(wi) = xα when colα(wi) �= 0 for each α ∈ [1,k]}.
So, in order to construct the s∗wi -path with property P in Gk , it is enough to consider all the elements in Cwi . Suppose 
that Cwi �= ∅ and i ≥ 2. Choose X = 〈x1, x2, . . . , xk〉 ∈ Cwi . If there exists an s∗wi -path P with property P such that c0(P ) = C
and colα(P ) = xα when colα(P ) �= 0 for each α ∈ [1, k], the minimal d0-weight of P is denoted by T wi [C, X]; otherwise, let 
T wi [C, X] = ∞. Note that w1 = s∗ . Set T w1 [0, X] = 0.

Now, if we may choose a nonempty vertex subset

Nwi = {w j ∈ N−
Gk

(wi) : j ≥ 1, C − c0((w j, wi)) ≥ 0},
we can observe that following equation holds.

T wi [C, X] = min
w j∈Nwi

{T w j [C − c0((w j, wi)), X] + d0((w j, wi))}.

Based on this, if we let T wi [C] = minX∈Cwi
{T wi [C, X]}, then

Mwi [C] = min
1≤x≤C

{T wi [x]} = min{Mwi [C − 1], T wi [C]}.
Above computations of T wi [C, X] and Mwi [C] are described in Procedure 1.

4.1.2. The computation of O P T (G)

When c(e) ∈ N
+ for each e ∈ Ek , if there exists an s∗t∗-path P with property P such that c0(P ) is minimised and 

d0(P ) ≤ D , then it remains to compute O P T (G) = min{C : Mt∗ [C] ≤ D}. Therefore, begin with C = 1. If Mt∗ [C] ≤ D , then 
O P T (G) = C and we can obtain the corresponding s∗t∗-path; otherwise, set C := C + 1 and proceed the next iteration. Then 
we propose Algorithm 1 as follows.

By Lemma 3.1, the construction of Gk = (Vk, Ek) in step 1 needs O (nk+1) time. Line 2 takes O (|Vk| +|Ek|) time to obtain 
a topological order of Vk . Clearly, Lines 3–4 take O (

(
λ
)
) time. Since times O (N− (wi)) and O (

(
λ
)
) are needed in Lines 6 
k Gk k
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Algorithm 1 Restricted MinSum k-DPDC problem when c(e) ∈ N
+ .

Input: A DAG G with a partial λ-colouring and weight functions c : E(G) → N
+

and d : E(G) →R
+, two vertices s, t with colour 0 and upper bound D

Output: the optimal solution
1. construct Gk = (Vk, Ek) with weight functions c0,d0 and colα for each α ∈ [1,k];
2. find the topological ordering w1, w2, . . . , w |Vk | of the vertices in Vk;
3. let Cs∗ = {〈x1, x2, . . . , xk〉 : 1 ≤ xa �= xb ≤ λ for any a �= b and there exists

w ∈ N+
Gk

(s∗) such that xα = colα(w) when colα(w) �= 0 for each α ∈ [1,k]}
4. Ts∗ [0, X] := 0 for each X ∈ Cs∗ ;
5. for i = 2 to |Vk| do
6. C := ⋃

w j∈N−
Gk

(wi )
Cw j ;

7. Cwi := {〈x1, x2, . . . , xk〉 ∈ C : xα = colα(wi) when colα(wi) �= 0
for each α ∈ [1,k]};

8. T wi [0, X] := ∞ for each X ∈ Cwi ;
9. Mwi [0] := ∞;

10. end for
11. C := 1;
12. for i = 2 to |Vk| do
13. use Procedure 1 to compute Mwi [C];
14. if wi = t∗ and Mt∗ [C] ≤ D do
15. return O P T (G) = C and its corresponding paths, exit;
16. end if
17. end for
18. C := C + 1 and return to step 12.

and 7–8, respectively, the time complexity of the for loop in Lines 5–10 is O (
(
λ
k

)
(|Ek| +|Vk|)) = O (

(
λ
k

)
nk+1). We can observe 

that Algorithm 1 stops when C = O P T (G), there are O P T (G) iterations of Lines 12–17. For a given C ∈ [1, O P T (G)] and 
a fixed vertex wi(i ∈ [2, |Vk|]), we can observe that Procedure 1 needs O (

(
λ
k

)|N−
Gk

(wi)|) time and so the overall running 
time of Lines 12–17 is 

∑
i∈[2,|Vk|] O (

(
λ
k

)|N−
Gk

(wi)|) = O (
(
λ
k

)|Ek|) = O (
(
λ
k

)
nk+1). Therefore, the total time for Lines 12–18 is 

O (
(
λ
k

)
nk+1 O P T (G)) and so we have following result.

Theorem 4.1. For any fixed λ ≥ k > 1, when c(e) ∈ N
+ , the Restricted MinSum k-DPDC problem on a directed acyclic graph can be 

solved in O (
(
λ
k

)
nk+1 O P T (G)) time.

4.2. The FPTAS

In this section, based on Algorithm 1 and the technique named rounding-and-scaling [3,5,7,9,11,16,17,19], we consider 
the efficient approximation for the restricted MinSum k-DPDC problem on a DAG G in the general case that c(e), d(e) ∈ R

+
for each e ∈ Ek . Let Gkx be a graph obtained from Gk by deleting the edge set {e ∈ Ek : c0(e) > x}. If we replace weight c(e)
of any e ∈ E(G) with c/x(e) = c(e)/x�, then we obtain a new weighted graph, denoted by G/x . Clearly, c/x(e) ∈ N

+ . The 
main steps in our FPTAS are listed as follows.

Step 1. Find positive real numbers U0 and L0 such that L0 < O P T (G) < U0 and U0 = 2nL0, where n = |V (G)|. Note that 
the required s∗t∗-path in Gk should satisfy the property P . Thus, in this step, we need to construct a path from s∗ to any 
other vertex wi with property P and the minimal d0-weight. Based on this, U0 and L0 can be obtained.

Step 2. Use a approximate test procedure to compute the lower or upper bounds of O P T (G) more accurately.
Step 3. Begin with U0 and L0 given in Step 1, similar to the algorithm ROUNDING-AND-SEARCHING in [19], we can obtain 

k disjoint st-paths P1, P2, . . . , Pk in G with different colours such that 
∑k

i=1 c(Pi) ≤ (1 + ε)O P T (G) and 
∑k

i=1 d(Pi) ≤ D . 
That is 

∑k
i=1 c(Pi) is a (1 + ε)-approximation solution.

4.2.1. Lower and upper bounds of O P T (G)

Let c1 < c2 < . . . < cη be distinct c0-weights of the edges in Gk . Then Gkc1 ⊂ Gkc2 ⊂ . . . ⊂ Gkcη and η ≤ |Ek|. Recall that 
w1 = s∗ and w |Vk | = t∗ . An s∗t∗-path P with property P is called a D-path if d0(P ) ≤ D holds.

First, for each i ∈ [1, |Vk|] and β ∈ [1, η], we consider about the problem of finding an s∗ wi -path in Gkcβ with property 
P and minimal d0-weight. The d0-weight of this path is denoted by dβ

0 (wi). Similar to the concept Cwi in Gk , we can 
define Cβ

wi
in Gkcβ . Given an X = 〈x1, x2, . . . , xk〉 ∈ Cβ

wi
, if there exists an s∗wi -path P in Gkcβ such that colα(P ) = xα when 

colα(P ) �= 0 for each α ∈ [1, k], let dβ

0 (wi, X) be the minimal d0-weight of this path; otherwise, let dβ

0 (wi, X) = ∞. Then, 
combining the property P of P with the shortest path algorithm in [1], we have that

dβ

0 (wi, X) = min
w j∈N−

G β
(wi)

{dβ

0 (w j, X) + d0((w j, wi))}.

kc
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So dβ

0 (wi) = min
X∈Cβ

wi
{dβ

0 (wi, X)}.

Thus, combining this with the binary search, we can determine a β ∈ [1, η] such that dβ

0 (t∗) ≤ D and dβ−1
0 (t∗) > D . Then 

the time which is needed to find the β is logη times the O (
(
λ
k

)|Ek|). Then, the following result holds.

Lemma 4.2. In O (
(
λ
k

)
nk+1logn) time, we can find β ∈ [1, η] such that Gkcβ has a D-path and there is no D-path in Gkcβ−1 .

The lemma as follows can be used to compute the required lower and upper bounds of O P T (G).

Lemma 4.3. If there exists β ∈ [1, η] such that Gkcβ has a D-path and there is no D-path in Gkcβ−1 , then cβ < O P T (G) ≤ (n − 2 +
k)cβ < 2ncβ .

Proof. Let P be a D-path in Gkcβ and Pi be the i-dimensional path of P for i = 1, 2, . . . , k. Then, Corollary 3.4 implies that 
P1, P2, . . . , Pk are k internally disjoint st-path with different colours. So k ≤ n − 2 and the number of edges of 

⋃k
i=1 Pi is 

smaller than or equal to n − 2 + k and lager than k. Thus 2 ≤ k < |E(P )| ≤ n − 2 + k ≤ 2n − 4. Combining this with that 
c0(e) ≤ cβ for each e in Gkcβ , O P T (G) ≤ c0(P ) ≤ (n − 2 + k)cβ < 2ncβ . As Gkcβ−1 has no D-path, it can be seen that there 
exists an edge e ∈ E(P ) such that c0(e) = cβ . Recall that |E(P )| ≥ 2 and the c0-weight of every edge in P is a positive 
number. Then c0(P ) > cβ . By the arbitrariness of P , it follows that O P T (G) > cβ . �

By Lemmas 4.2 and 4.3, the following corollary is immediate.

Corollary 4.4. In O (
(
λ
k

)
nk+1logn) time, we can determine an upper bound U0 and a lower bound L0 of O P T (G) such that U0 = 2nL0 .

4.2.2. The approximate scheme
We consider the approximate test procedure firstly.
For any given M, δ ∈ R

+ , let r = Mδ/(2n). Then Algorithm 1 can be used on G/r to compute Mt∗ [2n/δ�] in 
O (

(
λ
k

)
nk+2δ−1) time. If Mt∗ [2n/δ�] ≤ D on G/r , then there exists an s∗t∗-path P with property P in G/rk such that ∑k

i=1 c/r(Pi) ≤ 2n/δ� ≤ 2n/δ and 
∑k

i=1 d(Pi) ≤ D , where Pi is the i-dimensional path of P . Corollary 3.4 implies 
that P1, P2, . . . , Pk are k vertex-disjoint st-paths in G/r with different colours and so O P T (G/r) ≤ ∑k

i=1 c/r(Pi) ≤ 2n/δ. 
If Mt∗ [2n/δ�] > D , then for any s∗t∗-path P with property P in G/r such that 

∑k
i=1 c/r(Pi) ≤ 2n/δ, we have that ∑k

i=1 d(Pi) > D . So O P T (G/r) > 2n/δ. Combining these with the TEST procedures in [3,19], we can observe that follow-
ing lemma holds.

Lemma 4.5. Given M, δ > 0, if Mt∗ [2n/δ�] ≤ D on G/r , then O P T (G) ≤ (1 + δ)M; otherwise, O P T (G) > M.

Now, using the U0 and L0 as initial values, similar to the algorithm ROUNDING-AND-SEARCHING in [19], we can apply 
the Lemma 4.5 repeatedly to obtain new lower and upper bounds L and U of O P T (G) such that U ≤ 4L. Then, set r =
Lε/(2n), where ε > 0. Finally, Algorithm 1 is used in G/r to compute O P T (G/r) and we can obtain the corresponding 
st-paths P1, P2, . . . , Pk in G/r . Then Pi also exists in G for i = 1, 2, . . . , k and 

∑k
i=1 c(Pi) is a (1 +ε)-approximation solution. 

So, similar to the proofs in [3,19], we can summarise the main result in the following theorem.

Theorem 4.6. For any ε > 0 and fixed λ ≥ k > 1, k vertex-disjoint st-paths with different colours in a directed acyclic graph G such 
that total cost is at most (1 + ε)O P T (G) and total delay is at most D can be found in O (

(
λ
k

)
nk+2ε−1) time.

5. The restricted MinMax k-DPDC problem

Let O P T (G) be the total cost of a optimal solution of this problem on G . Similar to Section 4, we first give an algorithm 
in subsection 5.1 for this problem on a DAG G with a partial λ-colouring and weight functions c : E(G) → N

+ and d :
E(G) → R

+ . Then, in subsection 5.2, we will use this algorithm and the technique named rounding-and-scaling to obtain 
the FPTAS of this problem when c(e) ∈ R

+ for any e ∈ E(G).

5.1. Restricted MinMax k-DPDC problem when c(e) ∈N
+

Following are details about the two major steps.
Step 1. For any positive integer C and any wi ∈ Vk , we find an s∗t∗-path P with property P such that max1≤ j≤k c j(P ) ≤ C

and d0(P ) is minimised. Let Mwi [C] = d0(P ).
Step 2. min{C : Mt∗ [C] ≤ D} is the optimal solution O P T (G) for the restricted MinMax k-DPDC problem when the cost 

weight function is c : E(G) → N
+ .
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Procedure 2 The computation of Mwi [C].
1. Mwi [C] := Mwi [C − 1];
2. for any C1, C2, . . . , Ck ∈ [0, C] such that max1≤z≤k Cz = C and N ′

wi
�= ∅ do

3. T wi [Cz : z ∈ [1,k]] := ∞;
4. if Cwi �= ∅ do
5. for each X ∈ Cwi do
6. T wi [Cz : z ∈ [1,k], X] := ∞;
7. for each w j ∈ N ′

wi
such that X ∈ Cw j do

8. if T w j [Cz − cz((w j, wi)) : z ∈ [1,k], X] + d0((w j, wi))

< T wi [Cz : z ∈ [1,k], X] do
9. T wi [Cz : z ∈ [1,k], X] :=

T w j [Cz − cz((w j, wi)) : z ∈ [1,k], X] + d0((w j, wi));
10. end if
11. end for
12. if T wi [Cz : z ∈ [1,k], X] < T wi [Cz : z ∈ [1,k]] do
13. T wi [Cz : z ∈ [1,k]] := T wi [Cz : z ∈ [1,k], X];
14. end if
15. end for
16. end if
17. if T wi [Cz : z ∈ [1,k]] < Mwi [C] do
18. Mwi [C] := T wi [Cz : z ∈ [1,k]];
19. end if
20. end for

5.1.1. The computation of Mwi [C]
Given any wi ∈ Vk and k positive integers C1, C2, . . . , Ck , choose X = 〈x1, x2, . . . , xk〉 ∈ Cwi (see the first paragraph of 

Section 4.1.1). If there is an s∗wi -paths P in Gk such that colα(P ) = xα when colα(P ) �= 0 and cα(P ) = Cα for each α ∈ [1, k], 
let T wi [Cz : z ∈ [1, k], X] be the minimal d0-weight of P ; otherwise, let T wi [Cz : z ∈ [1, k], X] = ∞. Then, we can observe 
that if there exists a nonempty set

N ′
wi

= {w j ∈ N−
Gk

(wi) : j ≥ 1 and Cz − cz((w j, wi)) ≥ 0 for each z ∈ [1,k]},
we have that

T wi [Cz : z ∈ [1,k], X]
= min

w j∈N ′
wi

{T w j [Cz − cz((w j, wi)) : z ∈ [1,k], X] + d0((w j, wi))}.

Now, if

T wi [Cz : z ∈ [1,k]] = min
X∈Cwi

T wi [Cz : z ∈ [1,k], X],

then

Mwi [C] = min {T wi [Cz : z ∈ [1,k]] : Cz ∈ [0, C] for every z ∈ [1,k]}
= min {Mwi [C − 1],min {T wi [Cz : z ∈ [1,k]] : max

1≤z≤k
Cz = C}}.

Therefore, we can use Procedure 2 to compute T wi [Cz : z ∈ [1, k]] and Mwi [C].

5.1.2. The computation of O P T (G)

In this subsection, we will compute O P T (G) in the case that c(e) ∈ N
+ . Recall that O P T (G) = min{C : Mt∗ [C] ≤ D}. By 

the definition of Mwi [C], we have that if there exists C ′ ≥ 1 such that Mt∗ [C ′ − 1] > D and Mt∗ [C ′] ≤ D , then Mt∗ [x] > D
for each x ∈ [1, C ′ − 1]. So, O P T (G) = C ′ . Thus, it is need to compute Mt∗ [C] beginning with C = 1. If Mt∗ [C] > D , then let 
C := C +1 and continue to compute Mt∗ [C +1]; otherwise, O P T (G) = C . Therefore, the computation above can be described 
in the algorithm as follows.

In the following, we compute the time complexity of Algorithm 2. Lemma 3.1 implies that it needs O (nk+1) time to 
construct Gk in Line 1. The topological order of Vk in Line 2 can be obtained in O (|Vk| + |Ek|) = O (nk+1) time. Lines 3–4 
totally take O (

(
λ
k

)
) time. In addition, O (

(
λ
k

)|Vk|) = O (
(
λ
k

)
nk+1) is needed in Lines 5–10. Note that the number of iterations 

of the for loop in lines 12–14 is

|{{C1, C2, . . . , Ck} : Cz ∈ [0, C] for each z ∈ [1,k] and max
1≤z≤k

Cz = C}|

= O (k(C + 1)k−1).
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Algorithm 2 Restricted MinMax k-DPDC problem when c(e) ∈ N
+ .

Input: A DAG G with a partial λ-colouring and weight functions c : E(G) →N
+

and d : E(G) →R
+ , two vertices s, t with colour 0 and upper bound D

Output: the optimal solution
1. construct Gk = (Vk, Ek) with weight functions c0,d0 and colα (α ∈ [1,k]);
2. find the topological ordering w1, w2, . . . , w |Vk | of the vertices in Vk;
3. let Cs∗ = {〈x1, x2, . . . , xk〉 : 1 ≤ xa �= xb ≤ λ for any a �= b and there exists

w ∈ N+
Gk

(s∗) such that xα = colα(w) when colα(w) �= 0 for each α ∈ [1,k]}
4. Ts∗ [Cz = 0 : z ∈ [1,k], X] := 0 for each X ∈ Cs∗ ;
5. for i = 2 to |Vk| do;
6. C := ⋃

w j∈N−
Gk

(wi )
Cw j ;

7. Cwi := {〈x1, x2, . . . , xk〉 ∈ C : xα = colα(wi) when colα(wi) �= 0
for each α ∈ [1,k]};

8. T wi [Cz = 0 : z ∈ [1,k], X] := ∞ for each X ∈ Cwi ;
9. Mwi [0] := ∞;

10. end for
11. C := 1;
12. for each C1, C2, . . . , Ck ∈ [0, C] such that max1≤x≤k Ck = C do
13. Ts∗ [Cz : z ∈ [1,k], X] := ∞ for each X ∈ Cs∗ ;
14. end for
15. for i = 2 to |Vk| do
16. use Procedure 2 to compute Mwi [C];
17. if wi = t∗ and Mwi [C] ≤ D do
18. return O P T (G) = C and its corresponding st-paths, exit;
19. end if
20. end for
21. C := C + 1 and return to Step 12.

As the time complexity of Line 13 is O (
(
λ
k

)
), we have that this for loop needs O (k(C + 1)k−1

(
λ
k

)
) = O (

(
λ
k

)
(C + 1)k−1n) time. 

We can observe that for any wi , Line 16 takes O (
(
λ
k

)
k(C + 1)k−1|N−

Gk
(wi)|) time to compute Mwi [C] by Procedure 2. Then 

the total time for Lines 15–20 is 
∑

i∈[2,|Vk|] O (
(
λ
k

)
k(C + 1)k−1|N−

Gk
(wi)|) = O (

(
λ
k

)
k(C + 1)k−1|Ek|) = O (

(
λ
k

)
(C + 1)k−1nk+2). 

Therefore, Lines 12–21 can be done within O (
∑O P T (G)

C=1 (
(
λ
k

)
(C +1)k−1nk+2)) = O (

(
λ
k

)
nk+2(O P T (G) +1)k). So, following result 

holds obviously.

Theorem 5.1. For any fixed λ ≥ k > 1, when c(e) ∈ N
+ , the Restricted MinMax k-DPDC problem on a directed acyclic graph can be 

solved in O (
(
λ
k

)
nk+2(O P T (G) + 1)k) time.

5.2. The FPTAS

Now we consider the restricted MinMax k-DPDC problem on G when c(e) ∈ R
+ .

5.2.1. Lower and upper bounds of OPT(G)
Recall that c1 < c2 < . . . < cη are distinct c0-weights of the edges in Ek . Then we have following result.

Lemma 5.2. If there exists β ∈ [1, η] such that Gkcβ has a D-path and there is no D-path in Gkcβ−1 , then cβ ≤ O P T (G) < ncβ .

Proof. Let P be a D-path in Gkcβ , Pi be the i-dimensional path of P for i = 1, 2, . . . , k and let max1≤i≤k c(Pi) = O P T (G). 
Without loss of generality, we may assume that c(P1) = c1(P ) = O P T (G). Note that 1 ≤ |E(P1)| < n and c1(e) ≤ c0(e) ≤ cβ

for each e of Gkcβ . Then O P T (G) = c1(P ) < ncβ . As Gkcβ−1 has no D-path, it can be seen that there exists an edge e ∈ E(P )

such that c0(e) = cβ . Assume that the corresponding edge of e is in P j , where 1 ≤ j ≤ k. Then c1(P ) = max1≤i≤k ci(P ) ≥
c j(P ) ≥ c j(e) = c0(e) = cβ and so O P T (G) ≥ cβ . �

Combining this with Lemma 4.2, the following corollary holds.

Corollary 5.3. In O (
(
λ
k

)
nk+1logn) time, we can determine an upper bound U0 and a lower bound L0 of O P T (G) such that U0 = nL0 .

5.2.2. The approximate scheme
Given M, δ > 0, then the value of Mt∗ [n/δ�] on G/r can be computed by Algorithm 2 in O (

(
λ
k

)
n2k+2(1/δ)k) time. If 

Mt∗ [n/δ�] ≤ D on G/r , then there are k disjoint st-path P1, P2, . . . , Pk with different colours in G/r such that O P T (G/r)

≤ max1≤i≤k c/r(Pi) ≤ n/δ� ≤ n/δ and 
∑k

i=1 d(Pi) ≤ D . If Mt∗ [n/δ�] > D , then for any k disjoint st-path P1, P2, . . . , Pk with 
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different colours in G/r such that max1≤i≤k c/r(Pi) ≤ n/δ�, we have that 
∑

1≤i≤k d(Pi) > D . So O P T (G/r) > n/δ. Therefore, 
from what has been discussed above and the TEST procedures in [3,19], following result is immediate.

Lemma 5.4. Given M, δ > 0, let r = Mδ/n. If Mt∗ [n/δ�] ≤ D on G/r , then O P T (G) ≤ (1 + δ)M; otherwise, O P T (G) > M.

Now, use Corollary 5.3 and Lemma 5.4 in the algorithm ROUNDING-AND-SEARCHING in [19], the main result of this 
section is as follows.

Theorem 5.5. For any ε > 0 and fixed λ ≥ k > 1, k vertex-disjoint st-paths P1, P2, . . . , Pk with different colours in a directed acyclic 
graph G such that max1≤i≤k c(Pi) ≤ (1 + ε)O P T (G) and 

∑k
i=1 d(Pi) ≤ D can be found in O (

(
λ
k

)
n2k+2(1/ε)k) time.

6. Conclusions

In this paper, motivated by the expectation that the data packets can be transmitted effectively from source node to sink 
node when some channel problems or node faults occur, we introduced and investigated the restricted k-DPDC problem 
on multi-channel wireless networks and considered two important objectives MinSum and MinMax when the network 
topology is a acyclic directed graph. For these two objectives, we supposed the cost of each edge is a positive integer 
firstly and proposed algorithms to obtained optimal solutions. Then, we used these algorithms and the technique named 
rounding-and-scaling to present FPTAS for the corresponding objectives when the cost weight of each edge is a positive real 
number. Because of the widespread use of multi-channel wireless networks and the importance of the fault tolerance and 
effectiveness, we aim at extending our efforts towards the design and optimisation of multiple node- and channel-disjoint 
multicast tree problems in future studies.
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