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Abstract—Sensing falsification is a key security threat in cooperative spectrum sensing in cognitive radio networks. Intelligent
malicious users (IMUs) adjust their malicious behaviors according to their objectives and the network’s defense schemes. Without
long-term collection of information on users’ reputation, the existing schemes fail to thwart such malicious behaviors. In this paper,
we construct a joint spectrum sensing and access framework to thwart the malicious behaviors of both rational and irrational
IMUs. Lack of reputation information makes the malicious behavior resistance degrade performance since the honest users
may be misjudged as IMUs. Based on the moral hazard principal-agent model, we design an incentive compatible mechanism
to provide a moderate punishment to IMUs. Our findings show that neither spectrum sensing nor spectrum access alone can
prevent malicious behaviors without any information on users’ reputation. According to the different properties of malicious
behavior resistance by spectrum sensing and spectrum access, we employ joint spectrum sensing and access to optimally
prevent the IMUs sensing falsification. The proposed malicious behavior resistance mechanism is shown to achieve almost the
same performance as the ideal case with truthful sensing.
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1 INTRODUCTION
Over the past few years, cooperative spectrum sens-
ing [2], [3] has been shown to offer significant perfor-
mance gain in incumbent detection in cognitive radio
(CR) networks [4], [5], [6]. Multiple secondary users
(SUs) report their measurements of the signal strength
from primary users (PUs) to a fusion center, which
makes a final decision on the presence/absence of any
licensed PU nearby.

In cases where the sensing results are collected
from the SUs without any prior information on users
reputation, which is the case for many decentralized
CR applications, even a small number of malicious
users can sabotage cooperative spectrum sensing to
significantly degrade the system performance or even
paralyze the system. Malicious attacks in CR spectrum
sensing can be categorized into two types, incumbent
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emulation and sensing data falsification [7]. Recently,
several authentication schemes have been proposed to
effectively cope with the incumbent emulation attack
[8], [9]. We consider the latter type of malicious attacks
in this paper.

Specifically, we focus on the design of malicious
behavior resistance (MBR) mechanisms to thwart the
sensing data falsification attack. In contrast to most
existing approaches that assume malicious behaviors
to follow predefined profiles and then identify attack-
ers based on such profiles, we consider more practical
scenarios that involve various technical challenges:

• Challenges due to Intelligent Malicious Behav-
iors: The design of MBR mechanisms in such a
context is particularly challenging as an attacker
can act strategically, rather than simply reporting
erroneous sensing results to disrupt the final de-
cision. We call such attackers intelligent malicious
users (IMUs). IMUs can adjust their behavior
adaptively to the system’s MBR mechanisms to
maximize their own utilities, making MBR design
and configuration difficult.

• Challenges due to Lack of Reputation Infor-
mation: A widely adopted approach for mali-
cious user detection is based on reputation, which
maintains the reputation of each user based on
the behavior history. However, reliable reputation
information is not always available since well-
established historical statistics may be too expen-
sive or even unrealistic in a fast-changing CR
environment. The lack of reputation information
leads to possible errors in the judgement on



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2398446, IEEE Transactions on Mobile Computing

2

IMUs, thus degrading performance during MBR.
Motivated by the above two design challenges,

we propose a principal-agent-based joint spectrum
sensing and access framework to thwart the malicious
behaviors of IMUs in CR networks. This paper makes
the following main contributions.

• Moral Hazard Principal-Agent Framework: We
construct a principal-agent framework [10] that
offers IMUs incentives not to report falsified sens-
ing results. Since the IMUs cannot be identified
directly, it is necessary to consider the risk of
moral hazard [11] and design the punishment
based on their sensing outcomes. We use exclu-
sion of IMUs from cooperative spectrum sensing
and access as a punishment for their malicious
behaviors. Specifically, we model MBR with the
moral hazard principal-agent framework and de-
sign a spectrum sensing and access mechanism
with both the participation and the incentive
compatibility constraints.

• Optimal Joint Spectrum Sensing and Access
Mechanism: Without any information on users’
reputation, we find that joint spectrum sensing
and access are required to thwart the malicious
behaviors of both rational and irrational IMUs. By
analyzing the resistance cost of MBR methods, we
derive the conclusion that the MBR via spectrum
sensing can provide an unlimited punishment
with resistance cost, while the MBR via spectrum
access provides a limited punishment without
any resistance cost. We investigate the IMUs’ all
possible malicious behaviors depending on the
penalty factor, which is adopted to minimize the
MBR cost. Based on the analysis, we propose
optimal joint spectrum sensing and access mech-
anisms that provide an appropriately moderate
incentive to IMUs with the minimum resistance
cost.

The rest of this paper is organized as follows.
Section 2 introduces our system model and problem
formulation and Section 3 models this problem as
a principal-agent framework. Section 4 studies the
optimal MBR mechanisms against both types of IMUs.
Section 5 evaluates the proposed MBR mechanisms by
simulation. Possible problem extensions are discussed
in Section 6. The related work is discussed in Section
7, and the paper concludes in Section 8.

2 COOPERATIVE SPECTRUM SENSING
MODEL IN THE PRESENCE OF MALICIOUS
USERS

We consider a generic model of CR networks consist-
ing of a set N = {1, · · · , N} of SUs who opportunis-
tically exploit the spectrum of PUs [12], [13]. PUs are
encouraged to share unused spectrum with SUs and
would be compensated if the collision occurs between

PU and SU. Each SU is equipped with a sensor to
discover spectrum holes. The SUs’ sensing results are
reported to a controller (e.g., base station or access
point) which uses the SUs’ sensing reports to make
a final decision on the presence/absence of PUs and
then allocates the available spectrum to the SUs. This
process is a sort of cooperative spectrum sensing that
can increase sensing accuracy by eliminating sensing
errors due to hidden terminals and signal fading for
certain SUs.

Mathematically, the spectrum sensing at an individ-
ual SU is characterized by the following hypothesis
test:

Y =

{
X + σ2 H1,

σ2 H0,
(1)

where X is the strength of the primary signal sensed
by an SU in the presence of a PU, σ2 is the power of
the thermal noise, H0 and H1 are the hypotheses that
the spectrum status is “0” (“1”) indicating the absence
(presence) of any PU activity.

The performance of each SU’s spectrum sensor
is characterized by the probability of misdetection,
denoted as Pm, and the probability of false alarm,
denoted as Pf . Formally, Pm and Pf can be expressed
as:

Pm = Pr{S(i)
0 |H1}, Pf = Pr{S(i)

1 |H0}, ∀i ∈ N (2)

where S(i)
0 and S(i)

1 denote the individual sensing
result of SU i to be 0 and 1, respectively.

Let R(i)
0 and R(i)

1 denote SU i reporting 0 and 1,
respectively. The honest user reports his sensing result
to the controller, Pr(R(i)

0 |S(i)
0 ) = Pr(R(i)

1 |S(i)
1 ) = 1.

Considering the worst case, the IMUs cooperate with
each other and deliberately report a false sensing
result according to their malicious behavior ‘script’.
The malicious behaviors are determined to maximize
the IMUs’ utility. Define M as the number of IMUs.
We assume that the number of IMUs is much smaller
than that of honest users.

The controller’s decision is characterized by two
hypotheses, denoted as Ĥ1 and Ĥ0, indicating that
the decision of cooperative spectrum sensing is 1 and
0, respectively. In this paper, we adopt the “OR”
sensing rule, the simplest and most widely applied
cooperative sensing rule characterized by its stringent
protection on the PU activities [14]. Fig. 1 illustrates
the relationship among the spectrum status, the sens-
ing results, the sensing reports and the controller’s
decision.

Unlike most existing approaches to cooperative
sensing, here we focus on the design of a joint M-
BR mechanism for final sensing decision and actual
allocation of the sensed spectrum to each SU if the
decision is Ĥ0. Specifically, the joint MBR mechanism
is denoted as ρ , (ρS , ρA), where ρS and ρA are the
spectrum-sensing and the spectrum-access policies,
respectively.
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Fig. 1. Cooperative spectrum sensing model with malicious behaviors

To compensate the PU performance degradation
caused by the PU-SU collision and provide economic
incentives to PUs for spectrum sharing, a penalty [15],
[16] would be imposed on the SU system. Let α be
the penalty factor of PU–SU collision, capturing the
tradeoff between the SU throughput and the impact
on the PU system. If all SUs follow the controller’s
spectrum-access policy and a collision occurs, all of
them are responsible and share the ensuing penalty;
otherwise, the penalty is imposed on the particular
SU who violates the controller’s allocation policy.

The controller acts on behalf of all SUs and needs
to choose an appropriate joint spectrum sensing and
access policy ρ so as to maximize the aggregate ex-
pected utility of all honest SUs in sharing the licensed
spectrum. Here, we normalize the total spectrum ben-
efit to be 1. The problem can then be formulated as

max
ρ

U(ρ) = (1− θ(ρ))(Pr(H0Ĥ0)− αPr(H1Ĥ0)) (3)

where θ(ρ) is the ratio of the spectrum allocated
to the IMUs to the total sensed spectrum holes un-
der the policy ρ, Pr(H0Ĥ0) is the probability that
the controller successfully identifies a spectrum hole,
Pr(H1Ĥ0) is the probability that the controller falsely
decides on the absence of PU activity, although a PU
is active. Note that the probability of the controller’s
decision Ĥ0 depends on the spectrum-sensing policy
ρS .

3 PRINCIPAL-AGENT-BASED MALICIOUS
BEHAVIOR RESISTANCE BY SPECTRUM
SENSING AND ACCESS

To motivate all users to report their sensing result-
s honestly, we model secure cooperative spectrum
sensing using the moral hazard principal-agent model
[10][11], where the “principal” is the controller that
makes the final sensing decision and then allocates
the available spectrum to the SUs, and the “agents”
are the SUs to sense the spectrum. The “moral hazard”
arises in the framework, since the SUs may have
an incentive to misreport the sensing results if the
interests of the agent and the principal are not aligned.
The controller does not know whether a user reports

the information different from his true sensing result,
and can only observe the final reported results, i.e.,
the actions of the users are hidden from the controller.
Based on the malicious behavior analysis and the
principal-agent framework, we would like to design
MBR mechanisms to thwart the malicious behaviors
of IMUs.

3.1 Malicious Behavior Analysis
There are various attack strategies that the IMUs can
launch, depending on their objectives. So, these attack
strategies, captured by the corresponding models,
may differ in effectiveness, and may also call for
different defense strategies. We investigate two typical
IMUs in this paper according to their motivation.

1) Rational IMU: The rational IMUs aim to maxi-
mize their own utilities, which is the most com-
mon case.

2) Irrational IMU: The irrational IMUs aim to cause
the most damage possible to the system, which
is the worse case.

Both are assumed to have the information of the un-
derlying MBR mechanism and adjust their behaviors
intelligently.

For the rational IMUs, the objective is to maximize
their effective spectrum resource, which is defined as
the accessible spectrum minus the imposed penalty.
Note that the rational IMUs may tolerate a higher cost
for malicious behaviors than the honest users. We use
η ∈ (0, 1] as the coefficient of the penalty tolerance for
rational IMUs, i.e., the penalty weights for rational
IMUs are αη. The objective can be written as

max
A

u(A,ρ), (4)

where A is the IMUs’ behaviors. The utility u(A,ρ)
can be achieved in two cases. First, the rational IMUs
utilize the allocated channel resource when the con-
troller’s decision is Ĥ0. Second, the rational IMUs
occupy the channel when the controller’s decision is
Ĥ1.

For the irrational IMUs, the objective is to minimize
the system utility defined in Eq. (3):

min
A

U(A,ρ). (5)
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Besides the above two cases similar to the rational
IMUs, the irrational IMUs have an extra case, which
increases the penalty to the system caused by PU–
SU collision by cheating from S1 to R0. The irrational
IMUs do not utilize the channel to transmit data so
that the penalty to a single user can be avoided.

The utilities achieved by the rational and irrational
IMUs with different sensing and reporting results are
provided in [1].

3.2 The Principal-Agent Framework
The principal-agent model [10][11] is an efficient way
to motivate the agent to act on behalf of the principal.
We consider the following key components of coop-
erative spectrum sensing in the presence of IMUs in
the principal-agent framework.

• Agents’ actions: The IMUs will report their sensing
results correctly or incorrectly, which correspond
to the high- and low-effort actions, respective-
ly, in the principal-agent model, denoted by Ah

(honest report) and Am (malicious report). Obvi-
ously, the controller would like to incentivize the
users to choose Ah.

• Cost of agents: Actions Ah and Am will respec-
tively incur costs Ch and Cm to the agents. For
the honest action Ah, the corresponding Ch = 0.
With the malicious action Am, the IMUs could
achieve the benefit of sensing falsification. The
falsification benefit of IMUs when choosing Am

is set as a negative cost, i.e., Cm < 0.
• Utility of agents: If the controller acquires a spec-

trum hole successfully, it will allocate the hole
to the user, which is considered as a paymen-
t/reward. The user i’s utility ui is the sum of the
received payment from the controller and its cost.

• The principal’s return: By collecting the sensing
results from SUs, the controller makes a final
decision on the presence/absence of PUs. If an
available spectrum opportunity is discovered, the
utilized spectrum resource is the return of the
principal. On the other hand, if the controller
makes a wrong decision and generates collision
with PUs, its return would be negative, a penalty
by the PU system.

• Utility of the principal: The system utility U is
the sum of the utilities of all honest users, as
expressed in Eq. (3). It can also be calculated by
the return minus the spectrum resource allocated
to the IMUs.

Remark 1 (Moral Hazard): There exists “moral haz-
ard” since the actions of IMUs are hidden from the
controller. In this case, the IMUs may misreport the
sensing results if the interests of the agent and the
principal are not aligned. Therefore, it is necessary
to design MBR mechanisms based on the sensing
outcome to thwart malicious behaviors, i.e., avoiding
the risk of moral hazard.

3.3 How to Thwart Malicious Behaviors?
In the principal-agent model, an MBR strategy should
satisfy the following two essential constraints.

• Participation constraint: The principal provides a
non-negative expected utility to the agents, i.e.,
ui(Ah) ≥ 0, ∀i.

• Incentive compatibility constraint: The agent
achieves a higher expected utility when it obeys
the principal’s policy than that when it doesnt,
i.e., ui(Ah) ≥ ui(Am),∀i.

Here we establish two basic structural properties of
the principal-agent model in cooperative sensing in
the presence of IMUs and provide some insights in
how to thwart them.

Considering the participation constraints of all hon-
est users, we can obtain the following lemmas.

Lemma 1: A necessary condition for the N -user sec-
ondary system with M IMUs to access the spectrum
is that the penalty factor α for the PU–SU collision
should satisfy

α ≤ Pr(H0)

Pr(H1)

(
1− Pf

Pm

)N−M

. (6)

Proof: The participation constraint should be met
to guarantee the honest users to participate in sharing
spectrum with PUs, i.e., let ui ≥ 0 for all honest users
i. The system utility U ≥ 0 if the utilities of all honest
users are positive. In other words, U ≥ 0 is a necessary
condition of ui ≥ 0 for all honest users i.

U = Pr(H0Ĥ0)− αPr(H1Ĥ0). (7)

Let’s consider the best case when the sensing results
from IMUs are just ineffective but do not cause neg-
ative effects, then the system utility is

U = Pr(H0)(1− Pf )
N−M − αPr(H1)P

N−M
m ≥ 0. (8)

Since the above equation shows the utility of the best
case, the equation is a necessary condition of U ≥ 0.
Therefore, the lemma holds.

Lemma 2: To protect the PU system, the lower
bound of the penalty factor α should be

α >
Pr(H0)

ηPr(H1)
. (9)

Proof: To prevent the SUs’ unbridled access, the
PU system always adjusts the penalty factor to pre-
vent the IMU who transmits data without spectrum
sensing. The participation constraint of this type of
users need not be satisfied, i.e.,

u = Pr(H0)− αηPr(H1) < 0, (10)

so the lemma holds.
Remark 2 (Feasible Region of α): The above two lem-

mas provide upper and lower bounds for the penalty
factor α from the PU system’s perspective. The PUs
are encouraged to share their spectrum with SUs,
but might not allow the SUs to access the spectrum
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without sensing. These bounds provide a feasible
region of α, which is an important basis for the SU
system to design the MBR mechanisms.

Since the controller regards those users who report-
ed minority results as suspicious, it has the following
two mechanisms to cope with IMUs and provide the
incentives, which will be investigated in the analysis
that follows.

• MBR via Spectrum Sensing ρS (MBR-S): The con-
troller excludes the sensing results reported by
suspicious users with probability ωS .

• MBR via Spectrum Access ρA (MBR-A): The con-
troller does not allocate the spectrum access op-
portunity to suspicious users with probability
ωA. Other users with the access right share the
spectrum equally.

Note that ωS and ωA are the aggregate exclusion
probabilities over multiple time slots, so they could
be larger than 1, e.g., ωS = 2 indicates that the sensing
results of the suspicious users would be excluded in
the following two time slots.

Remark 3 (Agent/Resistence Cost): To thwart the ma-
licious behaviors, the controller using MBR would
possibly classify some honest users as malicious false-
ly and exclude them from cooperative sensing because
of the existence of moral hazard. Thus, the controller
suffers the agent/resistance cost, i.e., degrading the
network performance.

In the proposed MBR mechanism, besides using
spectrum access to adjust the payments, we use spec-
trum sensing to adjust the cost of a malicious agent,
which is different from the classic principal-agent
model, in which the cost does not change with the
principal’s mechanism.

4 OPTIMAL JOINT SPECTRUM SENSING
AND ACCESS FOR MALICIOUS BEHAVIOR
RESISTANCE
In this section, we design the optimal joint spectrum
sensing and access mechanisms for MBR against ra-
tional and irrational IMUs. Our basic idea is to satisfy
the incentive compatibility constraint and motivate
the IMUs to report the sensing results honestly with
the minimum resistance cost by an appropriately
moderate incentive. Thus, the SU system can thwart
the malicious behaviors successfully and achieve the
maximal system utility. The user index i is omitted
for simplicity of presentation.

4.1 Thwarting Rational IMUs
Based on the malicious behavior analysis in [1], it
is possible for the rational IMUs to achieve a larger
utility by misreporting R1 when the sensing result is
S0. The probability of spectrum status when the actual
sensing result is S0, can be calculated as

Pr(H0|S0) =
Pr(H0)(1− Pf )

M

Pr(H0)(1− Pf )M + Pr(H1)PM
m

(11)

Pr(H1|S0) =
Pr(H1)P

M
m

Pr(H0)(1− Pf )M + Pr(H1)PM
m

. (12)

We investigate the case without MBR to analyze the
necessity of MBR.

Lemma 3: Without any MBR mechanism, if the
penalty factor α satisfies

α <
Pr(H0)(1− Pf )

M (1− (1− Pf )
N−MM/N)

Pr(H1)PM
m (1− PN−M

m M/N)η
, (13)

the rational IMUs always report 1 when the sensing
result is 0.

Proof: If the rational IMUs report honestly with
the sensing result of 0, the expected utility is

u(Ah) =Pr(H0|S0)(1− Pf )
N−MM/N

− Pr(H1|S0)P
N−M
m αηM/N. (14)

If the rational IMUs misreport from S0 to R1, with-
out MBR, the final sensing decision is 1. The expected
utility of the rational IMUs to transmit data is

u(Am) = Pr(H0|S0)− Pr(H1|S0)αη. (15)

The rational IMUs would misreport the sensing
result when the expected utility of misreporting is
larger than that of honest reporting. Using the above
two equations, we derive the condition of α.

If α satisfies Eq. (13), we need to design an MBR
mechanism to prevent the malicious behaviors. Let
u(A,ρ) denote the rational IMUs’ utility achieved
with the MBR mechanism ρ. The goal of MBR mech-
anism ρ is to make the expected utility of reporting
true sensing results larger than that of reporting false
results, i.e., u(Ah,ρ) ≥ u(Am,ρ). We first consider the
two types of MBR mechanism separately.

By adopting MBR-S, the controller excludes the
reported result with probability ωS . It is possible
for the controller to misclassify some honest users
as suspicious ones, affecting the number of effective
users in cooperative spectrum sensing. The expected
number of excluded users is estimated to be:

NS = (Pr(H0)Pf + Pr(H1)Pm) (N −M)ωS . (16)

Let ωi(t) be the exclusion probability in MBR-S
for SU i at time slot t, and M be the set of the
IMUs who make falsified reports of sensing results.
The following lemma deals with the allocation of
exclusion probability over time for a given aggregate
exclusion probability.

Lemma 4: Given an aggregate exclusion probability
ωS , different exclusion probability distributions ωi(t)
achieve the same total utility for the rational IMUs.

Proof: If the rational IMUs cheat from 0 to 1, with
the exclusion probability ωi(t), the expected utility of
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the rational IMUs in the current slot is

u(Am, (ωS , 0))

=Pr(H0|S0)

(∏
i∈M

ωi(t)(1− Pf )
N−NS−MM/N

+(1−
∏
i∈M

ωi(t)(1− Pf )
N−NS−M )

)

− Pr(H1|S0)

(∏
i∈M

ωi(t)P
N−NS−M
m αηM/N

+(1−
∏
i∈M

ωi(t)P
N−NS−M
m )αη

)
. (17)

Since the system does not have the information on
which SUs are IMUs, i.e., the system does not know
M, it is impossible for the system to jointly allo-
cate the exclusion probabilities of different SUs to
minimize u(Am, (ωS , 0)). Treating each SU separately,
we can find from the above equation that the utility
function is linear with respect to ωi(t) for a given i.
Thus, given an aggregate exclusion probability ωS , the
exclusion probability distribution over time does not
affect the performance of MBR.

The following lemma shows that MBR-S only is
ineffective in thwarting malicious behaviors.

Lemma 5: MBR-S alone cannot prevent the rational
IMUs’ malicious behaviors.

Proof: With MBR-S only, the utility of rational
IMUs for reporting honestly is

u(Ah, (ωS , 0)) =Pr(H0|S0)(1− Pf )
N−NS−MM/N

− Pr(H1|S0)P
N−NS−M
m αηM/N. (18)

Because of the participation constraints of SUs,
u(Ah, (ωS , 0)) should be larger than 0. When the
penalty factor α satisfies Lemma 3, u(Am, (ωS , 0)) is
larger than u(Ah, (ωS , 0)) for small ωS , and thus larger
than 0.

From Eq. (17), u(Am, (ωS , 0)) is a monotonously
increasing function of ωi(t). when u(Am, (ωS , 0)) > 0,
its minimum is achieved when ωi(t) = 1 for all SUs.
Comparing Eqs. (17) and (18), the following inequality
holds:

u(Ah, (ωS , 0)) ≤ u(Am, (ωS , 0)). (19)

Both sides of this inequality are equal only if ωi(t) = 1,
∀i.

In this case, a suspicious user would be excluded
forever from the cooperative spectrum sensing, ωS →
+∞. However, this is not practical since it would also
exclude honest users due to their sensing errors.

Obviously, the rational IMUs’ utility decreases as
the aggregate exclusion probability ωS increases be-
cause its reported result is ignored. With a large
enough ωS , the malicious behaviors can be prevented.
However, the MBR-S mechanism also reduces the
system utility because some results reported from

honest users are ignored, which is considered as the
resistance cost.

Lemma 6: The upper bound of ωS in the MBR-S
mechanism is

ωS <
N −M − log 1−Pf

Pm

αPr(H1)
Pr(H0)

(Pr(H0)Pf + Pr(H1)Pm) (N −M)
. (20)

Proof: With MBR-S, the system utility is:

U =
N −M

N

(
Pr(H0)(1− Pf )

N−NS−M

−αPr(H1)P
N−NS−M
m

)
. (21)

The upper bound of ωS should be satisfied to ensure
that the system utility is positive. Therefore, Eq. (20)
follows.

Using MBR-A only, the controller reduces the prob-
ability of allocating the spectrum resource to the
suspicious user.

Lemma 7: MBR-A alone cannot prevent the rational
IMUs’ malicious behaviors.

Proof: If the aggregate exclusion probability ωA in
MBR-A is large enough, the sensed spectrum holes
would not be allocated to IMUs. Without MBR-S,
the rational IMUs can occupy all the spectrum holes
for transmission by reporting “1” irrespective of the
sensing results, so the system has no chance to allocate
the spectrum. With MBR-A only, the rational IMUs’
utilities for honest and malicious reports are

u(Ah, (0, ωA)) =Pr(H0|S0)(1− Pf )
N−MM/N

− Pr(H1|S0)P
N−M
m αηM/N, (22)

u(Am, (0, ωA)) = Pr(H0|S0)− Pr(H1|S0)αη. (23)

The condition of rational IMUs’ malicious reporting
is

u(Ah, (0, ωA)) < u(Am, (0, ωA)), (24)

which can be rewritten as

α <
Pr(H0|S0)(1− (1− Pf )

N−MM/N)

Pr(H1|S0)(1− PN−M
m M/N)η

. (25)

It is always satisfied by Lemma 3.
Based on Lemmas 5 and 7, neither MBR-S nor MBR-

A alone can prevent the rational IMUs’ malicious
behaviors. Therefore, it is necessary to adopt both
MBR-S and MBR-A to design a joint spectrum sensing
and access mechanism.

Although the aggregate exclusion probability ωA

of MBR-A could be large, it should be considered
only for a few slots because the rational IMUs can
continue to misreport the sensing result and transmit
data, possibly achieving more utility than the pun-
ishment. Here, we consider the case when the IMUs
are cooperative and one of them is selected randomly
to misreport the sensing results. Define ωS(t) as the
average exclusion probability in MBR-S of the IMUs
at time slot t. Note that we cannot calculate ωS(t) by
averaging ωi(t) for all IMUs, since the system does
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not have the information of the set of IMUs. Instead,
we obtain ωS(t) as follows.

According to Lemma 4, different exclusion proba-
bility distributions ωS(t) would not change the pun-
ishment. Without loss of generality, we set the same
exclusion probability ωS(t) for each time slot. Given
the aggregate exclusion probability ωS for one-time
malicious behavior, ωS(t) can be calculated as

ωS(t) = ωS Pr(S0R1Ĥ1)/M. (26)

where Pr(S0R1Ĥ1) is the probability of the rational
IMUs’ malicious behaviors.

Adopting MBR-A can reduce the rational IMUs’
utility when the spectrum hole is discovered. Al-
though MBR-A also excludes some honest users from
spectrum access, all the honest users have the same
exclusion probability, so no resistance cost is caused
by MBR-A.

Remark 4 (Properties of MBR-S and MBR-A): Based
on the above analysis, we conclude that the
punishment by MBR-S could be infinite, while
that by MBR-A is upper-bounded. However, MBR-A
applies the punishment without any resistance cost.

According to these properties, we set ωA to be large
enough since MBR-A incurs no resistance cost but
its punishment is upper-bounded. To achieve a low
resistance cost, the optimal ωS is set to adjust the
punishment level so that the expected utilities for
honest and malicious reports are the same. Thus, we
propose a MBR mechanism for thwarting the rational
IMUs as Algorithm 1.

Algorithm 1 Optimal MBR Mechanism for Rational
IMUs
1) MBR-S: ωS is searched to satisfy

Pr(H0Ĥ0)M/N = Pr(S0R1Ĥ1)∆u(S0R1Ĥ1), (27)

where Pr(H0Ĥ0) = Pr(H0)ωS(t)(1 − Pf )
N−NS−M ,

Pr(S0R1Ĥ1) = (Pr(H0)(1 − Pf )
M + Pr(H1)P

M
m )(1 −

ωS(t)(1 − Pf )
N−NS−M ), and ∆u(S0R1Ĥ1) is the ra-

tional IMUs’ expected utility of misreporting. Here,
∆u(S0R1Ĥ1) = 1.
2) MBR-A: ωA is set as

ωA =
⌈
Pr(H0)ωS(1− Pf )

N−NS−M/M
⌉
, (28)

where ⌈·⌉ is the ceiling operation.

4.2 Thwarting Irrational IMUs

The irrational IMUs’ utility conflicts with the system
utility. It is difficult to provide the irrational IMUs an
effective incentive based on the classic principal-agent
model. Fortunately, in our problem, the cost Cm for
malicious reports depends on the MBR mechanism,
which is different from the classical principal-agent
model. This difference makes it possible to design

a MBR mechanism to prevent the irrational IMUs’
malicious behaviors.

The basic idea of the optimal MBR mechanism for
irrational IMUs is similar to that for rational IMUs, but
there exist some differences because of thier different
objectives. Also, the irrational IMUs can cheat from
S0 to R1 and from S1 to R0.

Lemma 8: Without any MBR mechanism, the irra-
tional IMUs always report 1 when the sensing result
is 0. It reports 0 when the sensing result is 1 if the
penalty factor α satisfies

α >
Pr(H0)(1− Pf )

N−M (1− (1− Pf )
M )

Pr(H1)P
N−M
m (1− PM

m )
. (29)

Proof: Without MBR, the irrational IMUs’ utility
for honest reporting when the sensing result is 0, is

u(Ah) =Pr(H0|S0)
(
(1− Pf )

N−M M

N

+ (1− (1− Pf )
N−M )

)
+ Pr(H1|S0)P

N−M
m α

N −M

N
. (30)

The utility for cheating from 0 to 1 is

u(Am) = Pr(H0|S0). (31)

The irrational IMUs report honestly when

α >
Pr(H0)(1− Pf )

N

Pr(H1)PN
m

(32)

which conflicts with Lemma 1, so the irrational IMUs’
report will always cheat from 0 to 1 in the absence of
MBR.

The irrational IMUs’ utility for honestly reporting
when the sensing result is 1 is calculated as

u(Ah) = Pr(H0|S1), (33)

while that for cheating is

u(Am) =Pr(H0|S1)
(
(1− Pf )

N−M M

N

+ (1− (1− Pf )
N−M )

)
+ Pr(H1|S1)P

N−M
m α

N −M

N
. (34)

The condition of cheating is

α >
Pr(H0|S1)(1− Pf )

N−M

Pr(H1|S1)P
N−M
m

. (35)

The conditional probabilities are

Pr(H0|S1) =
Pr(H0)(1− (1− Pf )

M )

Pr(H0)(1− (1− Pf )M ) + Pr(H1)(1− PM
m )

,

(36)

Pr(H1|S1) =
Pr(H1)(1− PM

m )

Pr(H0)(1− (1− Pf )M ) + Pr(H1)(1− PM
m )

.

(37)
According to the the above conditional probabilities,
the condition of cheating can be rewritten as Eq. (29)
and the lemma holds.
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The following lemma discusses the allocation of
exclusion probability over time for a given aggregate
exclusion probability, which is similar to that for
rational IMUs. The difference is that both types of
malicious behavior in Lemma 8 should be considered
for irrational IMUs. Note that the utility u of irrational
IMUs is also different from its definition for rational
IMUs.

Lemma 9: Given an aggregate exclusion probability
ωS , different exclusion probability distributions ωS(t)
achieve the same total utility for the irrational IMUs.

Proof: If the irrational IMUs cheat only when the
sensing results are 0, with the exclusion probability
ωi(t), the expected utility of the irrational IMUs in
the current slot is

u(Am, (ωS , 0))

=Pr(H0S0)
( ∏

i∈M

ωi(t)(1− Pf )
N−NS−MM/N

+ (1−
∏
i∈M

ωi(t)(1− Pf )
N−NS−M )

)
+ Pr(H1S0)

(∏
i∈M

ωi(t)P
N−NS−M
m α(N −M)/N

)
.

(38)

If the irrational IMUs would cheat from 0 to 1 and
from 1 to 0, the expected utility in the current slot is
written as (39).

Similar to the situation of rational IMUs, we can
find that the utility function is linear in ωi(t) for
a given i for both types of malicious behavior of
irrational IMUs in Lemma 8 by treating each SU
separately. Therefore, this lemma holds.

Now, we show that neither MBR-S nor MBR-A
alone can prevent the irrational IMUs’ malicious be-
haviors effectively.

Lemma 10: MBR-S alone cannot prevent the irra-
tional IMUs’ malicious behaviors.

Proof: If the irrational IMUs cheat only when the
sensing results are 0, with MBR-S only, the utility of
irrational IMUs for reporting honestly is

u(Ah, (ωS , 0)) =Pr(H0S0)
(
(1− Pf )

N−NS−MM/N

+ (1− (1− Pf )
N−NS−M )

)
+ Pr(H1S0)P

N−NS−M
m α(N −M)/N.

(40)

Comparing Eqs. (38) and (40), u(Ah, (ωS , 0)) =
u(Am, (ωS , 0)) is satisfied only when ωi(t) = 1 for all
SUs.

u(Ah, (ωS , 0)) ≤ u(Am, (ωS , 0)). (41)

If ωi(t) = 1 for all SUs at all time, a suspicious
user would be excluded forever from the cooperative
spectrum sensing, ωS → +∞. However, this is not
practical since it would also exclude honest users due
to their sensing errors. Therefore, it is always satisfied
that

u(Ah, (ωS , 0)) < u(Am, (ωS , 0)). (42)

If the irrational IMUs would cheat from 0 to 1 and
from 1 to 0, with MBR-S only, the utility of irrational
IMUs for reporting honestly is written as (43).

Comparing Eqs. (39) and (43), the first and third
terms are the same as those for the cases with only
cheating from 0 to 1. Since 0 ≤ ωi(t) ≤ 1, the second
term of Eq. (43) is also equal to or less than that of
Eq. (39). Therefore, it is satisfied that u(Ah, (ωS , 0)) <
u(Am, (ωS , 0)).

Lemma 11: MBR-A alone cannot prevent the irra-
tional IMUs’ malicious behaviors when

α >
N

N −M

Pr(H0)(1− Pf )
N−M (1− (1− Pf )

M )

Pr(H1)P
N−M
m (1− PM

m )
(44)

Proof: If the aggregate exclusion probability ωA in
MBR-A is large enough, the sensed spectrum holes
would not be allocated to IMUs. Without MBR-S,
the rational IMUs can occupy all the spectrum holes
for transmission by reporting “1” irrespective of the
sensing results, so the system has no chance to allocate
the spectrum.

If the irrational IMUs cheat only when the sensing
results are 0, with MBR-A only, the irrational IMUs’
utilities for honest and malicious reports are

u(Ah, (0, ωA))

=Pr(H0S0)
(
1− Pf )

N−MM/N + (1− (1− Pf )
N−M )

)
+ Pr(H1S0)P

N−M
m α(N −M)/N, (45)

u(Am, (0, ωA)) = Pr(H0S0). (46)

The condition of the irrational IMUs’ malicious report-
ing is

u(Ah, (0, ωA)) < u(Am, (0, ωA)), (47)

which can be rewritten as

αPr(H1)P
N
m < Pr(H0)(1− Pf )

N . (48)

According to Lemma 1, the irrational IMUs would
misreport their sensing results.

If the irrational IMUs would cheat from 0 to 1 and
from 1 to 0, with MBR-A only, the irrational IMUs’
utilities for honest and malicious reports are

u(Ah, (0, ωA))

=Pr(H0S0)
(
1− Pf )

N−MM/N + (1− (1− Pf )
N−M )

)
+ Pr(H0S1) + Pr(H1S0)P

N−M
m α(N −M)/N, (49)

u(Am, (0, ωA))

=Pr(H0S0) + Pr(H0S1)(1− (1− Pf )
N−M )

+ Pr(H1S1)P
N−M
m α(N −M)/N. (50)

For the parts with S0, i.e., the first and third terms of
u(Ah, (0, ωA)) and the first term of u(Am, (0, ωA)), the
analysis is similar to that of the previous cases with
cheating only when the sensing results are 0. For the
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u(Am, (ωS , 0)) =Pr(H0S0)

(∏
i∈M

ωi(t)(1− Pf )
N−NS−MM/N + (1−

∏
i∈M

ωi(t)(1− Pf )
N−NS−M )

)
+ Pr(H0S1)

(
(1− Pf )

N−NS−MM/N + (1− (1− Pf )
N−NS−M )

)
+ Pr(H1S0)

(∏
i∈M

ωi(t)P
N−NS−M
m α(N −M)/N

)
+ Pr(H1S1)

(
PN−NS−M
m α(N −M)/N

)
.

(39)
u(Ah, (ωS , 0)) =Pr(H0S0)

(
(1− Pf )

N−NS−MM/N + (1− (1− Pf )
N−NS−M )

)
+ Pr(H0S1)

(∏
i∈M

ωi(t)(1− Pf )
N−NS−MM/N + (1−

∏
i∈M

ωi(t)(1− Pf )
N−NS−M )

)
+ Pr(H1S0)P

N−NS−M
m α(N −M)/N. (43)

parts with S1, the condition of the irrational IMUs’
malicious reporting is

Pr(H0S1) <Pr(H0S1)(1− (1− Pf )
N−M )

+ Pr(H1S1)P
N−M
m α(N −M)/N. (51)

By simplifying the above inequality, Eq. (44) can be
obtained.

The MBR-A decreases the the irrational IMUs’ util-
ity when they cheat from 1 to 0 and the spectrum sta-
tus is H0, since no spectrum hole would be allocated
to the IMUs. Note that the possibility that the MBR-A
alone can affect is very small, since the threshold of α
in Lemma 11 is almost the same as that in Lemma 8
as N is usually much larger than M .

Based on Lemmas 10 and 11, neither MBR-S nor
MBR-A alone can prevent the irrational IMUs’ ma-
licious behaviors. Therefore, it is necessary to adopt
both MBR-S and MBR-A to design a joint spectrum
sensing and access mechanism.

We judge whether or not the two types of mis-
reporting exist by the penalty factor α according to
Lemma 8 as

• Regime AI : The penalty factor α satisfies Pr(H0)
Pr(H1)

<

α ≤ Pr(H0)(1−Pf )
N−M (1−(1−Pf )

M )

Pr(H1)P
N−M
m (1−PM

m )
. The irrational

IMUs would possibly report R1 when the sensing
result is S0.

• Regime BI : The penalty factor α satisfies
Pr(H0)(1−Pf )

N−M (1−(1−Pf )
M )

Pr(H1)P
N−M
m (1−PM

m )
< α ≤

Pr(H0)(1−Pf )
N−1

Pr(H1)P
N−1
m

, In this regime, we must
consider both types of misreporting.

Note that the exclusion probability ωS(t) for irra-
tional IMUs is

ωS(t) = ωS Pr(S0R1)/M, (52)

which is different from (26). This is because the ir-
rational IMUs do not have to access the spectrum to
obtain the benefit from their malicious behaviors.

To achieve a low resistance cost, we design the opti-
mal MBR mechanisms for both regimes as Algorithm
2.

Algorithm 2 Optimal MBR Mechanism for Irrational
IMUs
Regime AI :
1) MBR-S: ωS is searched to satisfy

Pr(H0Ĥ0)M/N = Pr(S0R1)∆u(S0R1), (53)

where Pr(H0Ĥ0) = Pr(H0)ωS(t)(1−Pf )
N−NS−M , and

∆u(S0R1) = (1−ωS(t))
(
Pr(H0|S0)(1−Pf )

N−NS−M −
Pr(H1|S0)P

N−NS−M
m α(N −M)/N

)
.

2) MBR-A: ωA is set as

ωA =
⌈
Pr(H0)ωS(1− Pf )

N−NS−M/M
⌉
. (54)

Regime BI :
1) MBR-S: ωS is searched to satisfy

Pr(H0Ĥ0)M/N = ∆u, (55)

where Pr(H0Ĥ0) = Pr(H0)ωS(1 − Pf )
N−NS +

Pr(H0)(1 − (1 − Pf )
M )(1 − Pf )

N−NS−M ,
and ∆u is the average increased irrational
IMUs’ utility of misreporting, i.e., ∆u =
(1−ωS(t))((Pr(H0S0)−Pr(H0S1))(1−Pf )

N−NS−M −
Pr(H1S0)P

N−NS−M
m α(N −M)/N).

2) MBR-A: ωA is set as

ωA = ⌈Pr(H0Ĥ0)⌉ = 1. (56)

4.3 Thwarting Heterogeneous IMUs

We now consider a more practical scenario in which
both the rational and irrational IMUs co-exist. The
IMUs within the same type cooperate with each other
as discussed above, while different types of IMUs
determine their malicious behaviors independently
due to different objectives (4) and (5) of rational and
irrational IMUs. Let MR and MI be the numbers of
rational and irrational IMUs, respectively.

We analyze the case of heterogeneous IMUs using a
three-step approach similar to the case of single-type
IMUs considered earlier. The penalty factors α with
malicious behaviors are the same as Lemmas 3 and
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8 for rational and irrational IMUs, respectively, since
when one type of IMUs deviates from the equilibrium
state, they treat other IMUs as honest users. As a
result, we can also conclude that neither MBR-S nor
MBR-A alone can prevent the malicious behaviors of
heterogeneous IMUs.

In the presence of heterogeneous IMUs, we need
to classify the value of α to more regimes for i-
dentifying possible malicious behaviors. According
to the conditions of α in Lemmas 3 and 8, we let
χR =

Pr(H0)(1−Pf )
MR (1−(1−Pf )

N−MRMR/N)

Pr(H1)P
MR
m (1−P

N−MR
m MR/N)η

and χI =

Pr(H0)(1−Pf )
N−MI (1−(1−Pf )

MI )

Pr(H1)P
N−MI
m (1−P

MI
m )

for simplicity of expres-
sion, and define the regimes as

• Regime AH : The penalty factor α satisfies Pr(H0)
Pr(H1)

<

α ≤ min{χR, χI}. Both the rational and irrational
IMUs would possibly report R1 when the sensing
result is S0.

• Regime BH : The penalty factor α satisfies χR <
α ≤ χI . Only the irrational IMUs would possibly
report R1 when the sensing result is S0.

• Regime CH : The penalty factor α satisfies χI <
α ≤ χR. In this regime, we must consider all of
the three types of misreporting.

• Regime DH : The penalty factor α satisfies
max{χR, χI} < α ≤ Pr(H0)(1−Pf )

N−1

Pr(H1)P
N−1
m

. The irra-
tional IMUs would possibly misreport irrespec-
tive of the sensing result.

The basic idea in designing the MBR mechanism
for heterogeneous IMUs is that the system imposes
a large enough punishment against the malicious be-
haviors to thwart the corresponding IMUs. For reduc-
ing the resistance cost, we also adopt the punishment
such that the expected utility for honest reporting is
equal to the maximum utility for malicious behaviors.
We provide the optimal MBR mechanism for hetero-
geneous IMUs as Algorithm 3.

5 PERFORMANCE EVALUATION

We now evaluate the performance of the proposed
MBR mechanisms by simulation. In this simulation,
one controller and a number of users are deployed.
The sensing results of all users are generated ran-
domly according to the sensing error probabilities
Pf and Pm, which are adjusted by the controller to
maximize the system utility subject to Pf + Pm =
0.1. Then, the IMUs choose their reporting and ac-
cess behaviors to maximize their utilities, and the
controller makes the spectrum sensing and access
decisions using the proposed MBR mechanism. The
spectrum status is also generated randomly according
to Pr(H0) = Pr(H1) = 0.5. The penalty factor of PU–
SU collision is set to α = 5 and η = 1. To evaluate
the average performance, 10000 randomly generated
sensing results are considered.

First, we show the performance of the proposed
MBR mechanism in Fig. 2 with the varying number

Algorithm 3 Optimal MBR Mechanism for Heteroge-
neous IMUs
Regime AH :
1) MBR-S: Two values of ωS can be obtained to
satisfy (27) with M = MR and (53) with M = MI ,
respectively. ωS is set to the larger value.
2) MBR-A: ωA is set as

ωA =⌈Pr(H0)ωS max{(1− Pf )
N−NS−MR/MR,

(1− Pf )
N−NS−MI/MI}⌉. (57)

Regime BH : The MBR mechanism is the same as that
for Regime AI .

Regime CH :
1) MBR-S: Two values of ωS can be obtained to
satisfy (27) with M = MR and (55) with M = MI ,
respectively. ωS is set to the larger value.
2) MBR-A: ωA is set as

ωA = ⌈max{Pr(H0)ωS(1− Pf )
N−NS−MR/MR, 1}⌉.

(58)
Regime DH : The MBR mechanism is the same as that
for Regime BI .

of users. We consider the three following baseline
schemes for performance comparison.

• Ideal sensing: The controller can detect all false
reports of sensing results and equally share the
spectrum opportunities among all users.

• Baseline 1 (Carrot-and-Stick) [30]: The users stop
cooperation when the malicious behaviors are
discovered, and resume cooperation after a cer-
tain period of time.

• Baseline 2 (Fixed punishment) [31]: The fixed values
of the aggregate exclusion probability ωS are used
to exclude the IMUs from cooperative sensing. In
this baseline, ωS is set to 10.

The results in Fig. 2 indicate that the proposed
MBR mechanism achieves almost the same perfor-
mance as the ideal sensing scheme, which can be
considered as the performance upper bound. In [31],
the punishment could be set as a large enough fixed
value, because the IMUs are detected correctly such
that the punishment does not cause any resistance
cost to the system. Considering the resistance cost,
a large cost is incurred if ωS is large, and the mali-
cious behaviors cannot be prevented if ωS is small.
Therefore, the proposed MBR mechanism optimizes
the punishment as an appropriate moderate value and
thus, outperforms the fixed punishment scheme. Both
the proposed MBR and the fixed punishment schemes
provide a large system utility when the users are
many. However, the system utility with Carrot-and-
Stick scheme decreases with the increasing of number
of users. The Carrot-and-Stick scheme does not perfor-
m well without accurate reputation metrics, because
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(a) A rational IMU
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(b) An irrational IMU
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(c) A rational IMU and an irrational IMU

Fig. 2. Performance comparison with different total number of users

all users stop cooperation in the presence of malicious
behaviors. Although it thwarts the malicious behav-
iors of rational IMUs successfully, the normal sensing
errors cause frequent termination of cooperation. The
proposed MBR mechanism stops the cooperation with
IMUs only, not the entire cooperation.

Next, we further investigate the key parameter in
our proposed mechanism, the aggregate exclusion
probability ωS , to analyze its effects on the system
utility, as plotted in Fig. 3. Here, we consider a simple
scenario with 5 users (N = 5) one of whom is mali-
cious (M = 1) to give some insights. As ωS increases,
the utility of the IMUs decreases, demonstrating that
the proposed MBR mechanism can reduce the IMUs’
utility. There is a jump when ωS is small in the system
utility curve: a result of the IMUs’ stop of dishonest
reports. With an increasing ωS , the system can provide
more effective resistance to the malicious behaviors,
so the system utility increases until the jump point.
On the right of the jump point, the system utility
decreases because of the resistance cost. Figs. 3(c)
and 3(d) show the details around the jump point. It
is observed that the jump point for rational IMUs
increases the system utility significantly, while the
improvement at the jump point for irrational IMUs
is not so obvious. This is because the controller has
the incentive compatible MBR mechanism with the
rational IMUs, and has the opposite objective to the
irrational IMUs. From this analysis, we can find that
the jump point occurs at the optimal ωS in the M-
BR mechanism, where the maximal system utility is
achieved.

Fig. 4 shows the optimal ωS is decreasing in the
penalty factor α and increasing in the number of users
N . As the penalty factor α gets larger, the required
ωS for thwarting the malicious behaviors is smaller,
because a large penalty factor increases the IMUs’
risk to be punished with a higher probability due to
the PU–SU collision. Fig. 4(b) shows that the penalty
factor α has little effect on the optimal value of ωS .
The irrational IMUs just report false sensing results
but does not transmit over the spectrum holes, thus

avoiding the penalty risk of PU–SU collision. In fact,
the optimal ωS would decrease if α is large enough.
According to the conditions of the irrational IMUs’
malicious behaviors in Lemma 8, the intersection of
the curves and the horizontal axis occurs at a point
with a huge α, e.g., α = 2.5 × 106 for N = 5. In
addition, one can find that the optimal ωS for the
rational IMUs is larger for a larger number of users.

6 IMPLEMENTATION CONSIDERATIONS

The proposed MBR mechanism provides a principle-
agent-based joint spectrum sensing and access frame-
work to incentivize the IMUs to report the sensing
results honestly. We now integrate the MBR mecha-
nism into the practical cooperative sensing process.

Before the cooperative sensing starts, the controller
needs to collect a number of parameters for comput-
ing the MBR mechanism: 1) the statistics of channel
availability, sensing errors and malicious users are
obtained from the historical data or PU spectrum
database; 2) the penalty factor α can be told by the
PU system; 3) the coordination between the controller
and SUs is needed to obtain N and synchronize their
sensing, reporting, and decision process.

During the spectrum sensing and access, the con-
troller identifies the suspicious users based on the re-
ported sensing results. As a result, the user identifica-
tion information should be included in the sensing re-
porting message. Note that identifying the suspicious
users is much easier than identifying the malicious
users, which notably facilitates the implementation.

After the spectrum sensing and access, if the PU–
SU collision occurs, the SUs who cause the collision
share the penalty to compensate the PU system. An
economic penalty is becoming a wide-used approach
to encourage spectrum sharing [15][16].

From the above discussion, we obtain that the
proposed MBR mechanism needs only some trivial
modifications on protocols. Furthermore, we want
to highlight that the framework can handle more
complicated scenarios with incomplete information by
slight modifications.
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Fig. 3. Effect of the aggregate exclusion probability ωS
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Fig. 4. Optimal aggregate exclusion probability ωS

Unknown Type of Malicious Users: The proposed
framework can be applied to other types of malicious
user by adjusting the parameters of MBR mecha-
nisms if the characteristics of the malicious users
are known. For an unknown-type malicious user, the
MBR mechanisms for irrational IMUs can be used,
although it may conservatively cause a little bit higher
resistance cost than that in the cases with the known-
type malicious user. In addition, possible malicious
behaviors can be judged according to the properties of
the penalty factor α. The MBR mechanism is designed
just for thwarting possible malicious behaviors with
a relatively low resistance cost.

Unknown Number of Malicious Users: If the number
of IMUs is known, we can design the MBR mechanism
to provide an appropriately large incentive by using
the approach in this paper. Without the information
about the number of IMUs, however, it is difficult to
design a MBR mechanism with an exact appropriate
resistance cost. One solution is learning from the
feedback of current mechanism [17]. The aggregate
exclusion probability ωS can be set as an upper bound
first according to Lemma 6. The parameter decreases
step by step and finally approaches the optimal value
based on the achieved system utility. For the case
when ωS in Lemma 6 is not large enough, the con-
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troller cannot thwart the malicious behaviors when
the participation constraint is met. This is reasonable
because it is difficult for the controller to identify the
suspicious users correctly in the presence of too many
IMUs.

7 RELATED WORK

Secure cooperative spectrum sensing has been studied
as a key technology for reliable detection of PUs in
CR networks [18]. In [19], a robust reputation-based
fusion scheme for sensing data is proposed based
on the Byzantine failure model. In [20], the “trust
factor” is adopted for each SU based on their reported
sensing results. In [21], the reputation-based scheme
is investigated with the assistance of some trusted
users. As mentioned earlier, such a scheme takes a
long time to collect information and build a reliable
reputation. Other researchers focused on the detection
of attackers. In [22], a malicious user is detected based
on SUs’ sensing correction with a similar channel fad-
ing effect. In [23], the effect of information asymmetry
between the attackers and the system is analyzed for
independent and dependent attacks. These threshold-
based attacker detection schemes cannot prevent the
malicious behaviors if the malicious users are intelli-
gent, for example, adopting an attack-and-run strate-
gy. Besides the threshold-based detection, the abnor-
mal statistical sensing behaviors are identified using
the hidden Markov model in [24] and the iterative
expectation maximization in [25], which also need
a long time to collect information. In [26], an extra
sensing test is launched to detect malicious users.

An incentive-based economic understanding [27],
[28] of attack rationality and benefits is more effective
in cooperative sensing, which does not require to
differentiate honest users from malicious ones. In [29],
the incentive design is combined with the key to
motivate the users to sense. In [30], all users stop
spectrum sensing if some selfish user deviates from
the cooperation “standard”. Using a repeated game
model, the selfish users are “forced” to cooperate.
In [31], direct and indirect punishment strategies are
proposed for attack prevention. The malicious users
are detected by the PU–SU collision when the coop-
erative sensing decision is “busy”, which would not
misjudge the honest users as malicious and avoid
the resistance cost. However, this mechanism is not
suitable for irrational IMUs who do not access the
spectrum for transmission. When malicious users can-
not be detected deterministically, the punishment by
adjusting the cooperative spectrum sensing strategy
is ineffective in preventing the malicious behaviors
because of its resistance cost. By adopting a moral
hazard principal-agent model, we consider spectrum
access together with spectrum sensing to effectively
thwart the malicious behaviors of IMUs.

8 CONCLUSION

In this paper, we proposed a moral hazard principal-
agent-based joint spectrum sensing and access frame-
work to thwart both rational and irrational IMUs.
By analyzing the malicious behaviors of both types
of IMUs, we explored the properties of the penalty
factor of PU–SU collision, which is of importance to
the reduction of resistance cost. Since neither spec-
trum sensing nor spectrum access alone can prevent
the malicious behaviors, we have designed optimal
joint spectrum sensing and access MBR mechanisms
based on the properties of MBR-S and MBR-A. Our
numerical results show that the proposed MBR mech-
anism achieves almost the same performance as the
ideal sensing scheme and outperforms other existing
schemes.
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