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Stability Analysis of Frame Slotted Aloha Protocol
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Abstract—Frame Slotted Aloha (FSA) protocol has been widely
applied in Radio Frequency Identification (RFID) systems as the
de facto standard in tag identification. However, very limited work
has been done on the stability of FSA despite its fundamental
importance both on the theoretical characterisation of FSA
performance and its effective operation in practical systems. In
order to bridge this gap, we devote this paper to investigating
the stability properties of p-persistent FSA by focusing on two
physical layer models of practical importance, the models with
single packet reception and multipacket reception capabilities.

Technically, we model the FSA system backlog as a Markov
chain with its states being backlog size at the beginning of
each frame. The objective is to analyze the ergodicity of the
Markov chain and demonstrate its properties in different regions,
particularly the instability region. By employing drift analysis,
we obtain the closed-form conditions for the stability of FSA
and show that the stability region is maximised when the frame
length equals the number of packets to be sent in the single
packet reception model and the upper bound of stability region
is maximised when the ratio of the number of packets to be
sent to frame length equals in an order of magnitude the
maximum multipacket reception capacity in the multipacket
reception model. Furthermore, to characterise system behavior
in the instability region, we mathematically demonstrate the
existence of transience of the backlog Markov chain. Finally, the
analytical results are validated by the numerical experiments.

Index Terms—Frame slotted Aloha, stability, multipacket re-
ception.

I. INTRODUCTION

A. Context and Motivation

Since the introduction of Aloha protocol in 1970 [1], a
variety of such protocols have been proposed to improve its
performance, such as Slotted Aloha (SA) [23] and Frame
Slotted Aloha (FSA) [19]. SA is a well known random access
scheme where the time of the channel is divided into identical
slots of duration equal to the packet transmission time and the
users contend to access the server with a predefined slot-access
probability. As a variant of SA, FSA divides time-slots into
frames and a user is allowed to transmit only a single packet
per frame in a randomly chosen time-slot.

Due to their effectiveness to tackle collisions in wireless
networks, SA-and-FSA-based protocols have been applied ex-
tensively to various networked systems ranging from the satel-
lite networks [18], wireless LANs [28], [34] to the emerging
Machine-to-Machine (M2M) networks [32], [29]. Specifically,
in radio frequency identification (RFID) systems, FSA plays a
fundamental role in the identification of tags [35], [14] and is
standardized in the EPCGlobal Class-1 Generation-2 (C1G2)
RFID standard [4]. In FSA-based protocols, all users with
packets transmit in the selected slot of the frame respectively,
but only packets experiencing no collisions are successful
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while the other packets referred to as backlogged packets (or
simply backlogs), are retransmitted in the subsequent frames.

Given the paramount importance of the stability for systems
operating on top of Aloha-based protocols, a large body of
studies have been devoted to stability analysis in a slotted col-
lision channel [2], [13], [5] where a transmission is successful
if and only if just a single user transmits in the selected slot,
referred to as single packet reception (SPR). Differently with
SPR, the emerging multipacket reception (MPR) technologies
in wireless networks, such as Code Division Multiple Access
(CDMA) and Multiple-Input and Multiple-Output (MIMO),
make it possible to receive multiple packets in a time-slot
simultaneously, which remarkably boosts system performance
at the cost of the system complexity.

More recently, the application of FSA in RFID systems and
M2M networks has received considerable research attention.
However, very limited work has been done on the stability of
FSA despite its fundamental importance both on the theoretical
characterisation of FSA performance and its effective opera-
tion in practical systems. Motivated by the above observation,
we argue that a systematic study on the stability properties of
FSA incorporating the MPR capability is called for in order to
lay the theoretical foundations for the design and optimization
of FSA-based communication systems.

B. Summary of Contributions
In this paper, we investigate the stability properties of p-

persistent FSA with SPR and MPR capabilities. The main
contributions of this paper are articulated as follows. We model
the packet transmission process in a frame as the bins and balls
problem [11] and derive the number of successfully received
packets under both SPR and MPR models. We formulate a
homogeneous Markov chain to characterize the number of
the backlogged packets and derive the one-step transition
probability with the persistence probability p. By employing
drift analysis, we obtain the closed-form conditions for the
stability of p-persistent FSA and derive conditions maximising
the stability regions for both SPR and MPR models. To
characterise system behavior in the instability region with the
persistence probability p, we mathematically demonstrate the
existence of transience of the backlog Markov chain. Besides,
we investigate how to achieve the stability condition and give
the control algorithm for updating the frame size.

Our work demonstrates that the stability region is max-
imised when the frame length equals the number of sent
packets in the SPR model and the upper bound of stability
region is maximised when the ratio of the number of sent
packets to frame length equals in an order of magnitude the
maximum multipacket reception capacity in the MPR model.
In addition, it is also shown that FSA-MPR outperforms FSA-
SPR remarkably in terms of the stability region size.
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C. Paper Organisation

The remainder of the paper is organised as follows. Sec. II
gives a brief overview of related work and compares our
results with existing results. In Sec. III, we present the system
model, including random access model, traffic model and
packet success probability. In Sec. IV, we summary the main
result of this paper and the detailed proofs on the stability
properties of FSA-SPR and FSA-MPR are given in Sec. V
and Sec. VI, respectively. In Sec. VII, we study the frame
size control in practice. In Sec. VIII, we conduct the numerical
analysis. Finally, we conclude our paper in Sec. IX.

II. RELATED WORK

Aloha-based protocols are basic schemes for random medi-
um access and are applied extensively in many communication
systems. As a central property, the stability of Aloha protocols
has received lots of attention, which we briefly review here.

Stability of slotted Aloha. Tsybakov and Mikhailov [27]
initiated the stability analysis of finite-user slotted Aloha. They
found sufficient conditions for stability of the queues in the
system using the principle of stochastic dominance and derived
the stability region for two users explicitly. For the case of
more than two users, the inner bounds to the stability region
were shown in [22]. Subsequently, Szpankowski [26] found
necessary and sufficient conditions for the stability under
a fixed transmission probability vector for three-user case.
However, the derived conditions are not closed-form, meaning
the difficulty on verifying them. In [2] an approximate stability
region was derived for an arbitrary number of users based
on the mean-field asymptotics. It was claimed that this ap-
proximate stability region is exact under large user population
and it is accurate for small-sized networks. The sufficient
condition for the stability was further derived to be linear in
arrival rates without the requirement on the knowledge of the
stationary joint statistics of queue lengths in [13]. Recently, the
stability region of SA with K-exponential backoff was derived
in [5] by modeling the network as inter-related quasi-birth-
death processes. We would like to point out that all the above
stability analysis results were derived for the SPR model.

Stability of slotted Aloha with MPR. The first attempt at
analyzing stability properties of SA with MPR was made by
Ghez et al. in [7], [8] in an infinite-user single-buffer model.
They drew a conclusion that the system could be stabilized
under the symmetrical MPR model with a non-zero probability
that all packets were transmitted successfully. Afterwards, Sant
and Sharma [24] studied a special case of the symmetrical
MPR model for finite-user with an infinite buffer. They derived
sufficient conditions on arrival rate for stability of the system
under the stationary ergodic arrival process. Subsequently,
the effect of MPR on stability and delay was investigated
in [17] and it was shown that stability region undergoes a
phase transition and then reaches the maximization. Besides,
in [9] necessary and sufficient conditions were obtained for
a Nash equilibrium strategy for wireless networks with MPR
based on noncooperation game theory. More recently, Jeon
and Ephremides [10] characterised the exact stability region
of SA with stochastic energy harvesting and MPR for a pair

of bursty users. Although the work aforementioned analyzed
the stability of system without MPR or/and with MPR, they
are mostly, if not all, focused on SA protocol, while our focus
is FSA with both SPR and MPR.

Performance analysis of FSA. There exist several studies
on the performance of FSA. Wieselthier and Anthony [31]
introduced a combinatorial technique to analyse performance
of FSA-MPR for the case of finite users. Schoute [25] inves-
tigated dynamic FSA and obtained the expected number of
time-slots needed until the backlog becomes zero. Consider
the application of FSA to RFID identification problem, the
asymptotic sum of all frame sizes for optimal identification
efficiency is proved to be ne−1.09 ln(n) in [21] where n is
the RFID tag cardinality. However, these works did not address
the stability of FSA, which is of fundamental importance.

In summary, only very limited work has been done on the
stability of FSA despite its fundamental importance both on
the theoretical characterisation of FSA performance and its
effective operation in practical systems. In order to bridge
this gap, we devote this paper to investigating the stability
properties of FSA under both SPR and MPR models.

III. SYSTEM MODEL

A. Random access model in FSA

We consider a system of infinite identical users with buffer
capacity of one packet and operating on one frequency chan-
nel. In one slot, a node can complete a packet transmission.

The random access process operates as follows: FSA or-
ganises time-slots with each frame containing a number of
consecutive time-slots. Each user is allowed to randomly and
independently choose a time-slot to send his packet at most
once per frame. More specifically, suppose the length of frame
t is equal to Lt, then in the beginning of frame t each user
generates a random number R and selects the (R mod Lt)-
th time-slot in frame t to transmit his packet. Note that
unsuccessful packets in the current frame are retransmitted
in the next frame with the constant persistence probability
p while newly generated packets are transmitted in the next
frame following their arrivals with probability one.

Moreover, we investigate two physical layer models of
practical importance, the models with single packet reception
(SPR) and multipacket reception (MPR) capabilities:
• Under the SPR model, a packet suffers a collision if more

than one packet is transmitted in the same time-slot. SPR
is a classical and baseline physical layer model.

• Under the MPR model, up to M (M > 1) concurrently
transmitted packets can be received successfully with
non-zero probabilities as specified by a stochastic matrix
Ξ defined as follows:

Ξ ,



ξ̂10 ξ̂11

...
...

...
. . .

ξ̂x00 ξ̂x01 · · · · · · ξ̂x0x0

...
...

...
...

. . .
ξ̂M0 ξ̂M1 · · · · · · ξ̂MM

1 0 · · · · · · · · · 0


(1)
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where ξ̂x0k0
(k0 ≤ x0 ≤M ) is the probability of having

k0 successful packets among x0 transmitted packets in
one slot. Ξ is referred to as the reception matrix. The
last two decades have witnessed an increasing preva-
lence of MPR technologies such as CDMA and MIMO.
Mathematically, the SPR model can be regarded as a
degenerated MPR model with M = 1 and

Ξ =


0 1

01 0
...

...
1 0

 .

For notational convenience, we use FSA-SPR and FSA-
MPR to denote the FSA system operating on the SPR and
MPR models, respectively.

B. Traffic model

Let random variable Nt denote the total number of new
arrivals during frame t and denote by Atl the number of new
arrivals in time-slot l in frame t where l = 1, 2, · · · , Lt. As-
sume that (Atl)1≤l≤Lt are independent and identically Poisson
distributed random variables with probability distribution:

P{Atl = u} = Λu(u ≥ 0) (2)
such that the expected number of arrivals per time-slot Λ =∑∞

1 uΛu is finite.
Then as Nt =

∑Lt
l=1Atl, the distribution of Nt, defined

as {λt(n)}n≥0, also follows Poisson distribution with the
expectation Nt = LtΛ.

C. Packet success probability

The process of randomly and independently choosing a
time-slot in a frame to transmit packets can be cast into a class
of problems that are known as occupancy problems, or bins
and balls problem [11]. Specifically, consider the setting where
a number of balls are randomly and independently placed into
a number of bins, the classical occupance problem studies the
maximum load of an individual bin.

In our context, time-slots and packets to be transmitted in
a frame can be cast into bins and balls, respectively. Denote
by Yt the random variable for the number of packets to be
transmitted in frame t. Given Yt = ĥ in frame t and the frame
length Lt, the number x0 of packets sent in one time-slot,
referred as to occupancy number, is binomially distributed with
parameters ĥ and 1

Lt
:

Bĥ, 1
Lt

(x0) =

(
ĥ

x0

)
(

1

Lt
)x0(1− 1

Lt
)ĥ−x0 . (3)

Applying the distribution of equation (3) to all L slots in the
frame, we can get the expected value b(x0) of the number of
time-slots with occupance number x0 in a frame as follows:

b(x0) = LtBĥ, 1
Lt

(x0) = Lt

(
ĥ

x0

)
(

1

Lt
)x0(1− 1

Lt
)ĥ−x0 . (4)

We further derive the probability that a packet is transmitted
successfully under both SPR and MPR.
Packet success probability of FSA-SPR

In FSA-SPR, the number of successfully received packets
equals that of time-slots with occupance number x0 = 1.

Following the result of [30], we can obtain the probability that
under SPR there exist exactly k successful packets among ĥ
transmitted packets in the frame, denoted by ξSPR

ĥk
, as follows:

ξSPR
ĥk

=



(Ltk )(ĥk)k!G(Lt−k,ĥ−k)

Lĥt
, 0 < k < min(ĥ, Lt)

(Ltĥ )ĥ!

Lĥt
, k = ĥ ≤ Lt

0, k > min(ĥ, Lt)

0, k = Lt < ĥ

(5)

where

G(V,w) = V ŵ +
ŵ∑
t=1

(−1)t
t−1∏
j=0

[(ŵ − j)(V − j)](V − t)ŵ−t 1

t!

with V , Lt − k and ŵ , ĥ− k.
Consequently, the expected number of successfully received

packets in one frame in FSA-SPR, denoted as rSPRh , is

rSPR
ĥ

=

min(ĥ,Lt)∑
k=1

kξSPR
ĥk

= b(1). (6)

Packet success probability of FSA-MPR
Let occupancy numbers xl and kl be the number of trans-

mitted packets and successful packets in the l-th time-slot,
respectively, where l = 1, 2, · · · , Lt. The probability that k
packets are received successfully among ĥ transmitted packets
in the frame, denoted by ξMPR

ĥk
, can be expressed as

ξMPR
ĥk

=
∑

∑
l xl=ĥ

∑
∑
l kl=k

∏
ξ̂xlkl (7)

We can further derive the expected number of successfully
received packets in one frame as

rMPR
ĥ

=
ĥ∑
k=1

kξMPR
ĥk

= Lt

ĥ∑
x0=1

x0∑
k0=1

Bĥ, 1
Lt

(x0)k0ξ̂x0k0
. (8)

In the subsequent analysis, to make the presentation concise
without introducing ambiguity, we use ξĥk to denote ξSPR

ĥk
in FSA-SPR and ξMPR

ĥk
in FSA-MPR. The notations used

throughout the paper are summarized in Table I.

TABLE I
MAIN NOTATIONS

Symbols Descriptions
p persistence probability
M maximum MPR capacity
Λ expected arrival rate per slot
Nt expected arrival rate in frame t
λt(n) prob. of n new arrivals in frame t
Lt the length of frame t
Xt random variable: No. of backlogs in frame t
i the value of backlogs in frame t, i.e., Xt = i
Yt random variable: No. of transmitted packet in frame t
ĥ the value of packets sent in frame t, i.e., Yt = ĥ
Zt random variable: No. of retransmitted packet in frame t
h the value of retransmitted packets in frame t, i.e., Zt = h

α the ratio of ĥ to Lt

ξ̂x0k0
prob. of having k0 out of x0 successful packets in a slot

ξĥk prob. of having k out of ĥ successful packets in frame t
Pis one-step transition probability
Di drift in frame t
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IV. MAIN RESULTS

To streamline the presentation, we summarize the main
results in this section and give the detailed proof and analysis
in the subsequent sections that follow.

Aiming at studying the stability of FSA, we decompose our
global objective into the following three questions, all of which
are of fundamental importance both on the theoretical charac-
terisation of FSA performance and its effective operation in
practical systems:
• Q1: Under what condition(s) is FSA stable?
• Q2: When is the stability region maximised?
• Q3: How does FSA behave in the instability region?
Before answering the questions, we first introduce the

formal definition of stability employed by Ghez et al. in [7].
Define by random variable Xt the number of backlogged

packets in the system at the start of frame t. The discrete-time
process (Xt)t≥0 can be seen as a homogeneous Markov chain.

Definition 1. An FSA system is stable if (Xt)t≥0 is ergodic
and unstable otherwise.

By Definition 1, we can transform the study of stability of
FSA into investigating the ergodicity of the backlog Markov
chain. The rationality of this transformation is two-fold. One
interpretation is the property of ergodicity that there exists
a unique stationary distribution of a Markov chain if it is
ergodic. The other can be interpreted from the nature of
ergodicity that each state of the Markov chain can recur in
finite time with probability 1.

From an engineering perspective, if FSA is stable, then
the number of backlogs in the system will reduce overall;
otherwise, it will increase as the system operates.

We then establish the following results characterizing the
stability region and demonstrating the behavior of the Markov
chain in nonergodicity regions under both SPR and MPR.

A. Results for FSA-SPR

Denote by i and ĥ the value of the number of backlogs and
sent packets in frame t and α , ĥ

Lt
. Recall the definitions of

Xt and Yt, we can suppose that Xt = i and Yt = ĥ.

Theorem 1. Under FSA-SPR, consider an irreducible and
aperiodic backlog Markov chain (Xt)t≥0 with nonnegative
integers. When i→∞, we have 1

1) The system is always stable if Λ < αe−α and Lt = Θ(ĥ).
Specially, α = 1 maximizes the stability region2 and also
the stable throughput.

2) The system is unstable under each of the following three
conditions: (1) Lt = o(ĥ); (2) Lt = O(ĥ); (3) Lt =
Θ(ĥ) and Λ > αe−α.

1For two variables X, Y, we use the following asymptotic notations:
• X=o(Y )∗ if 0 ≤ X

Y
≤θ0, as Y→∞, where constant θ0≥0;

• X=o(Y ) if X
Y

= 0, as Y →∞;
• X=O(Y ) if X

Y
=∞, as Y →∞;

• X=Θ(Y ) if θ1≤X
Y
≤θ2, as Y→∞, where constants θ2 ≥ θ1 > 0.

2The ergodicity region of a Markov chain in this paper is referred to as
stability region.

Remark 1. Theorem 1 answers the first two questions and
can be interpreted as follows:
• When Lt = o(ĥ), i.e., the number of sent packets ĥ is

far larger than the frame length Lt, a packet experiences
collision with high probability (w.h.p.), thus increasing
the backlog size and destabilising the system;

• When Lt = O(ĥ), i.e., the number of sent packets ĥ is
far smaller than the frame length, a packet is transmitted
successfully w.h.p.. However, the expected number of
successful packets is still significantly less than that of
new arrivals in the frame. The system is thus unstable.

• When Lt = Θ(ĥ), i.e., ĥ has the same order of magnitude
with the frame length, the system is stable when the
backlog can be reduced gradually, i.e., when the expected
arrival rate is less than the successful rate.

It is well known that an irreducible and aperiodic Markov
chain falls into one of three mutually exclusive classes: pos-
itive recurrent, null recurrent and transient. So, our next step
after deriving the stability conditions is to show whether the
backlog Markov chain in the instability region is transient or
recurrent, which answers the third question.

Theorem 2. With the same notations as in Theorem 1, (Xt)t≥0

is always transient in the instability region, i.e., under each of
the following three conditions: (1) Lt = o(ĥ); (2) Lt = Θ(ĥ)
and Λ > αe−α; (3) Lt = O(ĥ).

Remark 2. If a state of a Markov chain is transient, then
the probability of returning to itself for the first time in finite
time is less than 1. Hence, Theorem 2 implies that once out
of the stability region, the system is not guaranteed to return
to stable state in finite time, that is, the number of backlogs
will increase persistently.

B. Results for FSA-MPR

Theorem 3. Under FSA-MPR, using the same notations as in
Theorem 1, we have

1) The system is always stable if Lt = Θ(ĥ) and Λ <∑M
x0=1 e

−α αx0

x0!

∑x0

k0=1 k0ξ̂x0k0
. Specially, let α∗ denote

the value of α that maximises the upper bound of stability
region, it holds that α∗ = Θ(M).

2) The system is unstable under each of the following
conditions: (1) Lt = o(ĥ1−ε1) where 0 < ε1 ≤ 1; (2)
Lt = O(ĥ); (3) Λ > α and Lt = Θ(ĥ).

Remark 3. Comparing the results of Theorem 3 to Theorem 1,
we can quantify the performance gap between FSA-SPR and
FSA-MPR in terms of stability. For example, when α = 1,
the stability region is maximised in FSA-SPR with Λ < e−1,
while the upper bound of the stability region in FSA-MPR is
e−1

∑M
x0=1

1
(x0−1)! . Note that for M > 2, it holds that

1 + 1 +
1

2
<

M∑
x0=1

1

(x0 − 1)!
< 1 + 1 +

M∑
x0=1

1

x0(x0 + 1)

< 2 +

 M∑
x0=1

1

x0
− 1

x0 + 1

 = 3− 1

M + 1
.
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The upper bound of the stability region of FSA-MPR when
α = 1 is thus between 2.5 and 3 times the maximum stability
region of FSA-SPR. And hence the maximum upper bound of
the stability region of FSA-MPR achieved when α∗ = Θ(M)
is far larger than that of FSA-SPR.

Theorem 4. With the same notations as in Theorem 3, (Xt)t≥0

is transient under each of the following three conditions: (1)
Lt = o(ĥ1−ε1); (2) Lt = O(ĥ); (3) Λ > α and Lt = Θ(ĥ).

Remark 4. Theorem 4 demonstrates that despite the gain
on the stability region size of FSA-MPR over FSA-SPR, their
behaviors in the unstable region are essentially the same.

V. STABILITY ANALYSIS OF FSA-SPR

In this section, we will analyse the stability of FSA-SPR
and prove Theorem 1 and 2.

A. Characterising backlog Markov chain

As mentioned in Sec. IV, we characterize the number of the
backlogged packets in the system at the beginning of frame
t as a homogeneous Markov chain (Xt)t≥0. We assume that
Xt = i and Yt = ĥ. Denote by Zt the random variable for
the number of retransmitted packets in frame t. Since the
transmitted packets in frame t consists of the new arrivals
during frame t − 1 and the retransmitted packets in frame t,
we have

Yt = Zt +Nt−1. (9)

Suppose w new packets arrive in frame t−1 and h out of i−w
backlogs are retransmitted in frame t of which the probability
is as follows:

Bi−w(h) ,

(
i− w
h

)
ph(1− p)i−w−h.

As a consequence, the number of packets transmitted in frame
t is ĥ = w + h.

We now calculate the one-step transition probability as a
function of ξĥk, retransmission probability p and {λt(n)}n≥0.
Denote by Pis = P{Xt+1 = s|Xt = i} the one-step transition
probability, we can derive the following results:
1) For i = 0:

P00 = λt(0), P0s = λt(s), s ≥ 1.

2) For i ≥ 1:

Pi,i−s =
∑i
w=0 λt−1(w)

∑i−w
h={s−w}+ Bi−w(h)·∑min(L,ĥ)−s

n=0 λt(n)ξĥ,n+s, 1 ≤ s ≤ i,
Pi,i = λt(0)

(
λt−1(0)Bi(0) +

∑i
w=0 λt−1(w)·∑i−w

h=0 Bi−w(h)ξĥ,0

)
+
∑i
w=0 λt−1(w)·∑i−w

h=0 Bi−w(h)
∑min(ĥ,L)
n=1 λt(n)ξĥn,

Pi,i+s =
∑i
w=0 λt−1(w)

∑i−w
h=0 Bi−w(h)·∑min(ĥ,L)

n=0 λt(n+ s)ξĥn, s ≥ 1,

(10)

where {s− w}+ = max{s− w, 0}.
The rationale for the calculation of the transition probability

is explained as follows:
• When i = 0, i.e., there are no backlogs in the frame, the

backlog size remains zero if no new packets arrive and
increases by s if s new packets arrive in the frame.

• When i > 0, we have three possibilities, corresponding
to the cases where the backlog size decreases, remains
unchanged and increases, respectively:
– The state 1≤s≤min(ĥ, Lt) corresponds to the case

where the backlog size decreases by s when n ≤
min(ĥ, Lt)−s new packets arrive but n+s backlogged
packets are received successfully.

– The backlog size remains unchanged if either of two
following events happens: (a) no new packets are gen-
erated and either no backlogged packets are transmitted
or all the transmitted backlogged packets fail; (b)
n ≤ min(ĥ, Lt) new packets arrive but n backlogged
packets are successfully received.

– The backlog size increases when the number of suc-
cessful packets is less than that of new arrivals.

In order to establish the ergodicity of the backlog Markov
chain (Xt)t≥0, it is necessary to ensure (Xt)t≥0 is irreducible
and aperiodic. To this end, we conclude this subsection by
providing the sufficient conditions on {λt(n)} for the irre-
ducibility and the aperiodicity of (Xt)t≥0 as

0 < λt(n) < 1, ∀ n ≥ 0. (11)
We would like to point out that most of traffic models can

satisfy (11). Throughout the paper, it is assumed that (11)
holds and hence (Xt)t≥0 is irreducible and aperiodic.

B. Stability analysis

Recall Definition 1, to study the stability of FSA, we need to
analyse the ergodicity of the backlog Markov chain (Xt)t≥0.
We first define the drift and then introduce two auxiliary
lemmas which will be useful in the ergodicity demonstration.

Definition 2. The drift Di of the backlog Markov chain
(Xt)t≥0 at state Xt = i where i ≥ 0 is defined as

Di = E[Xt+1 −Xt|Xt = i]. (12)

Lemma 1 ([20]). Given an irreducible and aperiodic Markov
chain (Xt)i≥0 having nonnegative integers as state space
with the transition probability matrix P = {Pis}, (Xt)t≥0

is ergodic if for some integer Q ≥ 0 and constant ε0 > 0, it
holds that

1) |Di| <∞, for i ≤ Q,
2) Di < −ε0, for i > Q.

Lemma 2 ([12]). Under the assumptions of Lemma 1, (Xt)t≥0

is not ergodic, if there exist some integer Q ≥ 0 and some
constants B ≥ 0, c ∈ [0, 1] such that

1) Di > 0 for all i ≥ Q,
2) φi −

∑
s Pisφ

i ≥ −B(1− φ) for all i ≥ Q, φ ∈ [c, 1].

Armed with Lemma 1 and 2, we start to prove Theorem 1.
Proof of Theorem 1: In the proof, we first explicitly for-

mulate the drift defined by (12) and then study the ergodicity
of Markov chain based on drift analysis.

Denote by random variable Ct the number of successful
transmissions in frame t, we have

Xt+1 −Xt = Nt − Ct.
Recall (12), it then follows that

Di = E[Nt − Ct|Xt = i] = Nt − E[Ct|Xt]. (13)
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Since all new arrivals and unsuccessful packets in frame
t − 1 are transmitted in frame t with probability one and p,
respectively, we have

P{Ct = k|Xt = i,Nt−1 = w,Zt = h} = ξSPR
ĥk

,

for 0 ≤ k ≤ min(ĥ, L). Recall (6), we have

E[Ct|Xt = i] =
i−w∑
h=0

Bi−w(h)E[Ct = k|Xt = i,Nt−1 = w]

=
i∑

w=0

λt−1(w)
i−w∑
h=0

Bi−w(h)rSPR
ĥ

. (14)

Following (13) and (14), we obtain the value of the drift:

Di = Nt −
i∑

w=0

λt−1(w)
i−w∑
h=0

Bi−w(h)rSPR
ĥ

. (15)

After formulating the drift, we then proceed by two steps.
Step 1: Lt = Θ(ĥ) and Λ < αe−α.
In this step, we intend to corroborate that the conditions in

Lemma 1 can be satisfied if Lt = Θ(ĥ) and Λ < αe−α. We
first show that |Di| is finite. This is true for i ≤ Q since

|Di| < max{Nt,

i∑
w=0

λt−1(w)

i−w∑
h=0

Bi−w(h)rSPR
ĥ
}

< max{Nt,min{Lt,
i∑

w=0

λt−1(w)
i−w∑
h=0

(w + h)Bi−w(h)}}

< max{Nt,min{Lt,
i∑

w=0

wλt−1(w) +
i∑

w=0

(i− w)pλt−1(w)}}

< max{Nt,min{Lt, (1− p)λ+ ip}}. (16)
Next, to derive the limit of Di, we start with the following

lemma which is proved in Appendix A.

Lemma 3. If rSPR
ĥ

has a limit r̂, then it holds that
limi→∞

∑i
w=0 λt−1(w)

∑i−w
h=0 Bi−w(h)rSPR

ĥ
= r̂.

Following Lemma 3, we have
lim
i→∞

Di = Nt − lim
ĥ→∞

rSPR
ĥ

= lim
ĥ→∞

Lt

{
Λ−

(
ĥ

1

)
1

Lt
·
(

1− 1

Lt

)ĥ−1
}

= Lt(Λ− αe−α), (17)

where α , ĥ
Lt

. It thus holds that limi→∞Di < −ε0 with ε0 =
αe−α−Λ

2 since both α and Λ are constants when Lt = Θ(ĥ)
and Λ < αe−α.

It then follows from Lemma 1 that (Xt)t≥0 is ergodic. Spe-
cially, when α = 1, the system stability region is maximized,
i.e., Λ < e−1.

Step 2: Lt=o(ĥ) or Lt=O(ĥ) or Lt=Θ(ĥ) and Λ>αe−α.
In this step, we prove the instability of (Xt)t≥0 by applying

Lemma 2. Taking into consideration the impact of different
relation between Lt and ĥ on the limit of Di. With (17), the
following results hold for ĥ→∞:
• Λ− limα→∞ αe−α = Λ > 0, when Lt = o(ĥ),
• Λ− limα→0 αe

−α = Λ > 0, when Lt = O(ĥ),
• Λ− αe−α > 0, when Lt = Θ(ĥ) and Λ > αe−α.

Consequently, we have lim
i→∞

Di > 0, which proves the first
condition in Lemma 2.

Next, we will validate the second condition of Lemma 2 in
two cases according to the probable relationship between ĥ
and i, i.e., ĥ = o(i) and ĥ = Θ(i).

Note that the second condition apparently holds for φ=0
and φ=1, we thus focus on the remaining value of φ, i.e.,
φ ∈ (c, 1). Moreover, given ĥ, Pi,i−s in (10) can also be
expressed as

Pi,i−s =
ĥ∑

w=0

λt−1(w)Bi−w(ĥ− w)
ĥ−s∑
n=0

λt(n)ξĥ,n+s. (18)

Now, we start the proof with the above arms.
Case 1: ĥ = o(i).
Given ĥ = o(i), we can derive the result as follows:
∞∑
s=0

φsPis =
i−ĥ−1∑
s=0

φsPis +
i∑

s=i−ĥ

φsPis +
∞∑

s=i+1

φsPis

≤φi+1 +
i∑

s=i−ĥ

φs
ĥ∑

w=0

λt−1(w)Bi−w(ĥ− w)

·
ĥ+s−i∑
n=0

λt(n)ξĥ,n+i−s

≤φi+1 +
i∑

s=i−ĥ

φs
ĥ∑

w=0

Bi−w(ĥ− w)

≤φi+1 + ĥe−
ip
2 (1− ĥ

ip )2

φi−ĥ ≤ φi, as i→∞, (19)
where we use the Chernoff’s inequality to bound the cu-
mulative probability of Bi−w(ĥ − w). Therefore, the second
condition of Lemma 2 holds when ĥ = o(i).

Case 2: ĥ = Θ(i).
In this case, we need to distinguish the three instability

regions. Without loss of generality, we assume that ĥ = βi
where constant β ∈ (0, 1].

(1) Lt = o(ĥ).
When Lt = o(ĥ), it also holds that Lt = o(i) and that at

most Lt − 1 packets are successfully received, we thus have
∞∑
s=0

φsPis =

i−Lt−1∑
s=0

φsPis +
i∑

s=i−Lt

φsPis +
∞∑

s=i+1

φsPis

≤ φi+1 + Ltφ
i−Lt

≤ φi +B(1− φ), as i→∞, (20)
for any positive constant B.

(2) Lt = Θ(ĥ).
The key steps we need in this case are to obtain upper

bounds of ξSPR
ĥk

and the arrival rate in a new way. To this
end, we first recomputed ξSPR

ĥk
when Lt = Θ(ĥ) as follows:

ξSPR
ĥk

=
(Lk)k!(Lt−k)ĥ−k

Lĥt
− ( Ltk+1)(k+1)!(Lt−k−1)ĥ−k−1

Lĥt

≤ (Ltk )k!

Lkt

(
(1− k

Lt
)ĥ−k − (1− k+1

Lt
)ĥ−k

)
≤ (Ltk )k!

Lkt
≤ (1− k/2

Lt
)k/2, k < min(ĥ, Lt),

ξSPR
ĥĥ

=
(Ltĥ )ĥ!

Lĥt
≤ (1− ĥ/2

Lt
)ĥ/2

≤ (1− α/2)ĥ/2, k = ĥ ≤ Lt.
(21)
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The rationale behind the above inequalities is as follows:
Given ĥ transmitted packets, the probability of exactly k
successful packets equals the absolute value of the difference
between the probability of at least k successful packets and
that of at least k + 1 successful packets.

Next, we introduce an auxiliary lemma to bound the proba-
bility distribution of the arrival rate. When the number of new
arrivals per slot Atl is Poisson distributed with the mean Λ, the
number of new arrivals per frame Nt (Atl and Nt is formally
defined in Sec. III.) is also a Poisson random variable with the
mean Nt = LtΛ > ĥe−α.

Lemma 4 ([16]). Given a Poisson distributed variable X with
the mean µ, it holds that

Pr[X ≤ x] ≤ e−µ(eµ)x

xx
, ∀ x < µ, (22)

Pr[X ≥ x] ≤ e−µ(eµ)x

xx
, ∀ x > µ. (23)

In the case that Lt = Θ(i), it holds that Nt = LtΛ > L
2
3
t ,

for the constant Λ and a large i. Consequently, applying (22)
in Lemma 4, we have

P{Nt ≤ L2/3
t } ≤

e−λ(eλ)L
2/3
t

(L
2/3
t )L

2/3
t

≤ e
−L2/3

t ( LΛ

L
2/3
t

−1)
(
LtΛ

L
2/3
t

)L2/3
t

≤

(
e
LtΛ

L
2/3
t

−1L2/3

LtΛ

)−L2/3
t

≤ 1

a
L

2/3
t

1

, (24)

where a1 , eΛL
1/3
t −1

ΛL
1/3
t

� 1, following the fact that ex > 1+x,
for ∀ x > 0.

Armed with (21) and (24) and noticing the fact that at most
ĥ packets are successfully received, we start developing the
proof and obtain the results as follows:

∞∑
s=0

φsPis =
i−ĥ−1∑
s=0

φsPis +
i∑

s=i−ĥ

φsPis +
∞∑

s=i+1

φsPis

≤φi+1 +
i∑

s=i−ĥ

ĥ∑
w=0

λt−1(w)Bi−w(ĥ− w)·

ĥ+s−i∑
n=0

λt(n)(1− n+ i− s
2Lt

)(n+i−s)/2

≤φi+1 +

i∑
s=i−ĥ

φs
ĥ∑
n=0

λt(n)(1− n

2Lt
)
n
2

≤φi+1 +
i∑

s=i−ĥ

φs
( L2/3

t∑
n=0

λt(n) +
ĥ∑

n=L
2/3
t

λt(n)(1− n

2Lt
)
n
2

)

≤φi+1 +
i∑

s=i−ĥ

φs
( 1

a
L

2/3
t

1

+ (1− 1

2L
1/3
t

)
L2/3

2

)
≤(ĥ+ 1)

( 1

a
L

2/3
t

1

+ e−
L

1/3
t
4

)
φi−ĥ + φi+1

≤φi +B(1− φ), as i→∞, (25)

for any positive constant B, where the last inequality holds for

(ĥ + 1)
(

1

a
L

2/3
t

1

+ e−
L

1/3
t
4

)
∼ Θ(ie−i

1/3

)→ 0 as i → ∞, while

B(1− φ) is positive constant.
Consequently, the second condition in Lemma 2 holds for

Case 2. Next, we proceed with the proof for the third case.
(3) Lt = O(ĥ).
When Lt = O(ĥ), it also holds that Lt = O(i) such that the

expected number of new arrivals per frame Nt = LtΛ � i.
Since Nt is Poisson distributed as mentioned in Case 2 above,
recall (24), it also holds that

P{Nt ≤ i} ≤
1

ai2
, (26)

where a2 , i
LtΛ
· e

LtΛ
i −1 ≥ LtΛ

i , following the fact that
ex > 1 + x+ x2

2 + x3

6 , for ∀ x > 0.
Using (26) then yields
∞∑
s=0

φsPis =
i∑

s=0

φsPis +
∞∑

s=i+1

φsPis

≤
i∑

s=0

φs
s∑

n=0

λt(n) + φi+1 ≤
i∑

s=0

s∑
n=0

λt(n) + φi+1

≤ i+ 1

(φLtΛi )i
φi + φi+1 ≤ φi, as i→∞, (27)

since φ is constant while LtΛ
i →∞ as i→∞.

Combining the analysis above, it follows Lemma 2 that the
backlog Markov chain (Xt)t≥0 is unstable when Lt = o(ĥ)
or Lt = O(ĥ) or Lt = Θ(ĥ) and Λ > αe−α. And the proof
of Algorithm 1 is thus completed.

C. System behavior in instability region

It follows from Theorem 1 that the system is unstable in the
following three conditions: Lt = o(ĥ); Lt = O(ĥ); and Lt =
Θ(ĥ) but Λ > αe−α. Lemma 2, however, is not sufficient
to ensure the transience of a Markov chain, we thus in this
section further investigate the system behavior in the instability
region, i.e., when (Xt)t≥0 is nonergodic. The key results are
given in Theorem 2.

Before proving Theorem 2, we first introduce the following
lemma [15] on the conditions for the transience of a Markov
chain.

Lemma 5 ([15]). Let (Xt)t≥0 be an irreducible and aperi-
odic Markov chain with the nonnegative integers as its state
space and one-step transition probability matrix P = {Pis}.
(Xt)t≥0 is transient if and only if there exists a sequence
{yi}i≥0 such that

1) yi (i ≥ 0) is bounded,
2) for some i ≥ N , yi < y0, y1, · · · , yN−1,
3) for some integer N > 0,

∑∞
s=0 ysPis ≤ yi, ∀ i ≥ N .

Armed with Lemma 5, we now prove Theorem 2.
Proof of Theorem 2: The key to prove Theorem 2 is

to show the existence of a sequence satisfying the proper-
ties listed in Lemma 5, so we first construct the following
sequence (28) and then prove that it satisfies the required
conditions.

yi =
1

(i+ 1)θ
, θ ∈ (0, 1). (28)
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It can be easily checked that {yi} satisfies the first two
properties in Lemma 5.

Noticing that the sequence {φi} in Lemma 2 satisfies the
first two properties in Lemma 5 for 0 < φ < 1, and recall (19)
and (27), we can conclude that (Xt)t≥0 is transient if ĥ = o(i)
or Lt = O(i). Therefore, we next proceed with ĥ = Θ(i) by
distinguish two cases.

Case 1: Lt = o(ĥ).
When ĥ = Θ(i), it also holds that Lt = o(i). To streamline

the complicated analysis in this case, we partition the region
Lt=o(i) into two parts, i.e., 1) Lt=o((ln i)4)∗, and 2) Lt=o(i)
except part 1), i.e., the region [O((ln i)4), o(i)].
• Part 1): Lt=o((ln i)4)∗.

The result in this part is shown in the following lemma
for the third property in Lemma 5. The proof is detailed
in Appendix B.
Lemma 6. If Lt=o((ln i)4)∗, (Xt)t≥0 is always tran-
sient.

• Part 2): Lt=o(i) except part 1).
In this case, since a1 > ln i and yi − yi+1 = 1

(i+1)θ
(1−

(1− 1
i+2 )θ) ≥ θ

(i+1)θ(i+2)
where we use the fact that (1−

1
i+2 )θ ≤ 1− θ

i+2 following Taylor’s theorem, using (24)
and (28) yields
∞∑
s=0

ysPis =

i−Lt∑
s=0

ysPis +
i∑

s=i−Lt+1

ysPis +
∞∑

s=i+1

ysPis

≤yi+1 +
i∑

s=i−Lt+1

ys

s∑
n=0

λt(n)(1− n

2Lt
)
n
2

≤
i∑

s=i−Lt+1

ys

( L
2
3
t∑

n=0

λn +
s∑

n=L
2
3
t +1

λt(n)(1− n

2Lt
)
n
2

)
+ yi+1

≤
i∑

s=i−Lt+1

ys

( 1

a
L

2/3
t

1

+ (1− 1

2L
1/3
t

)
L

2/3
t
2

)
+ yi+1

≤ L

(i− Lt + 2)θ

( 1

a
L

2/3
t

1

+ e−
L

1/3
t
4

)
+

1

(i+ 2)θ

≤ Lt
(i− Lt + 2)θ

(
(ln i)−(ln i)8/3

+ i−
(ln i)1/3

4

)
+

1

(i+ 2)θ

≤i−4 +
1

(i+ 2)θ
≤ 1

(i+ 1)θ
, as i→∞. (29)

Case 2: Lt = Θ(ĥ).
In this case, the method to prove is similar with that used

in (25). Recall (25) , we have
∞∑
s=0

ysPis =

i−ĥ−1∑
s=0

ysPis +

i∑
s=i−ĥ

ysPis +

∞∑
s=i+1

yssPis

≤yi+1 +
i∑

s=i−ĥ

ys

( 1

aL
2/3

1

+ (1− 1

2L1/3
)
L2/3

2

)
≤ ĥ+ 1

(i− ĥ+ 1)θ

( 1

aL
2/3

1

+ e−
L1/3

4

)
+

1

(i+ 2)θ

≤ 1

(i+ 1)θ
, as i→∞. (30)

Consequently, it follows Lemma 5 that the backlog Markov
chain (Xt)t≥0 is transient in the instability region, which
completes the proof of Theorem 2.

VI. STABILITY ANALYSIS OF FSA-MPR

In this section, we study stability properties of FSA-MPR.
Following a similar procedure as the analysis of FSA-SPR,
we first establish conditions for the stability of FSA-MPR and
further analyse the system behavior in the instability region.

A. Stability analysis

We employ Lemma 1 and Lemma 2 as mathematical base to
study the stability properties of FSA-MPR, more specifically,
in the proof of Theorem 3.

Proof of Theorem 3: We develop our proof in 3 steps.
Step 1: stability conditions.
In step 1, we prove the conditions for the stability of

(Xt)t≥0, i.e., Λ <
∑M
x0=1 e

−α αx0

x0!

∑x0

k0=1 k0ξ̂x0k0
and Lt =

Θ(ĥ).
Similar to (15), the drift at state i of (Xt)t≥0 in FSA-MPR

can be written as:

Di = Nt −
i∑

w=0

λt−1(w)
i−w∑
h=0

Bi−w(h)rMPR
ĥ

. (31)

According to (16), Di is finite as shown in the following
inequality:

|Di| < max{Nt, (1− p)Nt + ip},
which demonstrates the first conditions in Lemma 1 for the
ergodicity of (Xt)t≥0.

Recall (8) and Lemma 3, we have

lim
i→∞

Di = lim
i→∞

Nt −
i∑

w=0

λt−1(w)

i−w∑
h=0

Bi−w(h)rMPR
ĥ

= lim
ĥ→∞

Lt

Λ−
ĥ∑

x0=1

Bĥ, 1
L

(x0)

x0∑
k0=1

k0ξ̂x0k0


= Lt

Λ−
M∑
x0=1

e−α
αx0

x0!

x0∑
k0=1

k0ξ̂x0k0

 . (32)

Therefore, it holds that limi→∞Di < −ε0 if Lt = Θ(ĥ) and
Λ <

∑M
x0=1 e

−α αx0

x0!

∑x0

k0=1 k0ξ̂x0k0
, R̂1. It then follows

from Lemma 1 that (Xt)t≥0 is ergodic with ε0 = R̂1−Λ
2 .

Step 2: α∗ = Θ(M).
In Step 2, we show that α∗ = Θ(M). Since the proof con-

sists mainly of algebraic operations of function optimization,
we state the following lemma proving Step 2 and detail its
proof in Appendix C.

Lemma 7. Let α∗ denote the value of α that maximises the
upper bound of the stability region, it holds that α∗ = Θ(M).

Step 3: instability region.
In Step 3, we prove the instability region of (Xi)i≥0 by

applying Lemma 2.
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When Lt = o(ĥ), recall (32), we have
ĥ∑

x0=1

Bĥ, 1
L

(x0)

x0∑
k0=1

k0ξ̂x0k0 =

M∑
x0=1

Bĥ, 1
L

(x0)

x0∑
k0=1

k0ξ̂x0k0

≤
M∑
x0=1

x0Bĥ, 1
L

(x0)→ 0, as ĥ→∞,

since limĥ→∞Bĥ, 1
L

(x0) = 0 for a finite M .

Moreover, for Lt = O(ĥ), it can be derived from (32) that∑M
x0=1 e

−α αx0

x0!

∑x0

k0=1 k0ξ̂x0k0
→ 0 since α→ 0 as ĥ→∞.

Furthermore, according to the analysis in the first step, we
know that limi→∞Di > 0, if the conditions in the first step
are not satisfied.

Additionally, in the analysis of FSA-SPR system, we have
proven that if ĥ = o(i) or Lt=o(ĥ) or Lt=O(ĥ), the
Markov chain (Xt)t≥0 is always unstable, independent of ξĥk.
Noticing that ξĥk is the only difference between FSA-SPR and
FSA-MPR, it thus also holds that (Xt)t≥0 is unstable under
FSA-MPR in the three cases.

We next study the instability of FSA-MPR when Lt = Θ(ĥ)
and Λ > α. In this case, it holds that Nt = LtΛ > ĥ such
that

P{Nt ≤ ĥ} ≤
1

aĥ3
, (33)

where a3 , α
Λe

Λ
α−1 > 1.

Note that the one-step transition probability Pis in FSA-
MPR can be obtained by replacing min(ĥ, Lt) with ĥ in (10).

Hence, recall (25), we have
∞∑
s=0

φsPis =
i∑

s=0

φsPis +
∞∑
s=i

φsPis

≤
i∑

s=0

φs
ĥ∑
n=0

λt(n)ξĥ,n+i−s + φi+1

≤ 1

aβi3

+ φi+1 ≤ φi +B(1− φ), as i→∞, (34)

which proves the instability of FSA-MPR following Lemma
2 and also completes the proof of Theorem 3.

B. System behavior in instability region

It follows from Theorem 3 that the system is unstable under
the following three conditions: Lt = o(ĥ); Lt = O(ĥ); Lt =
Θ(ĥ) and Λ > α. In this subsection, we further investigate the
system behavior in the instability region, i.e., when (Xt)t≥0

is nonergodic. The key results are given in Theorem 4, whose
proof is detailed as follows.

Proof of Theorem 4: In the proof of Theorem 2, we
have proven that when Lt=O(ĥ) or ĥ=o(i), the Markov chain
(Xt)t≥0 is always transient, we thus develop the proof for
ĥ=Θ(i) by distinguishing two cases.

Case 1: Lt = o(ĥ1−ε1)∗ with ε1 ∈ (0, 1].
In this case, it holds that Lt = o(i1−ε1)∗ for ĥ=Θ(i). As

counterparts in FSA-SPR, we also partition the region into two
parts, i.e., 1) Lt=o((ln i)4)∗, and 2) Lt=o(i) except part 1),
i.e., the region [O((ln i)4), o(i)].

Recall the proof of Lemma 6, it has been shown that
(Xt)t≥0 is always transient, independent of ξĥk, meaning
(Xt)t≥0 is also transient in FSA-MPR when Lt=o((ln i)4)∗.

As a consequence, it is sufficient to show the transience of
(Xt)t≥0 in part 2). The key step here is to obtain the upper
bound of ξĥk. To this end, we first introduce the following
auxiliary lemma.

Lemma 8 ([6]). Given ĥ packets, each packet is sent in
a slot picked randomly among Lt time-slots in frame t. If
ρj = Lt

e−ĥ/Lt

j! ( ĥLt )
j remains bounded for ĥ, Lt → ∞,

then the probability P (mj) of finding exactly mj time-slots
with j packets can be approximated by the following Poisson
distribution with the parameter ρj ,

P (mj) = e−ρj
ρ
j
mj

mj !
. (35)

We next show that Lemma 8 is applicable to FSA-MPR
when Lt = o(ĥ1−ε1)∗ for a large enough ĥ. To that end, we
verify the boundedness of ρj , which is derived as

0 ≤ ρj ≤
ĥj

j!Lj−1
t eĥε

≤ ĥj

j!Lj−1
t

·
(d 1
ε ej)!

(ĥε)d
1
ε ej
≤

(d 1
ε ej)!

j!Lj−1
t

, (36)

meaning that ρj is bounded if j is finite.
Apparently, when Lt = o(ĥ1−ε1)∗, the probability of

finding exactly mj time-slots with j packets in FSA-MPR
can be approximated by the Poisson distribution with the
parameter ρj , following from Lemma 8 with j = 1, 2, · · · ,M .

Consequently, we can derive the probability ξMPR
1→M that

there are no slots with 1 ≤ j ≤M packets as follows:

ξMPR
1→M = e−(ρ1+ρ2+···+ρ

M
). (37)

Furthermore, since the event that all ĥ packets fail to be
received has two probabilities, i.e., 1) there are no slots with
1 ≤ j ≤ M packets in the whole frame, and 2) there exists
slots with 1 ≤ j ≤ M packets, but all of these packets are
unsuccessful. As a result, it holds that ξMPR

ĥ0
≥ ξMPR

1→M .
We thus can get the following inequalities:

ξMPR
ĥk

≤ 1− ξMPR
ĥ0

≤ 1− e−(ρ1+ρ2+···+ρ
M

)

≤ 1− e−Mρ
M , k ≥ 1, (38)

where we use the fact that the probability of exact k ≥ 1
successfully received packets among ĥ packets is less than
that of at least one packet received successfully in the first
inequality. And the third inequality above follows from the
monotonicity of ρj when L = o(ĥ1−ε1)∗, i.e.,

ρ
M
> ρ

M−1
> · · · > ρ2 > ρ1.

In addition, we can also derive the following results:

0 ≤ lim
ĥ→∞

ĥ4(1− e−MρM ) ≤ lim
ĥ→∞

eMρM − 1

(1/ĥ4)

≤ lim
ĥ→∞

ε1ĥ
Mε1+5

4M !eĥ
ε1

≤ lim
ĥ→∞

∏M−1+d 5
ε1
e

x=0 (M + 5
ε1
− x)

4M !eĥ
ε1

≤ 0,
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which means 1 − e−MρM ≤ 1
ĥ4

. Using this inequality and
recall (39), we have

∞∑
s=0

ysPis =
i−L∑
s=0

ysPis +
i∑

s=i−L+1

ysPis +
∞∑

s=i+1

ysPis

≤yi+1 +
i∑

s=i−L+1

ys

s∑
n=0

λt(n)ξĥ,n+i−s

≤
i∑

s=i−L+1

ys

( L
2
3∑

n=0

λn +
s∑

n=L
2
3 +1

λt(n)ξĥ,n+i−s

)
+ yi+1

≤
i∑

s=i−L+1

ys

( 1

aL2/3

1

+
1

ĥ4

)
+ yi+1

≤ L

(i− L+ 2)θ

( 1

aL2/3

1

+
1

ĥ4

)
+

1

(i+ 2)θ

≤2(βi)−3 +
1

(i+ 2)θ
≤ 1

(i+ 1)θ
, as i→∞. (39)

Thus, according to Lemma 6, the backlog Markov chain
(Xt)t≥0 is transient when Lt = o(ĥ1−ε1)∗.

Case 2: Lt = Θ(ĥ) and Λ > α.
In this case, we have Nt = LtΛ > ĥ. Using similar

reasoning as (34), we have
∞∑
s=0

ysPis ≤
βi+ 1

aβi3

+
1

(i+ 2)θ
≤ 1

(i+ 1)θ
, as i→∞.

Therefore, (Xt)t≥0 is also transient in this case and the
proof of Theorem 4 is completed.

VII. DISCUSSION

In previous sections, we prove that the stability of FSA
relies on the relationship between the frame size and the
number of packets to be transmitted in the frame. In order to
set the frame size to stabilize FSA systems, the users need to
know the number of transmitted packets in the current frame,
which is not always observable. In this section, we discuss
how to estimate its approximate value from an engineering
perspective.

Recall (9), because Nt follows the Poisson distribution and
Zt follows the binomial distribution which can be approximat-
ed as the Poisson distribution, Yt can also be approximated as
a Poisson distributed random variable. According to Lemma 4,
the value of Yt sharply concentrates around its expectation, we
thus use the following E[Yt] to approximate ĥ:

E[Yt] = ip+ (1− p)E[Nt−1]

= ip+ (1− p)Lt−1Λ. (40)
As a result, we can set the frame size following the control

algorithm as follows:
Lt = c1 (ip+ (1− p)Lt−1Λ, ) , (41)
L0 = c1ϑ, (42)

where X0=ϑ means the initial number of packets in the
system, and c1 = 1 for FSA-SPR and c1 = 1

α∗ for FSA-MPR.
By the above control algorithm, the frame size Lt only

depends on the value of backlog population size Xt, i.e., i, so
the original problem is translated to estimate the number of
backlogs Xt, i.e., i. Fortunately, there exist several estimation

approaches which exploit the channel feedback, such as the
probability of a idle or collision slot, and the number of idle
or collision slots. Here, we simply illustrate one of feasible
estimation methods for FSA-SPR. Denote by It−1 the number
of idle slots and by Ĉt−1 the actual number of successful
packets in frame t − 1, which can be observed at the end of
frame t − 1. Since it holds on the idle slot probability that
It−1

Lt−1
≈
(

1− 1
Lt−1

)Yt−1

and Yt−1 ≈ Xt−1p+ (1− p)Lt−2Λ

and Xt ≈ Xt−1−Ĉt−1 +Lt−1Λ, we can estimate actual value
of Xt and configure Lt.

More theoretical analysis are conducted in the following
references. Specifically, according to the requirement on the
estimation accuracy, a rough estimator or an accurate estimator
can be selected. Since ip ≤ Lt ≤ i in (41), rough value of
Xt can be estimated so that the estimate X̃t = Θ(Xt) in
very short time, more specifically, in log(Xt) or log log(Xt)
slots [3]. While if the accurate result is required, we can use the
additive estimator as in [32] and Kalman filter-based estimator
as in our another work [33] to estimate the value of Xt and
update Lt. To summarize, the frame size can be updated based
on these estimation schemes in practical scenarios.

VIII. NUMERICAL RESULTS

In this section, we conduct simulations via MATLAB to
verify our theoretical results by illustrating the evolution
of the number of backlogs in each frame under different
parameters with the following default settings: the initial num-
ber of backlogs X0=104, the simulation duration tmax=100,
o(ĥ)≤0.01ĥ, O(ĥ) ≥ 100ĥ, α = 1 in FSA-SPR and α = α∗ ∈
(M−1

e ,M) in FSA-MPR when Lt = Θ(ĥ). To simulate FSA,
each user first generates a random number among [0, Lt − 1]
uniformly and responds in the corresponding slot. And all
results are obtained by taking the average of 100 trials.

A. Stability properties of FSA

FSA-SPR systems. We start by investigating numerically
the stability properties of FSA-SPR. As stated in Theorem 1,
if Λ < 1

e , the system is stable and unstable otherwise when
α = 1, we thus set the expected arrival rate per slot Λ to 0.3
and 0.37 for the analysis of stability and instability for Lt = ĥ,
respectively. Moreover, we set a small Λ = 0.01 to analyze
the instability for the cases Lt = o(ĥ) and Lt = O(ĥ).

As shown in Fig. 1(a), for the case Lt = ĥ, the number of
backlogs decreases to zero at a rate in proportion to the re-
transmission probability if Λ < 1

e , while increasing gradually
otherwise. This is due to the nature of FSA that frame size
varies with the number of the sent packets to maximize the
throughput per slot. Moreover, Fig. 1(b) and Fig. 1(c) illustrate
the instability when Lt = o(ĥ) and Lt = O(ĥ). The numerical
results is in accordance with the analytical results on FSA-SPR
in Theorem 1.

FSA-MPR System. We then move to the FSA-MPR ex-
ploiting MPR model as in [34]. By varying M from 2 to 10,
we observe that the maximum stability region monotonously
increases from 0.84 to 5.84. In the following, we take an
example of M = 10 when α∗ = 10/1.37 following from
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(c) L = O(h) and Λ = 0.01

Fig. 1. The evolution of backlog population in FSA-SPR.
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(b) L = o(h) and Λ = 0.01
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(c) L = O(h) and Λ = 0.01

Fig. 2. The evolution of backlog population in FSA-MPR.
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Fig. 3. SPR: No. of backlogs vs. frame size.
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Fig. 4. MPR: No. of backlogs vs. frame size.
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Fig. 5. FSA-SPR vs. FSA-MPR.

Lemma 7. We thus set Λ = 5 and Λ = 5.9 for the stability
analysis in the case Lt = ĥ/α∗. As shown in Fig. 2, the
numerical results are in accordance with the analytical results
on FSA-MPR. Similar trends are observed in another MPR
model that only one packet can be successfully captured out
of at most M .

B. Comparison under different frame sizes

We evaluate the performance difference when the frame size
deviates from its optimum value that α = ĥ

Lt
= 1 in FSA-SPR

and α = α∗ in FSA-MPR. To that end, we set Λ = 0.3 for
FSA-SPR and Λ = 5 for FSA-MPR. As shown in Fig. 3 and
Fig. 4, the performance degrades significantly when the frame
size is not optimal.

C. Comparison between FSA-SPR and FSA-MPR

We further compare the performance of FSA-SPR and FSA-
MPR. To that end, for both FSA-SPR and FSA-MPR, we set

Λ = 0.3 and Lt = ĥ where ĥ is the number of backlogs in
FSA-SPR maximizing the throughput of FSA-SPR. We can
also see from Fig. 5 that FSA-MPR, even in the case with
non-optimal settings, remarkably outperforms FSA-SPR.

IX. CONCLUSION

In this paper, we have studied the stability of FSA-SPR and
FSA-MPR by modeling the system backlog as a Markov chain.
By employing drift analysis, we have obtained the closed-
form conditions for the stability of FSA and shown that the
stability region is maximised when the frame length equals the
number of sent packets in FSA-SPR and the upper bound of
stability region is maximised when the ratio of the number of
sent packets to frame length equals in an order of magnitude
the maximum multipacket reception capacity in FSA-MPR.
Furthermore, to characterise system behavior in the instable
region, we have mathematically demonstrated the existence
of transience of the Markov chain. In addition, we conduct
the numerical analysis to verify the theoretical results. Our
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results provide theoretical guidelines on the design of stable
FSA-based protocols in practical applications such as RFID
systems and M2M networks.
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