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Abstract—Nowadays, the maintenance costs of wireless devices
represent one of the main limitations to the deployment of wire-
less mesh networks (WMNs) as a means to provide Internet access
in urban and rural areas. A promising solution to this issue is to
let the WMN operator lease its available bandwidth to a subset of
customers, forming a wireless mesh community network, in order
to increase network coverage and the number of residential users
it can serve. In this paper, we propose and analyze an innovative
marketplace to allocate the available bandwidth of a WMN oper-
ator to those customers who are willing to pay the higher price for
the requested bandwidth, which in turn can be subleased to other
residential users.We formulate the allocationmechanism as a com-
binatorial truthful auction considering the key features of wireless
multihop networks and further present a greedy algorithm that
finds efficient and fair allocations even for large-scale, real sce-
narios while maintaining the truthfulness property. Numerical re-
sults show that the greedy algorithm represents an efficient, fair,
and practical alternative to the combinatorial auction mechanism.

Index Terms—Bandwidth auction, mechanism design, truthful-
ness, wireless mesh community networks.

I. INTRODUCTION

W IRELESS mesh networks (WMNs) have emerged in
recent years as a promising communication paradigm

toward the cost-effective deployment of all-wireless network
infrastructures [1]. Several operators have started using WMNs
as a valuable technology to provide broadband Internet access
in urban and rural areas, where the low return on investments
cannot cover all costs to deploy more expensive wired solu-
tions. With the aim of further reducing the overall maintenance
costs and maximizing the profit, WMN operators have been
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fostering the deployment of wireless mesh community net-
works (WMCNs) [2]. In WMCNs, a group of independent
mesh routers owned by different individuals forms or extends
a WMN to enhance the broadband connectivity, whose avail-
ability can be shared with other users not directly involved in
the management of the community network.
In this context, we envision a marketplace scenario where an

operator may lease the bandwidth of its wireless access network
to a subset of customers in order to increase the network cov-
erage of its WMN and provide access to other residential users
through the customers' mesh client devices. The customers1 who
manage these mesh clients pay the network operator to exploit
the access bandwidth, while they are rewarded directly by the
residential users they serve. Note that both the operator and the
customers gain from this agreement since the former can lease
the bandwidth of its WMN, saving management and mainte-
nance costs, while the latter can earn money by subleasing the
purchased bandwidth to other residential users. Finally, the res-
idential users that would not have been covered by the WMN
operator (because of low payoffs) obtain a better Internet ser-
vice. The proposed marketplace would therefore contribute to
overcome the Digital Divide problem, improving the econom-
ical efficiency of public-private wireless partnerships like those
analyzed in [3].
In order to be an attractive solution, the aforementioned band-

width market managed by the WMN operator needs convincing
allocation and payment mechanisms that should act as incen-
tives for customers to participate and subscribe to the service.
One of the main problems that might discourage a WMN op-
erator from developing the bandwidth marketplace is the pos-
sibility that even few dishonest customers misbehave. Specifi-
cally, a customer could strategically bid false offers, thus manip-
ulating the market as it prefers, in order to pay a lower price or
rule out honest customers. These adversarial behaviors reduce
the operator's revenue.
Motivated by the above analysis, we present in this paper

an economically efficient2 and resilient auction-based band-
width allocation in WMNs. Our particular emphasis is on the
resilience of the proposed mechanism against any actions of
selfish customers that manipulate the bandwidth marketplace
of the network scenario described above to obtain extra benefit.
To tackle this problem, we design an optimal truthful auction

1The customers are residential users that operate the mesh client devices.
They connect directly to the provider's network and resell connectivity to other
residential users.

2In the rest of the paper, the term “efficiency” refers to the economic efficiency
when not otherwise specified.

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



162 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 1, FEBRUARY 2015

that forces each customer interested in leasing the available
bandwidth to bid its real valuation of the required bandwidth
demand.
More specifically, the approach consists in finding the optimal

set of customers to be accepted by the operator (auction win-
ners), whose traffic demands can be routed through the WMN,
and the corresponding prices they have to pay for the leased ser-
vice, which constitute the operator revenue. The optimal alloca-
tion and the pricing together ensure the truthfulness (also known
as incentive compatibility) of the proposed auction scheme.
Despite the optimality and truthfulness of the developed auc-

tion mechanism, we show that finding such optimal allocation
is NP-hard. Hence, we further propose a greedy algorithm that
implements the auction and guarantees that bidding its real val-
uation is the best strategy for each participating customer. We
also demonstrate theoretically that the proposed greedy algo-
rithm satisfies the truthfulness property. Through extensive nu-
merical studies, we show that the proposed greedy algorithm
achieves a performance very close to the system optimum in a
social perspective.
Existing research works, which investigate the use of auction

theory to design efficient mechanisms for resource allocation,
do not accurately capture the main features of wireless mul-
tihop networks and do not take into account the high compu-
tational time needed to carry out the auction. On the contrary,
our scheme selects efficiently (i.e., in polynomial time) the win-
ners considering both the link utilization necessary to satisfy
the demands of the customers that participate to the auction
and the routing constraints of wireless multihop transmission
technologies.
In an effort to design an efficient marketplace for allocating

the WMN's available bandwidth, our work makes the following
unique contributions.
• We propose and analyze an innovative marketplace for the
allocation of the WMN's available bandwidth to those cus-
tomers who are willing to pay more for sharing the pur-
chased bandwidth with other residential users.

• We propose a combinatorial truthful auction that maxi-
mizes the revenue of the WMN operator, which is resilient
against any market manipulation and guarantees a fair al-
location of the resources.

• We design a greedy algorithm to compute efficiently cus-
tomer allocations and fair payments, which still guarantees
that participating customers bid their real valuations. The
proposed algorithm consists therefore in an alternative yet
truthful auction mechanism.

• We perform a thorough numerical analysis of the proposed
algorithms, including large-scale, real WiFi network sce-
narios (like the Google WiFi network [4]).

The rest of this paper is structured as follows. Section II dis-
cusses related work. Section III presents the communication
and network models considered in our work. Section IV for-
mulates the combinatorial auction as an optimization model,
while Section V illustrates the greedy algorithm that we pro-
pose to efficiently compute the solution. The incentive compat-
ibility property as well as the economic efficiency of the greedy
algorithm are analyzed in Section VI. Section VII provides a

numerical evaluation of the proposed framework. Finally, con-
clusions are discussed in Section VIII.

II. RELATED WORK

Auction theory has been used to design efficient allocation
mechanisms in several network contexts, such as cognitive radio
networks, selfish routing, and resource allocation. Hereafter, we
review the most relevant recent literature, highlighting the main
differences with respect to our approach.
With the upcoming generation of cognitive radio networks,

market-based auctions have been extensively studied as an ef-
ficient mechanism to dynamically sublease the unexploited li-
censed spectrum to secondary users and increase the revenue of
the spectrum owner [5]–[11].
Auction theory has been exploited to design innovative traffic

engineering techniques and routing protocols, both to enhance
the utilization of unused network paths and force the collabora-
tion of intermediate relaying nodes [12]–[19].
Ad Hoc-VCG [12] is a routing protocol based on the

Vickrey–Clarke–Groves (VCG) auction, which guarantees
that each intermediate node is refunded at least the true cost
incurred to relay packets. The Commit algorithm [13] further
develops this approach assuring that even the source node
behaves correctly. iPass [20] adopts a similar approach, mod-
eling the forwarding capability of each node as a market,
where an auction process is used to determine the optimal
price for the available resources. The performances of the
previous incentive-based schemes are analytically evaluated by
Jaramillo et al. in [14]; the analysis of their basic properties led
to the design of DARWIN, a new protocol robust to imperfect
measurements and collusion attacks. In [15] and [16], the
truthful pricing mechanism proposed by Vickrey, Clarke, and
Groves is used to solve a broad class of problems concerning
the noncooperative behavior of intermediate nodes. Similar
mechanisms are adopted in [17] and [18] to study and design
innovative protocols for multicast transmissions in noncoop-
erative networks, where each node exhibits selfish behavior.
Specifically, the authors identify general properties to decide
whether an incentive compatible mechanism can be defined on
the top of any multicast protocol, and they present a solution
to implement the proposed scheme in a distributed fashion.
Zhong et al. in [21] exploit two solution concepts defined in
game theory to consider also the collusion among network
devices: They show that even if a Group Strategy-proof Equi-
librium cannot be reached at the routing level, their proposed
solutions reach Strong Nash Equilibria among network nodes,
which are robust to deviations of any component of the col-
luding group.
We underline that the tit-for-tat strategy as well as its different

variants such as the generous tit-for-tat (GTFT) [14] may not be
robust in a wireless environment, and they can be exploited by
adversaries to steer the system toward an inefficient equilibrium
state.
Works sharing a similar approach to the solutions described in

this paper have been recently proposed in [22] and [23]. In par-
ticular, Jain et al. in [22] present a mechanism for per-link band-
width allocation of end-to-end paths in wired networks, whereas
Fu et al. in [23] design an auction-based stochastic game for
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TABLE I
BASIC NOTATION USED IN THE PAPER

resource allocation of virtual operators in wireless cellular net-
works. However, these works do not accurately capture themain
features of wireless multihop networks like the variable trans-
mission rate that adapts to the channel condition and the limited
capacity of the backbone network. Furthermore, these two latter
solutions do not take into account the very large computational
time needed to solve the considered auction in realistic network
scenarios.
Finally, we remark that, unlike existing works that use auc-

tions as a technique to solve allocation problems, our proposed
solutions select the winners considering the resource utilization
of the requested services instead of their raw requests, by mod-
eling both the rate adaptation mechanism operating at the MAC
layer and the capacity limits due to the presence of interfering
links within a WMN. As we verified in the network scenarios
illustrated in Section VII, this permits to increase the revenue of
theWMNoperator since between two competitors, who demand
the same bandwidth, our schemes select the one that requires
the lowest resource utilization, leaving room for the allocation
of additional customers.

III. SYSTEM MODEL

This section presents the communication and network models
considered in our work, as well as the definitions and assump-
tions we adopt in the design of our auction mechanism.
Let us refer to the WMN scenario illustrated in Fig. 1, where

the WMN is managed by a single operator that leases the band-
width made available through its mesh access points (MAPs) to
a subset of customers, which connect to the WMN though their
mesh clients (MCs).
The mechanism we propose implements the bandwidth mar-

ketplace by allocating the available WMN capacity to a subset
of customers, which in turn may sublease it to other residential
users. Table I summarizes the basic notation used throughout
the paper.

Fig. 1. Wireless mesh network scenario considered in this work. The WMN is
managed by a single operator that leases the available bandwidth of the MAPs
to customer MCs. Some mesh routers (MRs) act as mesh gateways (MGWs) to
provide access to the Internet.

Eachmesh client3 has a bandwidth demand that he wishes
to satisfy by transmitting to one of the MAPs that cover it with
their wireless signal. We assume, without loss of generality, that
the term accounts for the traffic demand of both the downlink
and uplink since the wireless resource is a half-duplex channel.
The uncertainty related to traffic description in 802.11 wire-
less systems can be broadly characterized by three parameters,
namely: 1) its burstiness; 2) the packet length distribution; and
3) the contention level at the frame layer, which, in turn, is
closely related to the collision probability.
The first two parameters are used by each MC to control all

quality-of-service requirements that may affect its valuation by
defining an equivalent flow bandwidth, as discussed in [24]. On

3In this paper, we use interchangeably the terms customers and mesh clients
since the customers are the owners of mesh clients.
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the other hand, the contention level, which is function of the
traffic requirements of all selected bidders, is controlled by the
WMNoperator by computing the margin necessary to guarantee
the requested effective bandwidth and avoid the throughput col-
lapse caused by high contention on the wireless channel, using
for example the model presented in [25]. Note that if we re-
configure the access scheme using contention-free MAC proto-
cols (e.g., TDMA) exploiting architectures like those proposed
in [26], such margin can in theory tend to zero.
To satisfy such demand, each buyer bids an offer for its

bandwidth demand to the WMN operator. This latter decides
which MCs are served and the price that winners have to pay to
exploit the available bandwidth.
We further assume that WMN devices (i.e., MRs, MAPs,

and MGWs) are equipped with multiple radio interfaces and
the operator designed its network to minimize intraflow and in-
terflow interference effects according to optimization strategies
like those proposed in [27]–[29]. Since MAPs use orthogonal
channels, the different subsets of MCs assigned to each MAP
do not interfere with each other.
We observe that the transmission rate and the channel uti-

lization required to satisfy the MC's demand depend, clearly, on
device technologies, but in particular on the distance between
the mesh client and the mesh access point to which it is con-
nected; hence, the allocation mechanism has a direct impact on
the number of mesh clients that have the opportunity to exploit
the available bandwidth. Therefore, the aim of the WMN oper-
ator is to increase its revenue by allocating the available band-
width of its mesh access points to those mesh clients that are
willing to pay the highest price for the channel utilization. To
this end, we design a truthful auction that, in addition to maxi-
mizing the revenue of the WMN operator, prevents market dis-
tortion by forcing every mesh client to declare and bid its true
valuation, .
Each mesh client submits its bid in the form , where
represents the price that the buyer is willing to pay for its

bandwidth demand . For each possible allocation of MC to
MAP , the operator computes the corresponding channel
utilization as the ratio between the required bandwidth de-
mand and the maximum achievable transmission rate of the
wireless link that might connect MC and MAP , , ac-
cording to the following equation:

(1)

Note that can be easily obtained from the MAC layer
through a scanning of the wireless channels, which is performed
periodically by all network devices. Furthermore, our mecha-
nism can be applied also to network scenarios with time-varying
capacity of wireless links by simply considering the cumulative
distribution of the transmission rate of any wireless link con-
necting MC and MAP .
Let us denote by the price paid by user when its demand is

satisfied. Then, assuming a quasi-linear utility function for each
customer [30], we can define the utility of , , as the differ-
ence between its private valuation and the price paid to ex-
ploit the bandwidth, , according to the following expression:

if 's demand is satisfied
otherwise. (2)

According to (2), user would obtain a positive utility only if
its whole demand is satisfied by the operator. Therefore, if
reports a smaller demand , its utility would be null since
the operator will allocate to user exactly . Obviously, when
the demand of MC is not satisfied, its utility is null since both
the paid price and its valuation are null.
We focus on the practical scenario where the WMN operator

has only a limited and imperfect knowledge about the real val-
uation that mesh clients are willing to pay for satisfying their
traffic demand.
Mathematically, we apply theMyerson's work [31] andmodel

the operator's uncertainty about the real valuation of any mesh
client as a continuous distribution function , which sat-
isfies the regularity property, over a finite interval ,
with corresponding probability density function .
Note that the distribution describing the uncertainty of

the WMN operator can be predicted exploiting the a priori
knowledge of the system. Indeed, we can confidently suppose
the use of an automatic system for implementing the bidding
strategy of any customer (i.e., MC owner), like in Web-based
marketplaces. In this system, a customer defines its preferences
choosing appropriate lower and upper bounds on its bandwidth
demands and valuations, so that the system can automatically
bid on behalf of the customer.
The user valuation distributionmodeling the operator's uncer-

tainty can be assumed independent from quality parameters of
the wireless link used to satisfy the demand, like the channel or
traffic randomness, since such quality parameters can be simply
controlled by defining an equivalent flow bandwidth as dis-
cussed in [24].
To design a revenue-maximization truthful auction, we there-

fore optimize over the virtual valuation function of customer
defined in

(3)

which we assume to be a monotone nondecreasing function.
Note that the virtual valuation function represents the marginal
revenue obtained by satisfying the demand of [32].
Since we assume independence across the cumulative distri-

bution functions modeling uncertainty on mesh clients valua-
tions and single-dimensional settings, as illustrated in [31] and
[33], such an auction can be implemented by assigning the band-
width to the customers with the highest virtual valuations ,
provided they are nonnegative. The payment rule is as follows:
The winners pay the smallest value that would result in their
winning, that is, the bid (thus the valuation , as it is a truthful
auction) of the first excluded customer. If the first excluded cus-
tomer has a valuation such that , then the winner
pays , that is, the bid whose corresponding virtual
valuation is 0. The value serves as the reservation price for
the auctioneer since he does not sell anything for bids below this
value.
Finally, we underline that the problem formulation can be ex-

tended to consider a dynamic scenario where theWMNoperator
has the choice of reserving part of his bandwidth for a future
sale in order to maximize the profit by anticipating the arrival
of newmesh clients before the next auction round. However, the
analysis of the best strategies for reserving the optimal amount
of bandwidth is out of the scope of this paper.
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IV. OPTIMAL AND TRUTHFUL BANDWIDTH AUCTION

This section presents the combinatorial auction mechanism
we propose to allocate the available access bandwidth of a
WMNoperator, maximizing its expected revenue.We formalize
the optimal and truthful auction mechanism in two steps. First,
we present a mixed integer linear programming (MILP) model
that gives the optimal solution for the Optimal and Truthful
Bandwidth Allocation Problem (OTBAP). Solving OTBAP,
we obtain the assignment of MCs to MAPs that maximizes the
expected revenue of the WMN operator. Then, we describe the
algorithm that, exploiting the allocation of the MILP model,
makes the auction truthful. This algorithm computes the price
paid by MCs in such a way that the optimal strategy for each
mesh client is to bid its real valuation .
Let denote the set of MCs, the set of MRs, and the

set of wireless links among MRs and such that the
two MRs are in their reciprocal radio range (see Table I for ref-
erence). In particular, let us define as the set of MRs op-
erating as MAPs that are in the radio range of MC and ,

, as the set of MRs that act as gateways for the WMN to
the wired backbone.
We can now introduce the decision variables used in our

MILP model to solve OTBAP. Binary variables , ,
indicate which MCs win the auction, i.e., the buyers whose
demands are satisfied by the allocation mechanism ( if
the demand of MC is satisfied, 0 otherwise). Binary variables

, , provide the assignment of MCs to
MAPs ( if MC is assigned to MAP , 0 otherwise).
Finally, let variables , , denote the traffic flow
routed on link and , , the traffic flow routed by
mesh gateways toward the wired connection (note that this last
value is null for mesh routers that do not act as gateways).
Given the above definitions and notation, the OTBAP of

the combinatorial bandwidth auction amounts to the following
mixed mathematical program:

(4)

s.t.
(5)

(6)

(7)
(8)

(9)
(10)
(11)
(12)

The objective function (4) maximizes the expected revenue
of the WMN operator obtained from the bandwidth auction.

Algorithm 1: Optimal and Truthful Bandwidth Auction

Input:
Output:

1 Compute channel utilizations ;
2 Compute virtual bids ;
3 Solve the MILP model (4)–(12);
4 foreach do

if then
;

;
else

;
end

end

Constraints (5) provide full coverage of all the mesh clients
that win the auction.More specifically, if a mesh client wins the
bandwidth auction, then it must be associated only to one mesh
access point among the set of those that cover it. These con-
straints also ensure that only the mesh clients that win the auc-
tion can be assigned to a mesh access point. Constraints (6) pre-
vent the allocation of an overall bandwidth demand that cannot
be satisfied by a mesh access point.
Constraints (7) and (8) define the flow balance at node . The

term accounts for the total traffic that is assigned to
mesh access point , while the terms and represent
the total incoming and outgoing traffic, respectively. The term

represents the traffic sent by mesh gateways to the wired
backbone.
The set of constraints (9) ensures that the total traffic routed

on a link established between two devices and does not
exceed its capacity, denoted by , while (10) represents the
capacity constraints for the wired backbone links, whose max-
imum capacity is denoted as . Recall that in multichannel
multiradio WMNs, wireless interfaces with directive antennas
can be tuned to different channels to reduce interference effects
on the backbone link capacity.
Finally, constraints (11) ensure the positiveness of the flow

variables, while (12) ensures the integrality of the binary deci-
sion variables.
Having defined the MILP model representing the optimal

auction, we now illustrate the algorithm that forces mesh clients
to bid their real valuation.
Algorithm 1 describes the steps performed by the WMN op-

erator to auction its available bandwidth. The algorithm receives
as input the parameters that describe the network topology and
mesh client bids; these latter are composed of the required de-
mand and the offered value . It produces as output the allo-
cation of mesh clients to mesh access points, , as well as the
price paid by each winning mesh client, , to
exploit the required bandwidth.
The algorithm proceeds in four steps. In steps 1 and 2, mesh

client demands are transformed into equivalent channel utiliza-
tions, and virtual valuations are computed using both the bids
actually offered by mesh clients and the valuation distribution
functions . Step 3 consists in solving the MILP model to
find the allocation that maximizes the expected revenue. Finally,
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in step 4, the operator computes the prices paid by the winners,
which, according to Myerson [31], guarantees a truthful auc-
tion. In this step, the function represents the solution
to the OTBAP maximization problem with the additional con-
straint (i.e., the solution to OTBAP without considering
MC in the auction).
We observe that the mechanism implemented by

Algorithm 1 satisfies the ex-post individual rationality property
since both mesh clients and the WMN operator perceive
nonnegative utility.
We next show that the optimal auction mechanism of

Algorithm 1 is NP-hard, which motivates our further proposi-
tion of a greedy, yet truthful and efficient, allocation algorithm
(see Section V) with polynomial-time complexity.
Proposition IV.1 (NP-Hardness of OTBAP): The optimal

auction mechanism implemented by Algorithm 1 is NP-Hard.
Proof: We prove the proposition by showing that the Mul-

tiple Knapsack Problem (MKP) [34] can be reduced in poly-
nomial time to the MILP model (4)–(12), which describes the
OTBAP. To this end, we establish the following polynomial-
time procedure to reduce any instance of the MKP to an equiv-
alent instance of the OTBAP.
1) For each item with weight and value of the MKP,

we add a new MC with and .
2) For each knapsack with capacity of the MKP, we add

a new MAP and a new MGW connected
through the link with capacity . Fur-
thermore, we set the capacity of the MGW wired link to

.
3) For each possible assignment of item to knap-

sack in the MKP, we add a new channel utilization
.

Since solving the MKP is at least as difficult as solving
OTBAP ( ) and MKP is NP-Hard, OTBAP
is NP-Hard.

V. GREEDY BANDWIDTH AUCTION

As demonstrated in Section IV, the Optimal and Truthful
Bandwidth Auction Problem is NP-Hard. Finding the exact
system optimum can be thus extremely time-consuming,
especially in large-scale, real wireless network scenarios as
those analyzed in our numerical evaluation. Motivated by this
observation, in the following we present a greedy algorithm
to solve efficiently (i.e., in polynomial time) the bandwidth
auction problem while preserving the truthfulness property.
We set out by presenting the greedy algorithm and describing

its main phases. In Section VI, we then analyze its complexity
and formally prove that revealing the real valuation of the avail-
able bandwidth is the best strategy for each MC participating in
the auction.
Description of the Greedy Algorithm: The greedy auction

is depicted in Algorithm 2. Its inputs and outputs are ex-
actly the same as the optimal bandwidth auction illustrated in
Algorithm 1. The algorithm is composed of two main phases:
1) allocation phase (step 1), which determines the winning
mesh clients according to their virtual valuation per channel
utilization; and 2) the payment phase (step 2), which establishes
the price paid by each winner based on the best mesh client,

, whose demand is not satisfied. This latter is also

Algorithm 2: Greedy Bandwidth Auction

Input:
Output:

1 ;
;

2 foreach do
;

;
end

Algorithm 3: Greedy Allocation Phase (Step 1 of Algorithm 2)

Input:
Output:
Initialize: ;

;
while do

;
if then

;
;

;
end

end

referred to as critical mesh client, and its virtual bid per channel
utilization as critical value ( ). The value is
the lowest channel utilization among the links that the critical
mesh clients can establish with the set of its covering MAPs to
satisfy its traffic demand.
Note that the truthfulness property guaranteed by the payment

scheme proposed for Algorithm 1 is no longer satisfied if the
combinatorial auction is not solved to the optimality but only
approximated, as shown in [35]. For this reason, we have mod-
ified the payment scheme of the greedy algorithm with respect
to the optimal one (Algorithm 1), so that revealing the true val-
uation is still the dominant strategy for all the customers who
participate to the approximated bandwidth allocation auction.
In particular, the price paid by each winner is now proportional
to its resource utilization and the unitary price that the critical
mesh client is willing to pay.
We underline that the proposed payment and allocation

schemes implemented by the greedy algorithm guarantee
ex-post individual rationality, efficiency, and truthfulness, as
we formally prove in Section VI.
The greedy allocation phase of step 1 is further detailed in

Algorithm 3; it first sorts the list of possible MC-MAP allo-
cations in nonincreasing order of submitted virtual valuation per
channel utilization, . Then, each element of the sorted list
is allocated only if its demand, or equivalently its channel uti-
lization, can be satisfied by the corresponding MAP and routed
toward any mesh gateway. Thus, verifies
if the additional bandwidth demand of MC assigned to MAP
can actually be routed through theWMNbackbone towardmesh
gateways, without violating the link capacities. To this end, we
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develop a procedure to compute in polynomial time the max-
imum flow that can be routed over the wireless backbone using
the well known Push-Relabel algorithm [36].
The choice of such an algorithm is motivated by its com-

plexity, which depends on the number of networks edges; in
sparse networks, like optimized multiradio and multichannel
WMNs, this results in a faster execution with respect to other
algorithms that depend only on the number of vertices.

in Algorithm 3 computes the maximum
flow that can be routed over an extended version of the graph
that represents the network topology. The node set of the ex-
tended graph consists of the mesh routers set and two
fictitious nodes, a source node and an egress node , :

. The arc set comprises all original wireless
links and includes a new arc from node to eachMAP that has
been selected to satisfy the demand of the winners currently se-
lected by the algorithm: .
The capacity of each arc leaving is set to the sum of winners
demands allocated to the corresponding MAP, i.e.,

. If no mesh client has been allocated to a
MAP, the capacity of the corresponding fictitious arc is null.
As for the fictitious node representing the egress point, we

create an additional arc from each MGW to with a capacity
equal to the maximum bandwidth of the wired link connecting
the gateway node to the Internet: . If the
maximum flow from to computed by
on the extended graph is less than the sum of winners demands,
the function returns false since the MC demand analyzed in the
current iteration cannot be satisfied. Otherwise, the MC cur-
rently analyzed by Algorithm 3 can be selected as winner, pro-
vided that the virtual valuation is positive ( ) and the
available channel utilization of MAP is enough to satisfy its
bandwidth demand ( ). To this end, throughout the
iterations of Algorithm 3, the total utilization of each MAP ( )
is updated and verified in order to keep the sum of allocated de-
mands within the bandwidth limit of the access network formed
by the MAPs.

, which implements the Push-Relabel
algorithm, has time complexity . In the worst case, the
extended graph has a number of vertices and a
number of edges , where represents the number
of original wireless links, since there are two fictitious nodes (
and ) in addition to the WMN devices. In a fully connected
network, we have , and the relation

holds, hence .
The feasibility evaluation of the solution obtained by se-

lecting a new winner and performed by
is illustrated in the example network scenario shown
in Fig. 2, which illustrates the extended graph used by

to evaluate the feasibility of the solution
obtained by selecting a new MC in the sorted list . Black
circles represent all MCs selected as winners, while dashed
circles depict the set of MCs assigned to the same MAP, which
in turn is represented as a fictitious arc from to the
corresponding MAP , with capacity equal to the
overall bandwidth demand used by MCs inside the dashed
circle. On the other hand, the capacity of the two fictitious arcs

is equal to the maximum transmission rate of the
wired connections of nodes 1 and 2.

Fig. 2. Example of extended graph used by to verify
the feasibility of the solution obtained by selecting a new MC as winner. The
black circles represent the MCs already allocated by Algorithm 3. The capacity
of each fictitious arc leaving is equal to the sum of the MCs demands inside
the corresponding dashed circle.

The maximum flow from to provides a lower bound on the
maximum traffic that can be routed over the backbone. Hence,
if the sum of all winners demands is lower than or equal to
this value, the traffic can be safely transmitted over the back-
bone without violating the service bandwidth agreement with
the winners.
Note that MC might be satisfied by multiple MAPs

. However, once is selected as winner and its de-
mand assigned to the corresponding MAP, all remaining entries
in the list representing alternative and feasible allocations are
removed by the function . Therefore, the
function removes from the list all elements

representing the alternative allocation for MC .
Remark: We observe that the proposed greedy mechanism

implemented by Algorithm 2 has time complexity . In-
deed, each iteration of the loop in the greedy allocation phase
is executed at most times (with and

), which represent the maximum number of alternative as-
signments of MCs to MAPs in the worst-case scenario. Since
each iteration of the loop has time complexity (recall
that ), Algorithm 3, and thus
Algorithm 2, terminates at most after steps.
We further observe that the backhaul section of a WMN

is usually designed to satisfy the maximum bandwidth of the
access network. That is, the channel assignment and the routing
are jointly optimized assuming that the devices connected
to the MAPs generate traffic at the maximum data rate (i.e.,

).

In such a case, we can speed up the computation by removing
the feasibility check performed by in
Algorithm 3 since we already know that the traffic served by
MAPs can be routed through the backbone. Indeed, the com-
plexity of the greedy algorithm would be substantially reduced,
resulting in instead of .
Illustrative Example: To better clarify the payment rule im-

plemented by Algorithm 2, let us consider the illustrative ex-
ample depicted in Fig. 3, where three MCs request as band-
width demand Mb/s and submit as virtual bids

, and US dollars. The two dashed trape-
zoids represent the areas covered by the radio signals of the two
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Fig. 3. Illustrative scenario to clarify the payment rule of the proposed greedy
algorithm. Letters represent MAPs, whereas numbers identify MCs. The two
dashed trapezoids represent the areas covered by the radio signals of the two
MAPs. The number close to each wireless link (represented as solid line), which
may connect an MC to an MAP, is its maximum transmission rate (in megabits
per second).

TABLE II
CHANNEL UTILIZATIONS OF THE EXAMPLE DEPICTED IN FIG. 3,
FOR ALL POSSIBLE ASSOCIATIONS OF MESH CLIENTS

TO MESH ACCESS POINT

MAPs, whereas the solid lines represent the wireless links that
may be established between MCs and MAPs. Their transmis-
sion rates (in megabits per second) are illustrated in the same
figure, near the dashed edges. The corresponding channel uti-
lizations ( ) are reported in Table II.
For the sake of simplicity, we assume, as in the Remark dis-

cussed above, that the backhaul network is designed to satisfy
the maximum bandwidth of the access network.
The list , sorted according to the virtual bids per channel

utilizations, is defined as follows:

where the element represents the link and
the corresponding virtual bid per channel utilization.
Algorithm 2 selects Mesh Clients 1 and 2 as winners, which

are assigned to MAPs and , respectively. The critical value
is the virtual bid per channel utilization of MC 3,

. Therefore, the virtual prices paid by the two win-
ners are and

, respectively.

VI. ANALYSIS OF THE GREEDY AUCTION

In this section, we analyze the key structural properties of our
greedy auction. In particular, we formally prove that revealing
the real valuation of the available bandwidth is the best strategy
for each MC participating to the auction. Then, we analyze the
economic efficiency of the greedy algorithm evaluating the per-
formance gap with respect to the optimal auction.

A. Truthfulness Analysis
Having described the main phases of the greedy bandwidth

auction, hereafter we prove formally that our mechanism satis-
fies the truthfulness property. We recall that an auction mecha-
nism is truthful if the dominant strategy for each rational bidder
is to declare always its private real valuation for the requested
demand. This property guarantees that selfish bidders cannot
benefit from cheating, preventing the strategic manipulation of

the marketplace, thus resulting in an efficient allocation of the
available resources.
In order to prove that the auction implemented by our greedy

algorithm is truthful, we have to show first that the allocation
rule satisfies the following properties:
1) monotonicity of the allocation defined by the auction;
2) existence of a critical value for each winner mesh client,

which determines if its demand is satisfied or not.
The following lemmas (VI.1–VI.3) prove that the allocation

phase of Algorithm 2 satisfies the above properties and provide
the basis to demonstrate in TheoremVI.1 that no bidder can uni-
laterally increase its utility by submitting a bid that is different
from its private valuation.
Lemma VI.1: If the demand of mesh client is satisfied when

it bids , then 's demand is still satisfied if increases its bid,
.

Proof: Let and be two sorted lists for virtual bids
and (corresponding to and ), respectively. Let us de-
fine a monotonic decreasing function of the MC
position in the list . Since (recall that is
a nondecreasing function), the sorting algorithm in the greedy
allocation phase (Algorithm 3) moves in a best position, i.e.,

. Therefore, the rank of can only in-
crease if it submits a higher bid, and thus a higher virtual bid,
resulting in a different order of the set of mesh clients whose
demands are satisfied, which implies that if mesh client is al-
located by bidding (i.e., ), its demand is satisfied even
with a higher bid (i.e., ).
Lemma VI.2: For each mesh client , the greedy

Algorithm 2 provides the critical value such that
's demand is satisfied if 's virtual bid per channel utilization
is higher than , whereas it is rejected if 's virtual bid per
channel utilization is lower than .

Proof: The proof is straightforward since
Algorithm 2 scans the list in nonincreasing order of virtual
bids per channel utilization until it cannot allocate
more bandwidth demands or all mesh clients are satisfied. In
the former case, the critical value is equal to the ratio
of the first unsatisfied mesh client , while in the latter case
the critical value is null.
Lemma VI.3: The price paid by each winner is lower than

or equal to its submitted bid .
Proof: To show that , we need to demonstrate that

the critical value times the channel utilization charged to winner
(i.e., the virtual price of , ) is not greater than its virtual bid

.
Each winner is charged the critical value times the

channel utilization ( ) of the MAP to which it has been
assigned to satisfy its bandwidth demand, . If all mesh clients
can be satisfied, the critical value is zero, thus mesh clients are
not charged for their bandwidth utilization. Otherwise, MC
pays virtually since the mesh clients
list is sorted in nonincreasing order of the ratio ,
where represents the ratio of the virtual bid and the uti-
lization of the critical bidder (i.e., the first loser of the auction).
Finally, since is a nondecreasing monotonic function,

.
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TABLE III
AUCTION OUTCOMES AND UTILITY FOR MC WHEN IT BIDS UNTRUTHFULLY

Theorem VI.1 (Truthfulness of Algorithm 2): Algorithm 2 im-
plements a truthful auction.

Proof: We prove the theorem by showing that no mesh
client can increase its utility by submitting a bid different from
its private valuation . We underline that the utility perceived
by MC does not change by bidding either or since it is
defined as .
We must consider two cases, namely: (A)

(or equivalently, due to the nondecreasing monotonic property
of the virtual function, ); and (B) (or
equivalently, ). For each case, we must consider all pos-
sible four outcomes, detailed in the following and summarized
in Table III.
Let us start with Case (A) by considering the following cases.
Case A.1: User Wins Either by Bidding or :

If wins by bidding either or , then is ranked in a
better place in the list when it submits . However, this
changes only the order of the set of winners, but neither the
critical value nor the virtual price , which are still given
by the following expressions: , and .
Hence the price paid by the winner does not vary, .
Therefore, the utility does not change: .

Case A.2: User Wins by Bidding but Loses With
: If wins by submitting but it loses with ,

then there exists a critical value such that
, thus .

Due to the monotonic property, the private valuation of is
lower than the price that it pays when it submits , i.e.,

. Therefore, the utility perceived by is negative,
, hence it is better off losing the

auction since in this latter case its utility is null, .
Case A.3: User Loses by Bidding but Wins With
: Due to the monotonic property, this case is impossible

since by submitting a higher bid, and thus a higher virtual bid,
user will be placed in a better position of the sorted list .

Case A.4: User Loses Either by Bidding or :
If loses by bidding both and , then its utility is always null:

.
Similarly, for case (B) , we can demonstrate

that mesh client cannot increase its utility by submitting a
lower bid than its private valuation.
Table III summarizes all possible outcomes to show how

MC cannot increase its utility by bidding differently than its
private valuation (i.e., ).

Since Algorithm 2 implements a truthful auction (which
means that selfish bidders cannot benefit from manipulating
their bids), a WMN operator can efficiently compute a solution
for the auction problem, being assured that all MCs reveal
the true valuation for their bandwidth demand. We emphasize
that, even though our greedy algorithm provides a slightly
suboptimal solution with respect to the optimal allocation for
the bandwidth auction problem, according to [37], the most
important properties necessary to prevent market manipulation
are preserved by our proposal.
Finally, we also observe that the reservation price
set by the operator limits the impact of collusion on the rev-

enue earned by the operator, thus discouraging the collusion
among two or more selfish bidders. Note, however, that a com-
plete analysis of the collusion on the performance of our mecha-
nism is out of the scope of this paper and is left for future study.

B. Economic Efficiency Analysis
In this section, we analyze the economic efficiency of our

greedy algorithm with respect to the optimal allocation com-
puted by Algorithm 1 in the worst-case scenario by evaluating
the Price of Anarchy (PoA), which is defined as the ratio be-
tween the optimal and worst possible values of the Social Wel-
fare, according to

(13)

where and represent the allocation computed by the op-
timal and greedy algorithms, respectively.
To provide better insight on the economic efficiency of our

solution, we also analyze the Revenue Ratio (RR), defined as
the ratio between the revenues computed using the optimal and
greedy algorithms, according to the following equation, since
the operator would seek to minimize such performance metric:

(14)

To illustrate the economic efficiency of the greedy approach,
we consider a simple network scenario composed of one mesh
access point, , and two mesh clients ( ). The capacity
of the MAP's backhaul connection is large enough to accom-
modate the traffic transmitted over the wireless access interface.
The channel utilizations of the two MCs are

( is a positive parameter) and ,
while their bids are ( is a small value larger than
0) and , respectively.
In this scenario, the allocation that maximizes the Social Wel-

fare is the one that selects MC 2 ( ). However,
the greedy algorithm selects MC 1 since , and
the Social Welfare is in this case equal to .
The ratio is therefore equal to , and the Price of An-
archy of the social welfare tends to infinity with ,

.
Nevertheless, we underline that the revenue obtained using

the greedy algorithm approaches that obtained using the optimal
mechanism since the optimal revenue is only times larger than
the revenue computed using the greedy algorithm. Indeed, the
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defined in (14) is independent of , and even in this limiting
case it results

(15)

We further underline that our allocation mechanism can be
modified to bound the Price of Anarchy of the Social Welfare by
simply fixing a minimum amount of bandwidth demand for any
bidder that is willing to participate to the auction. In practice,
as we illustrate in Section VII-B, the economic gap between the
optimal and greedy solutions is almost null (the experimental
Price of Anarchy we measured is, in fact, always lower than
1.05), thus proving the economic efficiency of our scheme.

VII. NUMERICAL RESULTS

In this section, we illustrate the numerical results obtained
solving the bandwidth allocation auction using both the optimal
and greedy algorithms detailed in previous sections. We first
describe the results obtained in randomly generated network
topologies, then we show the performance of our approaches
using a real-life network, namely the Google Wifi network4 an-
alyzed in [4].

A. Random Networks

Experimental Methodology: In this set of simulations, we
consider typical WMCN topologies composed of 30, 60, 90,
and 120 WMN devices (i.e., mesh routers, mesh access points,
and mesh gateways) randomly scattered over an area of 1000
1000 m , similarly to [38]. The ratios between the three

different devices is fixed to 1:2 and 1:3 for MGWs:MRs and
MGWs:MAPs, respectively.
In all the topologies, we vary the number of MCs, which par-

ticipate to the bandwidth auction, from 400 to 1000. The band-
width demands and bids are uniformly distributed in the range
[1, 9] Mbps and [10, 30] monetary units (e.g., US dollars), re-
spectively.
The channel capacity of both access and backbone links is

defined according to the reception sensitivity of the Wistron
CM9 commercial wireless cards (based on Atheros chipset)5.
The path loss necessary to evaluate the sensitivity of the re-
ceiving node is computed according to the Friis propagation
model. However, we underline that all the above assumptions do
not affect the proposed algorithms, which can be used to solve
any network scenario.
In order to gauge the performance of the proposed greedy

algorithm (Section V) with respect to the optimal solution
(Section IV), we consider the following metrics:
• Revenue: defined as the sum of the prices paid by all
winners;

• Social Welfare: defined as the sum of the winner bids,
;

• Winners: This metric represents the number of winners se-
lected among the mesh clients that participated to the auc-
tion. It provides an indication of the satisfaction of the
customers;

4Available online at http://wifi.google.com/.
5Available online at http://www.lri.fr/~fmartignon/CM9.pdf

• Fairness: We consider the Jain's Fairness Index [39], de-
fined according to

(16)

where represents the ratio between the paid price and the
requested bandwidth demand of the winner , ,
whereas represents the number of winners.

The Jain's Fairness Index therefore measures the spread of the
price paid by winners per bandwidth unit, and it varies from
(no fairness among winners) to 1 (perfect fairness).
For each network scenario, we performed 10 independent

measurements, computing very narrow 95% confidence inter-
vals. For the sake of clarity, the Revenue and the Social Welfare
have been normalized with respect to the maximum value mea-
sured in the network topology composed of 120 WMN devices
(about 12 500 monetary units).
Performance Evaluation: Fig. 4 shows the performance met-

rics measured in the network topologies composed of ,
60, 90, and 120 WMN devices as a function of the number of
MCs, using the allocation mechanisms discussed in previous
sections.
The curves identified with “R.o” and “R.g” represent the so-

lutions obtained using Algorithms 1 (which could be computed
only for ) and 2, respectively. The curves “SW.o” and
“SW.g” correspond to the SocialWelfare. Finally, the remaining
curve identified with “VCG” represents the revenue of solutions
obtained according to the classical Vickrey–Clarke–Groves
mechanism [30], which does not consider the bids distribution
to compute the price paid by the winners. The performance
gap between our mechanism and the VCG scheme illustrates
the performance increase that can be obtained considering the
additional information on the bids distribution.
Note that, due to the high computational complexity, we were

able to solve the auction problem optimally only for the network
scenario composed of 30 WMN devices. Nevertheless, even in
this simple scenario, the maximum computational time we mea-
sured to solve the problem on a Pentium 4 with 3.0 GHz and
2 GB of RAM was approximately equal to 40 h. Conversely,
the greedy approach takes always less than 30 s to find efficient
allocations and the corresponding payments.
Fig. 4(a) illustrates the revenue earned by the operator

auctioning its available bandwidth, when 30 WMN nodes
(15 MAPs, 10 MRs, and 5 MGWs) are scattered randomly over
the 1000 1000-m square area.
As illustrated in the figure, the additional information pro-

vided by the virtual bids permits to increase the operator's ex-
pected revenue with respect to a mechanism that exploits only
theMC bids.We can further notice that the auction implemented
by the greedy algorithm well approaches the optimal revenue,
and therefore it represents an effective and efficient solution for
the computation of the prices paid by the MCs. In addition, the
Social Welfare is always higher than the revenue earned when
using Algorithms 1 and 2. Indeed, this value represents an ideal
upper bound to the revenue since it can be achieved only as-
suming that all mesh clients behave honestly, submitting the
price they are willing to pay for their bandwidth demands, even
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Fig. 4. Revenue and Social Welfare measured as a function of the number of mesh clients in scenarios with , 60, 90, and 120 WMN devices. (a) .
(b) . (c) . (d) .

if it is not their best strategy. On the contrary, we underline that
our proposed solutions ensure that allmesh clients bid truthfully
their valuations because it is their best strategy. The achieved
revenue is approximately equal to 75% of the Social Welfare.
Greedy solutions illustrated in Fig. 4(b)–(d) confirm the

trends observed for the network scenario composed of 30WMN
devices. Note how increasing the number of mesh clients
guarantees higher revenues. This is due to the effect of the
competition: Only mesh clients bidding more will be accepted.
Figs. 5 and 6 show respectively the number of winners and the

Jain's Fairness Index of obtained through the band-
width auction implemented by Algorithms 1 and 2 as a function
of the number of mesh clients that participate to the auction for
the bandwidth allocation. It can be observed from Fig. 5 that the
greedy algorithm selects a number of mesh clients very close to
the value obtained using the optimal allocation algorithm (see
the curves identified by labels “30.o” and “30.g”). In particular,
the greedy algorithm leads to a performance gap always lower
than 10%, for instance sizes when both algorithms can be run.
The figure illustrates also the number of winners selected in the
network scenarios composed of 60, 90, and 120 WMN devices.
As expected, the higher the number ofWMN devices, the higher
the available network bandwidth, and the greater the number of
mesh clients satisfied by the allocation algorithm implementing
the auction.
Furthermore, Fig. 6 shows that the greedy scheme computes

a solution with a slightly higher fairness than the optimal ap-
proach. This is due to the different allocation phases imple-
mented by the two algorithms. The greedy scheme selects as
winners the MCs with the highest ratios of , even
though they do not represent the best solution in terms of So-
cial Welfare and Revenue (see Fig. 4). Therefore, the greedy

Fig. 5. Number of winners as a function of the number of mesh clients in sce-
narios with , 60, 90, and 120 WMN devices.

Fig. 6. Comparative evaluation of the fairness (Jain's Fairness Index of
) obtained using the optimal and the greedy algorithms in the network

scenario with WMN devices.

algorithm rules out the MCs with the worst ratios of ,
which would increase the variability of the paid prices, but at the
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Fig. 7. Optimal revenue, (a) front and (b) rear, measured in the real-life network scenario (Google WiFi).

same time would permit to satisfy a higher number of MCs, thus
increasing the overall Revenue earned by theWMN operator, as
it can be observed from Figs. 4 and 5. We underline, however,
that both algorithms compute fair solutions since the Jain's Fair-
ness Index of the ratio is very close to 1. Therefore,
all MCs selected as winners pay almost the same price per band-
width unit.

B. Real-Life WiFi Network
Experimental Methodology: The Google WiFi network is an

operational, large-scale, wireless multihop network architecture
deployed in Mountain View, CA, USA, by Google. In [4], the
authors collected coverage measurements of 168 access points
located in a 12-km area. In particular, the authors measured the
signal strength and the signal-to-noise ratio (SNR) from more
than 75 000 client locations. We use the 168 access point lo-
cations as MAPs, and the 75 000 client positions as candidate
MCs, respectively.
The channel capacity of the wireless link that can be estab-

lished between the access point and each candidate mesh client
is defined according to the measured SNR using the reception
sensitivity thresholds of Atheros-based wireless cards.
In order to evaluate the effect of the demand and bid distri-

butions on the operator's revenue, we solve the auction using
both the optimal and greedy algorithms varying the values of
the requested bandwidth demand and the submitted bid, which
are both drawn from uniform distributions. More specifically,
mesh clients bids are distributed uniformly in the range
monetary units, with , while we con-
sider two different interval sizes for the demand distribution to
simulate preference variability: large and fixed intervals which
correspond to ranges Mb/s and Mb/s, re-
spectively, with .
As in the randomly generated network scenarios, we measure

the Revenue, the number of Winners, and the Jain's Fairness
Index of the ratio of the allocations computed by the
optimal and greedy algorithms. Furthermore, we compute the
average utilization of the access network formed by all access
points. For the sake of clarity, we do not show the Social Welfare
in the following figures since it almost overlaps the Revenue
computed with the optimal algorithm.
We underline that, in this scenario, we assume that the

backhaul network has been designed to satisfy the maximum
bandwidth of the access network in order to compare the
performance of the optimal and greedy algorithms. Even with

this assumption, the computational time that we measured to
solve the problem optimally on a Pentium 4 with 3.0 GHz and
2 GB of RAM was approximately equal to 5 h.
Performance Evaluation: Fig. 7 shows the Revenue obtained

by the optimal algorithm in the Google WiFi network as a func-
tion of the average bid and demand submitted by the mobile
clients. The curves identified with “L.o” and “L.g” represent
the solutions obtained using Algorithms 1 and 2 in network sce-
narios with bandwidth demands drawn from a uniform distribu-
tion with large interval size. On the contrary, the curves “F.o”
and “F.g” show the same performance metrics measured with
uniformly distributed bandwidth demands with fixed interval
size.
For the sake of clarity, in Fig. 7, we did not report the results

measured by the greedy mechanism since they are very close to
the values obtained using the optimal approach. Note, however,
that Algorithm 2 selects a slightly lower number of winners than
Algorithm 1, which in turn leads to a lower average utilization
of the access points, as illustrated in Fig. 8(a) and (b). Indeed,
the interval size of the bandwidth demand has a twofold effect
on the performance of our algorithms.
• On the one hand, the higher the demand variability is, the
higher the operator's revenue, at the detriment of the fair-
ness [see Fig. 8(c)]. Due to the larger interval size, there is
a higher probability of having unbalanced bandwidth de-
mands, which lead to widely distributed ratios of valuation
per channel utilization. The operator can therefore select
those clients with the highest such ratio, which increases
its revenue, but results in a lower overall fairness.

• On the other hand, each decrease of the variability of the
bandwidth demand produces a more fair allocation of the
resources, at the expense of the total revenue earned by the
operator and the utilization of its network, as illustrated
in Fig. 8, since in this case the operator can only satisfy
those clients who are willing to pay the highest price per
bandwidth unit.

As expected, the lower the average demand requested byMCs
is, the higher the revenue of the operator since this latter can sat-
isfy a higher number of bidders with the fixed available capacity
provided by its access points. Furthermore, we can clearly ob-
serve from Fig. 7 that the variation of the total Revenue is not
equally affected by the average demand and the average bid.
More specifically, the revenue gained by the operator benefits
more from a combined decrease of the average demand (the
value) and its variability (the interval size) than an increase of
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Fig. 8. (a) Number of winners, (b) network utilization and (c) Jain's Fairness Index measured in the real-life network scenario (Google WiFi) as a function of the
requested demand. Each point is the average with respect to the bids.

Fig. 9. Cumulative distribution function of the experimental PoA and RRmea-
sured in the real-life network scenario (Google WiFi) with a large interval of
the bandwidth demand distribution.

the average bid offered by MCs. Therefore, the operator should
leverage on policies that favor large marketplaces formed by
several MCs with low values of average demand to reach eco-
nomic efficiency and increase its revenue.
Finally, in order to show the gap of the economic efficiency

of our greedy mechanism with respect to the optimal solution,
we experimentally computed the PoA and the RR in the Google
WiFi network scenario, with bandwidth demands drawn from a
uniform distribution with large interval size (i.e., Mb/s
with ). Indeed, this scenario contains
bids per bandwidth demands that may negatively affect thePoA,
as discussed in Section VI-B.
As illustrated in Fig. 9, the experimental Price of Anarchy we

measured is always lower than 1.05, thus proving the economic
efficiency of our greedy scheme.

VIII. CONCLUSION
In this paper, we proposed two effective mechanisms to al-

locate the available bandwidth of a WMN operator to those
customers who are willing to pay the higher price for satis-
fying their bandwidth demand. We first formulated the alloca-
tion mechanism as a combinatorial auction, which guarantees
that all customers reveal their real valuation of the required
bandwidth. Then, we proposed a greedy algorithm that finds ef-
ficient allocations in polynomial time even for large-scale, real
network scenarios while maintaining the truthfulness property.
We evaluated our solutions in several large-scale network

topologies generated both randomly and based on real-life de-
ployments, like the Google WiFi scenario. Numerical results
show that the greedy algorithm performs very close to the op-
timal combinatorial auction, thus representing an efficient, fair,
and practical alternative for solving the auction of the proposed
bandwidth marketplace.

The analysis performed using real wireless traces suggests
to design market policies that force MC owners to lower their
bandwidth requirements rather than increasing their offers to
maintain the same level of service. In addition to improving
the operator profit, this permits to enhance the overall system
satisfaction and fairness.
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