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On Time-Constrained Data Harvesting in Wireless
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Abstract—In wireless sensor networks, data harvesting using
mobile data ferries has recently emerged as a promising alterna-
tive to the traditional multi-hop communication paradigm. The
use of data ferries can significantly reduce energy consumption at
sensor nodes and increase network lifetime. However, it usually
incurs long data delivery latency as the data ferry needs to travel
through the network to collect data, during which some delay-sen-
sitive data may become obsolete. Therefore, it is important to
optimize the trajectory of the data ferry with data delivery latency
bound for this approach to be effective in practice. To address this
problem, we formally define the time-constrained data harvesting
problem, which seeks an optimal data harvesting path in a network
to collect as much data as possible within a time duration. We
then investigate the formulated data harvesting problem in the
generic -dimensional context, of which the cases of ,
2, 3 are particularly pertinent. We first characterize the perfor-
mance bound given by the optimal data harvesting algorithm and
show that the optimal algorithm significantly outperforms the
random algorithm, especially when network scales. However, we
mathematically prove that finding the optimal data harvesting
path is NP-hard. We therefore devise an approximation algorithm
and mathematically prove the output being a constant-factor
approximation of the optimal solution. Our experimental results
also demonstrate that our approximation algorithm significantly
outperforms the random algorithm in a wide range of network
settings.

Index Terms—Approximation algorithm design, data har-
vesting, trajectory planning, wireless sensor network.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) play an important
role in many applications ranging from environment

monitoring and event detection, to target counting and tracking.

Manuscript received January 30, 2015; revised September 21, 2015 and
November 04, 2015; accepted November 24, 2015; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Yi. The work of L. Chen was
supported by the ANR under Grant Green-Dyspan (ANR-12-IS03). The
work of W. Wang was supported by the NSFC under Grants 61571396 and
61261130585. The work of H. Huang and S. Lin was supported by the NSF
under Grants CNS 1536086, CNS 1463722, and IIS 1460370. A preliminary
version of this paper has been presented at IEEE INFOCOM 2015.
L. Chen is with the Laboratoire de Recherche en Informatique (LRI-CNRS

UMR 8623), Université Paris-Sud, 91405 Orsay, France (e-mail: chen@lri.fr).
W.Wang is with the Department of Information Science and Electronic Engi-

neering, Zhejiang University, Hangzhou 321000, China (e-mail: wangw@zju.
edu.cn).
H. Huang and S. Lin are with the Department of Electrical and Computer

Engineering, Stony Brook University, Stony Brook, NY 11794 USA (e-mail:
huanghua.yh@gmail.com; shan.x.lin@stonybrook.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2504603

In typical applications of WSNs, a major task of spatially dis-
tributed sensors is to report their sensing data to a designated
data collector called the sink. In most WSNs deployed today,
sensors usually have limited energy supply as they are battery-
powered. A critical concern is thus how the sensing data from
individual sensors can be collected to the sink with minimum
energy consumption.
The task of data collection is traditionally accomplished by

multi-hop forwarding, which is known to suffer from high en-
ergy consumption of forwarding nodes, especially those near
the sink. Recently, as an efficient alternative, data harvesting
using mobile devices, also termed as data mules [2] or data fer-
ries [3], has been proposed and implemented in several appli-
cations such as underwater environmental monitoring [4]. The
core idea can be summarized as follows: a data ferry (e.g., robot,
vehicle) travels across the sensor field and harvests data from
sensor nodes while they are within each other's communication
range, and later transfers the harvested data to the sink. The use
of data ferries in data harvesting can significantly reduce energy
consumption at sensor nodes and thus increase network lifetime.
However, as the data ferry can harvest data only when it travels
close to the target node, it usually incurs longer data delivery
latency, during which some delay-sensitive data may become
obsolete. Therefore, optimizing the trajectory of the data ferry
to limit or minimize data delivery latency is a primary concern
for this approach to be effective in practice.
In this paper, we investigate the trajectory optimization

problem in data collection applications for wireless sensor
networks. This problem seeks an optimal data harvesting
path to collect as much data as possible within a time dura-
tion. We call the problem time-constrained data harvesting
problem. Specifically, our problem formulates the situation
where delay-sensitive data needs to be reported to the sink
within certain amount of time before they become obsolete.
To make the analysis theoretically complete and generic, we
investigate the generic -dimensional context, of which the
cases of , 2, 3 are particularly pertinent.
The contributions presented in this paper are naturally artic-

ulated as follows.
Theoretical Performance Bound. We formulate the time-con-

strained data harvesting problem. We analytically characterize
the performance bound of the optimal data harvesting algo-
rithm. Our analysis demonstrates that in a network where nodes
are randomly deployed with fixed density and the data ferry
moves at constant speed, the quantity of harvested data does
not scale with the number of nodes in the network under the
random data harvesting algorithm, while this quantity scales
logarithmically for the optimal algorithm design, indicating a
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significant performance gain when the network scales. Even
though the trend is logarithmic, the gap can still be significant in
large networks. In other words, a data harvesting algorithm not
carefully chosen, such as randomly choosing a data harvesting
path, can be very inefficient.
Approximation Algorithm Design. We give a formal proof

on the NP-hardness of the time-constrained data harvesting
problem. Motivated by the NP-hardness of the problem, we
focus on the design of constant-factor approximation algo-
rithms. Given the complexity of the problem, we first study
a specific scenario with non-overlapping neighborhoods, i.e.,
the network is sufficiently sparse such that the data ferry
cannot harvest data from multiple sensors without changing its
location. We then extend the analysis to the generic case with
overlapping neighborhoods, i.e., the network is sufficiently
dense such that the data ferry can harvesting data from multiple
sensors without changing location. As the key technicality in
our design, we develop a methodology that relates the per-
formance of topological paths to geometrical paths, based on
which we mathematically prove the output of our algorithm is
a constant-factor approximation of the optimal solution.
In our analysis, despite our focus on the data harvesting

problem, the generic problem formulation of our work makes
the analysis methodology and the obtained results broadly
applicable to several engineering domains ranging from mobile
charger scheduling, target monitoring to security patrolling,
with a common generic objective of designing an optimal path
such that a time-constraint utility function depending on the
number of encountered targets is maximized.
The rest of the paper is organized as follows. We formu-

late the time-constraint data harvesting problem in Section III.
In Section IV, we derive performance of the optimal data har-
vesting algorithm and the random algorithm, laying the theo-
retical foundation of the problem. In Section V, we first es-
tablish the NP-hardness of the time-constraint data harvesting
problem, and then design a constant-factor approximation algo-
rithm. Section VI analyzes the one-dimension case where exact
solution can be found. Section VII presents simulation analysis
of the proposed algorithm. Section VIII concludes the paper.

II. RELATED WORK

The problem we address and the methodology we employ are
related to the following research fields.

A. Data Ferry Assisted Data Harvesting

There is a large body of existing work on data ferry assisted
data harvesting [5]–[9] (cf. [10] for a comprehensive survey).
The problem we address is the optimization of data harvesting
trajectory of the data ferry, which is a hard problem in gen-
eral, since we are constrained in both space (communication
range between the data ferry and sensors) and time domain
(limiting data harvesting latency). Existing solutions contour
this difficulty by either using simple mobility and communica-
tion models [5]–[9] or assuming that the trajectory is already
given [5].
The authors in [3], [11] address a similar problem of de-

signing data harvesting path for data ferries to minimize the data

harvesting latency under the constraint that all sensors are vis-
ited. The algorithms they propose are based on the well-known
travel salesman problem (TSP) [12] and its variant TSP with
neighbors (TSPN) [13]. However, our problem is different be-
cause TSP requires the path to pass all sensors while we seek
the most profitable path to harvest maximum data given the
time constraint. Our problem formulation complements the TSP
formulation and is particularly pertinent when the network is
large and it is impossible for the data ferry to traverse every
node. Technically, as detailed in the main part of the paper, our
problem requires an original study that cannot draw from ex-
isting results.

B. Mobile Charger Scheduling

Another similar problem is the mobile agent scheduling
problem where a mobile charger needs to travel within the
charging range of each sensor node to recharge them under
the constraint of the battery life of sensor nodes, which is
similar to the time constraint in our data harvesting problem
(cf. [14]–[16] and references therein). However, they rely
on additional assumptions or simplifications to make the
problem tractable. For example, the authors of [15] find out
a near-optimum traveling path to recharge all sensor nodes
using linear programming, assuming the traveling speed being
infinite, and then remove this assumption and derive a bound of
performance degradation. However, their algorithm implicitly
assumes the travelling is fast enough. In our work, we remove
these assumptions and analytically establish the performance
properties of the proposed data harvesting algorithm.

C. Related Theoretical Problems

From a theoretical point of view, the problem we address
is related to several fundamental problems in theoretical com-
puter science, particularly the orienteering problem [17] and
the weight-constrained minimum spanning tree problem [18].
In the orienteering problem, each node of a given graph has
certain quantity of reward. The problem is to find a path that
maximizes the reward collected, subject to a constraint on the
path length. In the weight-constrained minimum spanning tree
problem, each edge has a cost and weight. The problem is
to find a spanning tree with minimum total cost subject to a
upper-bound on the total weight. Both problems are NP-hard
and have constant-factor approximation algorithms. However,
these approximation algorithms cannot be directly applied in
our problem as they are focused on topological paths.

III. TIME-CONSTRAINED DATA HARVESTING PROBLEM

A. Network Model

We consider a sensor network composed of nodes, denoted
by the set , deployed in an -dimensional
Euclidean cube .We are interested in the asymptotic sce-
nario where both and are large with the node density

being a constant. We note that our motivation of con-
sidering a generic -dimensional problem is to make our anal-
ysis mathematically complete and generically applicable. For
the particular problem of time-constrained data harvesting in
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TABLE I
NOTATIONS

Fig. 1. An example illustrating notations and terminologies.

WSNs, the cases with , 2, and 3 are relevant. Table I lists
the major notations used in the paper.
In the considered sensor network, each node has unit data

message1 to be harvested by a data ferry, denoted by , moving
at a constant speed. To harvest data generated by , needs to
move into the communication range of , which is modeled as
an -dimensional ball centered at with radius . We call

the neighborhood of node . By slightly abusing notations,
we also use to denote the border of the ball which is an
-dimensional sphere. We use to denote the possible path

set for . For a path , we denote the Euclidean
length of . We say that a path covers a point if there
exists a point on within distance to . In other words,
if moves along , it can harvest the data generated by all
the nodes that it covers. Denote the number of nodes
covers. The following example further illustrates the notations
and terminologies in our study.
Example 1: Consider the two-dimensional network illus-

trated in Fig. 1 composed of three sensor nodes
with the circles around them indicating their neighborhoods

. The path covers both and , but not .
When moving along can harvest data generated at both
and . We thus have . is the Euclidean length
of .

B. Problem Formulation

We consider the data harvesting problem faced by in which
it seeks an optimal data harvesting path to harvest as much data

1The case where nodes generate multiple data messages can be tackled by
devising the node generating unit data messages to virtual nodes at the same
position, each generating unit data message.

as possible within a time duration . The problem we address
models the situation where delay-sensitive data should be re-
ported to the sink within certain time in order to be further an-
alyzed. To make the notation concise, we let move at unit
speed and thus is the maximum path length can traverse
before deposing the harvested data. The results obtained can
be easily scaled to arbitrary speed by scaling the time duration
. Throughout our analysis, we are interested in the non-trivial

case where and , i.e., the maximum path
length is much larger than the communication range, while the
space covered by a path of length is much smaller than the
network space. The time-constrained data harvesting problem
is formalized as follows.
Problem 1 (Time-Constrained Data Harvesting Problem):

The time-constrained data harvesting problem is as follows:

subject to

That is, seeks the optimal path of Euclidean length
, along which it can harvest the maximum quantity

of data. When there are more than one maximum, the optimal
path is the one with minimum Euclidean length.
We conclude this section by stating the following properties

of that will be useful in subsequent proofs and analysis.
Lemma 1(Properties of ): Let denote the optimal

solution of Problem 1 with parameter , the following
properties hold:
• Monotonicity: ;
• Scalability:

.
Proof: The monotonicity follows straightforwardly from

the definition of . We now prove the scalability of . Let
denote the integer such that . Divide into

non-overlapping parts of length each, it follows
from the pigeonhole principle that there exists at least one part,
denoted as , which covers at least nodes.
It follows from and the monotonicity property
that

which completes the proof.
It is worth noting that the time-constrained data harvesting

problem has a number of important variants. In some appli-
cations, we require that the data harvesting path to be a cycle
or have predefined starting and end points; it is sometimes re-
quired to differentiate sensor nodes by giving weights to them
(e.g., giving higher weights to sensors at key positions) and
seek the path maximizing the weighted sum of harvested data;
furthermore, we may dispose multiple data ferries to for data
harvesting. Many of these variants can be addressed using the
framework established in this paper to design and optimize data
harvesting path.
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IV. THEORETICAL PERFORMANCE BOUND: OPTIMAL AND
RANDOM DATA HARVESTING ALGORITHMS

In this section, we establish the theoretical foundation of the
time-constrained data harvesting problem by quantifying the
performance of the optimal data harvesting algorithm and a
natural algorithm where the data harvesting path is randomly
chosen. In our analysis, we assume that nodes are randomly de-
ployed in .

A. Random Data Harvesting Algorithm
A simple data harvesting algorithm is to randomly choose a

data harvesting path of length . We call this algorithm random
data harvesting algorithm, termed concisely as random algo-
rithm. Our motivation of starting with the random algorithm is
two-fold:
• It is a natural strategy and easy to implement;
• It provides a reference for performance comparison with
more sophisticated algorithms as well as the optimal one.

The following theorem states the main result.
Theorem 1 (Performance of Random Data Harvesting Algo-

rithm): Consider the random data harvesting algorithm where
randomly chooses a path of length , it holds that
• ;
• , when ,
that is, .
Proof: A point is covered by a path if the minimum

distance between any point on and is at most . Recall
that , the volume covered by a path can be bounded in
order-of-magnitude by , where denotes
the volume of a ball of radius in the -dimensional
space. In particular, we have , , .
Generically, for given . We can then bound the
number of nodes covered by a random path as

To prove the second part of the theorem, by regarding
as a random variable and letting and by ap-
plying Markov's inequality , we have

when

which quantifies the sharpness of .
With Theorem 1, we have the following result:
• In average, the expected harvested data for the random al-
gorithm does not scale with respect to either the population
size of the network or its geometrical size ;

• With high probability, we cannot expect better outcome
than .

B. Optimal Data Harvesting Algorithm
Having derived the performance of the random algorithm,

we proceed to investigate the performance of the optimal data
harvesting algorithm, as stated in Theorem 2.
Theorem 2 (Performance of Optimum Algorithm): Let

denote the path of the optimal data harvesting algorithm, it holds
that
• ;
• , when .

Proof: Please refer to the Appendix A.
The intuition behind Theorem 2 and the proof is that by the

bins and balls problem, in average we can find a region in the
network such that it contains at least nodes
and all the nodes in the region can be covered by a data har-
vesting path of length . We have also shown that this bound is
tight.

C. Discussion
Comparing the performance of optimal and random data

harvesting algorithms, we can observe that when the network
scales, especially when , the optimal algorithm signif-
icantly outperforms the random one. Even though the trend is
logarithmic not polynomial or exponential, the gap can still be
significant in large networks. In other words, a data harvesting
algorithm not carefully chosen, such as randomly choosing
a harvesting path, can be very inefficient. The motivates our
second part of work on the following fundamental question:
How to design efficient data harvesting algorithms that ap-

proaches the solution of Problem 1?
Remark: Theorem 2 establishes the performance of the op-

timal algorithm. However, it does not specify how the optimal
path can be constructed given a network instance. Choosing the
path as indicated in the first step in the proof of Theorem 2 only
performs well in the average sense when a large number of in-
stances are executed, but it cannot give the optimal path for a
given network instance. In fact, as we will show in the next sec-
tion by Theorem 3, the problem of constructing the optimal path
as formulated in Problem 1 is NP-hard.

V. APPROXIMATION ALGORITHM DESIGN

In this section, we first show that Problem 1 is NP-hard. We
then design constant-factor approximation data harvesting algo-
rithms with polynomial-time complexity.
Theorem 3 (NP-Hardness of Time-Constrained Data Har-

vesting Problem): Problem 1 is NP-hard.
Proof: Please refer to the Appendix C.

A. Non-Overlapping Neighborhood Case
Given the complexity of the time-constrained data harvesting

problem,we first investigate a specific scenario where the neigh-
borhoods of any two nodes are non-overlapped (i.e.,

) and develop an approximation algorithm for
Problem 1. We start by the following definition of topological
path.
Definition 1 (Topological Path): A path is called a topo-

logical path in a graph if is composed of uniquely the edges
in the graph.
Generically, we call a path geometrical path, denoted as

for presentation clarity, to emphasize that is not necessarily
a topological path as may contain curves and may start and
end at any point. Of course, a topological path is also a geomet-
rical one, i.e., let and denote the sets of geometrical and
topological paths, it holds that . Fig. 2 illustrates the
notions of topological and geometrical paths.
The key element towards designing approximation algo-

rithms for Problem 1 is to establish the relationship between
geometrical and topological paths in terms of path length and
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Fig. 2. A topological path and a geometrical path , both covering 3 nodes.

number of covered nodes, the two metrics on which we are
focused. This relationship is established in two steps:
• Step 1: We show that any geometrical path can be ap-
proximated by a topological path such that

• Step 2: We show that any topological path can be ap-
proximated by a geometrical path via a geometrization
procedure that we develop such that

We start by the first step to approximate a geometrical path
by a topological path . By slightly abusing the notation,

for a given path , we reuse to denote an ordered set of
nodes covered by . Using this notation, a topological path
can be uniquely noted by . Taking the topological path

in Fig. 2 as an example, can be denoted by .
Given an ordered set of nodes , for any
geometrical path with , we construct a topo-
logical path . It holds that and
covers all nodes in . Let the geometrical path denote the
geometrical path of minimum length among those covering ,
it holds that . This approximation result is
mathematically formalized in Lemma 2.
Lemma 2: Given an ordered set of nodes ,
, let , it holds that . Particu-

larly, let , it holds that
.

Proof: To streamline our presentation, the proof, which is
quite involved, is detailed in the Appendix D.
We then proceed to the second step to approximate a topo-

logical path by a geometrical path by introducing ge-
ometrization, formally defined in the following.
Definition 2 (Geometrization): Given a topological path ,

the geometrization procedure finds a geometrical path that
approximates . By approximation we require that

and

Algo. 1 details the proposed geometrization procedure,
whose core part is further illustrated in Fig. 3. It is straight-
forward to see that . One technical point
worth commenting is how to find on such that

is minimized (line 6). can be effi-
ciently found by using the following technique: consider the
outside border of as a mirror; let a light beam be emitted
from and then be reflected by to reach ; it follows
from the theory of optics that light always travels using the

Fig. 3. Illustration of the core part of Algo. 1.

shortest path; hence corresponds to the reflection point
of the light beam on and can be found geometrically by
equalizing the angle of incident and the angle of reflection.

Algorithm 1 Geometrization

Input: Topological path passing nodes in
Output: Geometrized path
1: Denote the intersection point of and by ;
2: for to do
3: if covers then
4: Denote the first intersection point between

and by ; // See Fig. 3 (left);
5: else
6: Find a point on such that

is minimized; // See Fig. 3 (right);
7: end if
8: end for
9: Denote the intersection point of and

by ;
10: Return ;

It is worth mentioning that the for loop in Algo. 1 can
be repeated so as to further improve geometrization effec-
tiveness (i.e., decrease ). To make this clearer, let

denote the output
of Algo. 1 at iteration , for iteration , it suffices to set

by letting in the
algorithm. We observe via simulation that that the improvement
is not significant or even negligible when Algo. 1 is executed
more than a handful of times.
After establishing the relationship between geometrical and

topological paths, we are now ready to present the global algo-
rithm for Problem 1, as detailed in Algo. 2.

Algorithm 2 Approximation algorithm solving Problem 1:
non-overlapping neighborhood case

Input: Coordinates of nodes in
Output: : a constant factor approximation of
1: Construct a complete graph with node set ; set the

length of the edge between and to be ;
2: For each node pair , find the topological path

passing the maximum number of nodes in
whose geometrized path satisfies
using Algo. 1 and the algorithm of max-prize path in [17]
by setting the prize for each node to be 1;

3: Return ;
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Fig. 4. An example of MIS composed of nodes and .

The core idea of Algo. 2 is as follows: for each node
pair, we find the topological path passing the
maximum number of nodes in whose geometrized
path satisfies ; we then return

. The two building
blocks in Algo. 2 is the geometrization algorithm (Algo. 1)
and the algorithm of max-prize path in [17]. Given a graph in
which each node has a certain amount of prize, the max-prize
algorithm finds in polynomial time a path collecting the max-
imum quantity of prize whose length is bounded by a constant,
given as an input parameter. The following theorem formally
establishes the performance of Algo. 2.
Theorem 4 (Performance of Algo. 2): Algo. 2 returns

within polynomial time. It holds that ,
where denotes the optimal data harvesting path under time
constraint .

Proof: The polynomial-time complexity of Algo. 2 follows
from the polynomial-time complexity of Algo. 1 and the algo-
rithm of max-prize path.
The second part of the theorem can be

proved using Lemma 2 and Lemma 1. Specifically, it follows
from Lemma 2 that for any , there exists a topological
path such that

where is a constant factor. Now let , apply
Lemma 1 by setting , we have and

On the other hand, it follows from the geometrization proce-
dure and Algo. 2 that

The theorem is thus proved.

B. Overlapping Neighborhood Case
In this subsection, we extend our efforts to study the generic

case with overlapping neighborhoods.
We first construct a graph whose node set is and there

is an edge between and if .
We then construct a maximal independent set (MIS)2 of

using a coloring algorithm similar as presented in [11], [20], de-
tailed in Algo. 3 for completeness. Fig. 4 illustrates an example
of MIS composed of nodes and .

2An independent set (IS) of an undirected graph is a subset of nodes such
that no two nodes in are neighbors. An IS is maximal if no node can be added
to without violating IS. A maximal IS, or MIS, can be found in polynomial-
time. Note that a related concept, a maximum IS (called MaxIS), is one IS of
maximum cardinality. Finding MaxIS, however, is NP-hard.

Algorithm 3 MIS Construction of

Input: Graph
Output: MIS
1: Initialization: Set ; Color all white;
2: repeat
3: Color a white ball black and add into ;
4: Color every white ball gray if is 's neighbor;
5: until there is no white ball
6: Return ;

We then define backbone topological paths, which can be re-
garded as topological paths using nodes in the MIS .
Definition 3 (Backbone Topological Path): A path is

called a backbone topological path, or backbone path for short,
in a graph if is composed of uniquely the edges whose
endpoints are in the MIS of the graph except the source and the
destination nodes.
As in the case of non-overlapping neighborhood, we call a

path geometrical path, denoted as , to emphasize that is
not necessarily a backbone path. Of course, a backbone path is
also a topological path, and a geometrical one: i.e., let ,
and denote the sets of geometrical, topological and backbone
paths, it holds that . As an example, the path
is Fig. 4 is a backbone path.
We apply the same analysis and design methodology in the

non-overlapping neighborhood case and adapt it in the overlap-
ping neighborhood case. A point is said to be touched by
path if the minimum distance between any point of and
is larger than but smaller or equal to . The key element of
designing approximation algorithm for Problem 1 with overlap-
ping neighborhoods is to establish the relationship among geo-
metrical, backbone, and geometrized backbone paths in terms of
path length and number of touched and covered nodes. Specifi-
cally, we establish the relationship two steps:
• Step 1: We show that any geometrical path can be ap-
proximated by a backbone path such that

and covered by , is either covered or
touched by ;

• Step 2: We show that any geometrical path can be ap-
proximated by another geometrical path geometrized
from a backbone path via a backbone geometrization
procedure such that

We start with the first step by showing the following lemma.
The proof uses similar reasoning technique as the proof of
Lemma 2.
Lemma 3: Given any geometrical path , there exists a

backbone path such that and cov-
ered by , is either covered or touched by . Particu-
larly, let , it holds that

.
Proof: The lemma can be proved using similar reasoning

technique in the proof of Lemma 2. We thus give the sketch of
the proof. It follows from the definition of MIS that there exists
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a subset of , denoted as , such that covered by , is
either covered or covered by at least one nodes in . To prove
the lemma and bound the ratio , it suffices to bound
the length of the minimum-length backbone path passing by all
nodes in . Using the same reasoning technique in the proof of
Lemma 2, we can show that the ratio is maximized
when is packed with nearly overlapping nodes in .
We then proceed to approximate a backbone path by a

geometrical path by introducing backbone geometrization,
formally defined in the following.
Definition 4 (Backbone Geometrization): Given a backbone

path , the backbone geometrization procedure finds a geo-
metrical path that approximates . By approximation we
require that , and .
In [11], the authors develop a polynomial-time backbone ge-

ometrization algorithm, which will be used in our design.
The following lemma approximates a geometrical path by an-

other geometrical path geometrized from a backbone path.
Lemma 4: Given any geometrical path , there exists a path
geometrized from a backbone path such that

Proof: The lemma follows straightforwardly from Lemma
3 and the backbone geometrization algorithm.
After establishing the relationship among geometrical, back-

bone and geometrized backbone paths, we now present the de-
sign of the global approximation algorithm for Problem 1 for
the overlapping neighborhood case, as detailed in Algo. 4.

Algorithm 4 Approximation algorithm solving Problem 1:
overlapping neighborhood case

Input: Coordinates of nodes in
Output: : a constant factor approximation of
1: Construct a graph whose node set is and there is an

edge between and if ;
2: Run Algo. 3 on to construct an MIS ;
3: Construct a complete graph with node set ; set the

length of the edge between and to be ;
4: For each node pair , with the MIS constructed in

2, find the backbone path passing the maximum
number of nodes in whose geometrized path
satisfies using the algorithm in [11] and
the algorithm of max-prize path in [17] by setting the
prize for each node to be the number of nodes covered
or touched by ;

5: Return ;

The core idea of Algo. 4 is as follows: for each node
pair , we find the bcckbone path passing
the maximum number of nodes in whose geometrized
path satisfies ; we then return

. The two building
blocks in Algo. 2 is the backbone geometrization algorithm [11]
and the algorithm of max-prize path [17]. When running the
algorithm of max-prize path, we set the prize of each node
to be the number of nodes covered or touched by , which

allows us to achieve constant-factor approximation (as detailed
in the proof of Theorem 5). The following theorem establishes
the performance of Algo. 4.
Theorem 5 (Performance of Algo. 4): Algo. 4 returns

within polynomial time. It holds that ,
where denotes the optimal data harvesting path.

Proof: The polynomial-time complexity of Algo. 2 fol-
lowing from the polynomial-time complexity of the geometriza-
tion procedure [11] and the algorithm of max-prize path. We
now prove second part of the theorem .
Given a path geometrized from a backbone path , we

denote the total collected prize along by and set
. It can be noted that . It then

follows from Algo. 4 and Lemma 4 that .
In the calculation of the max-prize in Algo. 4 (Step 4), a node

may be counted multiple times in the final prize of the path. This
is because a node can be covered by at most one node from the
MIS but can be touched by multiple nodes from . We next
upper-bound the number of times a node is counted. To that end,
we note that a node is counted more then once in the prize of a
path if and only if it is not covered by any node in and it is
touched bymultiple nodes in . Specifically, consider a node ,
let denote the set of nodes such that is not covered by any
node in and is touched by all nodes in . Let . To
derive an upper-bound of , we note the following properties:
• Any two nodes in do not have overlapping neigh-
borhoods, i.e., ;

• For any node , it holds that .
Recall the notation that denote the neighborhood of , i.e.,
the ball of radius centered at . It follows from the above prop-
erties that all nodes in are within to . Hence the
total volume of the balls of radius must be strictly smaller
than the volume of the ball of radius centered at . Math-
ematically, recall that the volume of an -dimensional ball of
radius is with , we have the fol-
lowing inequality:

We thus have .
We have already proved that . It then

holds that . On the other hand, by the def-
inition of , we have . It then holds that

, which completes the proof.
The time complexity of Algo. 2 and Algo. 4 is fol-

lowing that the complexity of the max-prize path is . The
approximation ratio can be derived from the approximation ratio
of the prize-collecting problem (approximately 2) and the ge-
ometrization in the non-overlapping case (2) and the backbone
geometrization in the overlapping case for the al-
gorithm in [11]). The overall approximation ratio is thus 4 and

in the non-overlapping and overlapping cases.

VI. THE ONE-DIMENSIONAL CASE
For the one-dimensional (1-D) case, where the nodes are lo-

cated within the interval , we can explicitly derive the op-
timal data harvesting path . For any realization of the lo-
cations of the nodes in the interval , we label the nodes
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from left to right to be . We denote the coordi-
nate of node as . Clearly it holds that

. For the 1-D case, without loss
of generality, we assume that a path follows the direction from
left to right. We can then uniquely denote a path of length
with starting point by . The problem of finding the path
covering the maximum number of nodes can be formulated as:

where is the indicator function defined as follows:
,

otherwise.
Despite the NP-hardness of the data harvesting problem in its

generic form, it turns out that it can be solved exactly in poly-
nomial-time for the 1-D case by the simple searching algorithm
illustrated in Algo. 5. The core idea is to calculate the number
of covered nodes for paths starting from and then choose
the one that covers the maximum number of nodes. Theorem 6
formally establishes the optimality of computed by Algo. 5.
Theorem 6: Algo. 5 returns the optimal data harvesting path.

Mathematically, it holds that

Proof: We prove the theorem by distinguishing the fol-
lowing two cases:
• Case 1: . In this case, we have two subcases:
— Subcase 1.1 . In this subcase,

cannot cover any node, i.e., .
— Subcase 1.2: . In this subcase,

noticing that there is no node in , we have

• Case 1: . In this case, we also have two subcases:
— Subcase 2.1: . In this subcase, cannot

cover any node, i.e., .
— Subcase 2.2: . In this subcase,

we can find such that
. Noticing that there is no node in ,

we have

In both cases, we have , which completes the
proof on the optimality of Algo. 5.

Algorithm 5 Solving Problem 1 for 1-D case

Input: Coordinates of nodes
Output: Optimal data harvesting path
1: for to do
2: ;
3: end for
4:
5: ;
6: Return ;

VII. NUMERICAL ANALYSIS

In this section, we conduct numerical analysis to evaluate the
performance of the our constant-factor approximation algorithm
of the time-constrained data harvesting problem. We evaluate
the performance of our algorithm with respect to the following
two algorithms:
• The random algorithm where the data harvesting path is
randomly chosen;

• The greedy algorithm where starts at some random loca-
tion and then repeatedly goes to the nearest disk until the
total length reach .

Specifically, we set up a simulation area of an Euclidean cube
for (2-D case) and 3 (3-D case) and randomly

deploy a number of nodes in the cube, where varies from 200
to 1000. The time constraint is set to 100. We vary the com-
munication range to study various representative scenarios. By
varying and , we can simulate both a sparsely deployed net-
work where the neighborhoods of nodes are largely non-over-
lapping (small and ) and a densely deployed network where
the neighborhoods of nodes are largely overlapping (large and
). For each set of chosen parameters, we run a number of in-
dependent simulations where the nodes' positions are randomly
chosen and the required number of simulation runs is calculated
using “independent replications” [21].
We trace the following metric to evaluate the performance of

our algorithm compared to the random algorithm:

The value of characterizes the performance gain of our al-
gorithm over the random one. We are particularly interested in
tracing the following cases:
• Worst-case performance gain: Under given parameters

, we study the worst-case performance gain among the
simulation runs, i.e., the minimum value of , denoted
as . This result gives the lower-bound of the perfor-
mance gain our algorithm can achieve over the random
one;

• Best-case performance gain: Under given parameters ,
we study the best-case performance gain among the sim-
ulation runs, i.e., the maximum value of , denoted as

. This result gives the upper-bound of the perfor-
mance gain our algorithm can achieve;

• Average performance gain: Under given parameters ,
we study the average performance gain among the simu-
lation runs, i.e., the average value of , denoted as .
This result gives the average of the performance gain of
our algorithm.

Similarly, we define the same metric over the greedy al-
gorithm to evaluate the performance of our algorithm compared
to the random algorithm.
The simulation results are illustrated in Fig. 5 and Fig. 6. In

Fig. 5, we fix and trace and as a function of by
varying from 2 to 10. In Fig. 5, we fix and trace and

as a function of by varying from 200 to 1000. Based on
the simulation results, we make the following observations.
Compared to the random and the greedy algorithms, our al-

gorithm achieves significant performance gain. Particularly, in
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Fig. 5. Maximum, average, and minimum performance gain of our algorithm over the random algorithm as functions of .

Fig. 6. Maximum, average, and minimum performance gain of our algorithm over the random algorithm as functions of .

the 2-D case, our algorithm can secure a performance gain of
nearly 5 times better than the random algorithm and 3 times
better than the greedy one in the simulated scenarios. In the ex-
treme case, it performances 50 times better than the random al-
gorithm and nearly 20 times better then the greedy one. The per-
formance of our algorithm is even better in the 3-D case. The re-
sults also demonstrate our theoretical finding in Section IV that
a data harvesting algorithm not carefully chosen, such as ran-
domly choosing a data harvesting path, may lead to significant
performance loss.
When the system scales, the performance gap between our

algorithm and the random one increases, which again is in ac-
cordance of our theoretical analysis in Section IV. When the
communication range increases, the the performance gap also
increases. This can be explained by the fact that our algorithm
carefully chooses the data harvesting path so as to cover as
many nodes as possible given the time constraint. In contrast,
the random algorithm cannot fully take the advantage brought
by larger with a randomly chosen path.

VIII. CONCLUSION AND PERSPECTIVES
In this paper, we have studied the problem of time-con-

strained data harvesting problem in which a data ferry seeks
an optimal data collection path to collect as much data as
possible within a time duration. This problem models the
situation where time-sensitive data should be reported to the
sink within certain time before they become obsolete. We have
first characterized the performance bound given by the optimal
data harvesting algorithm and shown that the optimal algorithm
significantly outperforms the random algorithm, especially
when the network scales. Motivated by the theoretical analysis
and proving the NP-hardness of the time-constrained data
harvesting problem, we have then devised an approximation

algorithm of the problem and mathematically proved its output
being a constant-factor approximation of the optimal solution.
As a small step towards characterizing efficient data har-

vesting algorithms, we expect that our work will stimulate
further investigations in this field. The first interesting research
direction is to use the methodology in the paper to study more
sophisticated variants of the data harvesting problem, e.g.,
the case of multiple data ferries with heterogeneous moving
speed. The second consists of investigating the data harvesting
problem where the data ferry does not have full knowledge of
the network topology and should make its decision based on
only local information and interactions.

APPENDIX A
PROOF OF THEOREM 2

We prove the theorem in two steps.
Step 1: Lower-Bound of : we show that

, when . Our
proof uses the well-known results in the bins and balls problem
stated in the following lemma for completeness.
Lemma 5 (Maximum Load in Bins and Balls Problem [19]):

When throwing balls into bins, the max-loaded bin has
balls with prob. at least when

.
We first construct “bins” in the following lemma.
Lemma 6: A path of length can cover all nodes

in an -dimensional cube having sides of length
, asymptotically

.
Armed with Lemma 6, we divide the network space

into non-overlapping cubes, each of sides of length
.
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Apply Lemma 5 by regarding nodes as balls, the path
covering all nodes in the max-loaded bin covers at least

nodes with probability . Hence
for the optimal path , it holds that

when

which completes Step 1 of the proof.
Step 2: Upper-Bound of : we show that

, when .
For a path of length in the -dimensional space, the

maximum space it can cover has the volume .
By dividing the network space into
non-overlapping “bins”, each of volume , we
can apply Lemma 5 to show that the max-loaded bin has

nodes with probability at least ,
i.e., the maximum number of nodes covered by a path of length
is upper-bounded by with probability at

least , mathematically:

when

This completes the second step of the proof.
Combining the two steps proves the sharpness result:

when

To prove , we proceed as
below:
• Apply the result of Step 1 and notice the fact that

, we have

• Apply the result of Step 2 and notice the fact that
, we have

Combining above analysis yields
.

APPENDIX B
PROOF OF LEMMA 6

Consider the following -dimensional lattice with coor-
dinates where and
with . We first prove that any point in the
-dimensional cube is within distance from at least

one point from the lattice. To this end, for any point
in ( , ),

let denote the closest non-negative integer to , it can be no-
ticed that
• ,
• , .

The distance between and can be bounded as:

Hence, a path passing all nodes of can cover all points in
.

We next construct the following sub-path that passes all
nodes where to are fixed.
• Start from and move straightly towards

;
• Move straightly from to

;
• Move straightly from to

;
• Repeat the above process until reaching

or .
By concatenating the sub-path from

to with a sub-path linking
and for each

, we can construct a path that covers all nodes
in . The total length of the zigzag path can be
computed after some elementary geometrical operations as

When , it can be calculated that with ,
can cover all nodes in an -dimensional cube with sides

of length , asymptotically
.

APPENDIX C
PROOF OF THEOREM 3

Consider the following problem which has been proved to be
NP-hard in [22].
Problem 2: Find a tour in the travelling salesman problem

(TSP) with an approximation factor better than 220/219.
To prove the NP-hardness of Problem 1, we prove that

Problem 2 can be reduced to Problem 1 in polynomial time,
i.e., .
To that end, given any graph on which we

need to solve the TSP, we instantiate Problem 1 by choosing
such that , for example, . We consider
the non-trivial case where . Before showing how to
reduce Problem 2 to Problem 1 in polynomial time, we prove
the following property of Problem 1.
Lemma 7: Denote the solution of Problem 1 on

with parameter and ; let
and , it holds that

and

Proof: For the first part, it is easy to see that
when . To show
, it suffices to notice that a spanning

tree of can be converted into a path using the famous
1.5-approximation algorithm for the TSP in [23]. Since
the length of any spanning tree of is upper bounded
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Fig. 7. Illustration of notations in Step 1 of the proof of Lemma 9: left: case 1; middle and right: case 2.

by , we are sure to be able to find a path passing all
nodes with the maximum length . In other words,

.
Now we construct the following algorithm. The algorithm it-

erates on a variable from to by increasing
by from one iteration to the next, where is a small constant

chosen such that . In each iteration , it solves
Problem 1 with the constraint , whose
solution is denoted by . The algorithm halts at the first itera-
tion where while and
outputs . It follows from Lemma 7 and Lemma 1 (Mono-
tonicity) that exists.
It then follows that is a TSP tour on with an approx-

imation factor which is upper bounded by 220/219
as and . Hence is a solution of
Problem 2.
The above analysis shows that Problem 2 can be reduced to

Problem 1 in polynomial time. It then follows from the NP-hard-
ness of Problem 2 that Problem 1 is NP-hard.

APPENDIX D
PROOF OF LEMMA 2

We first investigate the structure of the minimum length path
.
Lemma 8: The minimum length path is composed of an

ordered set of line segments
where is located on the border of .

Proof: It is straightforward to notice that must contain
at least one point on the border of . Let and

denote the points on located on and where
. To prove the lemma, it suffices to notice that

the distance between and is minimized when
is a line and hence must follow the segment .
Lemma 9: The ratio achieves its maximum

when for .
Proof: We organize the proof in two steps.

Step 1: we show that when the ratio achieves
its maximum, intersects with at only
one point. We can check that this holds for and . Re-
call Lemma 8 that is composed of a set of line segments

, we prove the case where by distin-
guishing two cases:
• Case 1: , i.e., is not on the line
segment . Assume, by contradiction, that in-
tersects with at more than one point. Recall Lemma 8, it
holds that consists of the line segment , which

intersects at two distinct points, one being , the
other denoted as (cf. Fig. 7). Geometrically, we have

. Hence,
by replacing and in by and

, respectively, we can decrease the length of ,
which contradicts the fact that has minimum length.

• Case 2: , i.e., intersects .
Let denote the point such that , as il-
lustrated in Fig. 7. We now prove that under the constraint
that intersects , is maxi-
mized when , i.e., intersects at only one
point. Let and denote the points such that
and (cf. Fig. 7 right). It
suffices to show that for any point on the
line segment , at least one of the following inequal-
ities hold

To prove this, assume, without loss of generality, that is
located in , it holds that

Hence, with the same intersecting , we can move
to to increase the length of , and thus the ratio

. This completes our proof of Case 2 and also
Step 1.

Step 2: we show that achieves its maximum
when for . We have just proved
that intersects at only one point . Re-
call Lemma 8, we decompose as .
We now consider the ratio for any given .
Assume that , where denotes the the
shortest distance between any two points on and . Re-
ferring to the notations in Fig. 8, we have

.
Geometrically, we can show that when inter-

sects , as shown in Fig. 8 by , it holds that
. Hence achieves its

maximum when does not intersect , which is
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Fig. 8. Illustration of notations in Step 2 of the proof of Lemma 9.

our focus. Without loss of generality, assume that both and
are below , i.e., . Trigonometrically,

we can compute as

We now prove that is maximized at . In
that regard, let , we need to show the following
trigonometrical inequality:

(1)

By performing some algebraic operations, (1) can be simplified
to the following inequality:

(2)

To prove (2), noticing that in the non-overlapping neigh-
borhood case, it suffices to prove the following inequality

which can be proved as follows noticing that :

It then holds that achieves its maximum when
for , which completes the proof

of Step 2 and the lemma.
Armed with the above lemmas, especially Lemma 9, we next

show that . Noticing Lemma 9, we only need
to consider the case where for .
To compute , we have

We next compute a lower-bound of . We first prove the
following lemma.

Fig. 9. is maximized when the neighborhoods of nodes are
“packed” one to the other: left (right): the number of nodes are even (odd).

Lemma 10: For any node on . Denote
, The following inequality holds:

Lemma 10 states that for any node on , the maximum
distance between and any other nodewithin the neighborhood
of where is within hops to is lower-bounded by .

Proof: To prove the statement, assume, by contradiction,
that

(3)

Consider the balls , it follows from (3)
that any point of is within to . Hence
the total volume of the balls of radius must be strictly smaller
than the volume of the ball of radius centered at . Mathe-
matically, recall that the volume of an -dimensional ball of ra-
dius is with being the Leonhard
Euler's gamma function [24], we have the following inequality:

which contradicts to the fact that .
Apply Lemma 10 to , let denote the

index such that

It follows immediately that the minimum distance between
any point in and is at least . Consequently, for
any geometrical path covering both and , it holds
that . Repeatedly apply this reasoning process
to , we have that for any geometrical path
covering all nodes in , it holds that

Noticing that the path itself can be regarded as a geometrical
path, we then have , which complete the
whole proof of Lemma 2.
Fig. 9 illustrates the 2-dimensional case where

is maximized when are “packed” one to the other. It can be
checked that with large number of neighbor-
hoods covered (i.e., large ).
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