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On Oblivious Neighbor Discovery in Distributed
Wireless Networks With Directional Antennas:
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Abstract— Neighbor discovery, one of the most fundamental
bootstrapping networking primitives, is particularly challenging
in decentralized wireless networks where devices have directional
antennas. In this paper, we study the following fundamental
problem, which we term oblivious neighbor discovery: How
can neighbor nodes with heterogeneous antenna configurations
discover each other within a bounded delay in a fully decen-
tralised manner without any prior coordination or synchroni-
sation? We establish a theoretical framework on the oblivious
neighbor discovery and the performance bound of any neighbor
discovery algorithm achieving oblivious discovery. Guided by the
theoretical results, we then devise an oblivious neighbor discovery
algorithm, which achieves guaranteed oblivious discovery with
order-minimal worst case discovery delay in the asynchronous
and heterogeneous environment. We further demonstrate how
our algorithm can be configured to achieve a desired tradeoff
between average and worst case performance.

Index Terms— Neighbor discovery, directional antenna,
discovery oblivity.

I. INTRODUCTION

D IRECTIONAL antennas have been widely used in emerg-
ing wireless networks given the capability in limiting

interference, enlarging transmission range and hence boosting
network capacity and reducing energy consumption. For exam-
ple, direction antennas are particularly attractive in the 60GHz
networks to ensure high transmission quality and acquire
sufficient link budget to cater Gbps data rate. As another
example, in some wireless item tracking systems, devices are
attached with directional antennas allowing them to scan an
area for specific items.

Despite significant performance gain brought by directional
antennas, their deployment brings particular design chal-
lenges for many fundamental communication and networking
functionalities, some of which require a complete rethink-
ing or redesign. In this paper, we focus on neighbor discovery,
a supporting primitive that discovers all the neighbors in a
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device’s communication range. It is one of the bootstrapping
primitives supporting many basic network functionalities, such
as topology control, clustering, medium access control, etc.
Compared to the traditional omni-direction antenna paradigm,
neighbor discovery with directional antennas is intuitively
more challenging as directional antennas can only cover a
fraction of the azimuth. Hence, neighbor discovery algorithms
need to be carefully designed in order to guarantee that any
pair of neighbor nodes can eventually steer their antennas
toward each other at certain time instance. Moreover, nodes
may not be synchronised and their antennas can be heteroge-
neous in terms of beamwidth. Neighbor discovery algorithms
should be able to guarantee discovery in this challenging
environment in a fully decentralised manner without any prior
coordination.

Formally, we formulate the following oblivious neighbor
discovery problem. How can neighbor nodes with hetero-
geneous antenna beamwidth discover each other within a
bounded delay in a fully decentralised manner without any
prior coordination or synchronisation? Particularly, the follow-
ing requirements should be satisfied:

• Bounded and minimum worst-case discovery delay;
• Discovery oblivity, the capability of guaranteeing discov-

ery regardless of the antenna beamwidth and the relative
positions of nodes. This requirement is particular in the
neighbor discovery with directional antennas.

As summarized in Section II, no existing work to our
knowledge can satisfy the above requirements simultane-
ously. Aiming at providing a comprehensive investigation
on oblivious neighbor discovery, we articulate our work as
follows:

• Theoretical framework. We establish a theoretical frame-
work on oblivious neighbor discovery and establish the
performance bound of any oblivious neighbor discovery
algorithm. Our theoretical results not only shed light on
the structure of the problem, but also serve as design
guidelines for oblivious neighbor discovery algorithms.

• Algorithm design. Guided by the theoretical results,
we further design an oblivious neighbor discovery algo-
rithm and prove that it achieves guaranteed oblivious
discovery with order-minimal worst-case discovery delay
in the asynchronous and heterogeneous environment.
We further demonstrate how the algorithm can be config-
ured to achieve a desired trade-off between average and
worst-case performance.
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The paper is organised as follows. Section II gives a brief
overview of related work. Section III formulates the oblivious
neighbor discovery problem. Section IV establishes the theo-
retic performance bound for any oblivious neighbor discovery
algorithm. Section V presents the design of an order-optimal
oblivious neighbor discovery algorithm and mathematically
establishes its performance. Section VI analyzes the perfor-
mance when slots length at different nodes are not identical.
Section VII addresses the issue of discovery beacon scheduling
to ensure mutual discovery. Section VIII further demonstrates
how the algorithm can be configured to achieve a desired trade-
off between worst-case and average delay. Section IX presents
the simulation results. Section X concludes the paper.

II. RELATED WORK

As discussed in Section I, designing efficient neighbor
discovery algorithms for devices with directional antennas is
particularly challenging. A natural approach to contour the
challenge is to use omni-directional antennas in the neighbor
discovery process [2], [3] (cf. [4]–[12] for major neighbor dis-
covery algorithms with omni-directional antennas). The main
disadvantages of this approach is two-fold. Firstly, it requires
an additional omni-directional antenna; Secondly, the discov-
ered neighbor set using the omni-directional antenna can be
significantly different from that using the directional one.

Neighbor discovery algorithms using purely directional
antennas can be categorised into two classes, probabilis-
tic and deterministic algorithms. In probabilistic approa-
ches [13]–[21], each node randomly chooses a direction to
steer its antenna. Probabilistic algorithms have the advantages
of being memoryless and stationary and thus are especially
robust and suitable in decentralised environments where no
prior coordination or synchronisation is available. The main
drawback of them is the lack of performance guarantee in
terms of discovery delay. This problem is referred to as the
long-tail discovery latency problem in which two neighbor
nodes may experience extremely long delay before discovering
each other. Deterministic algorithms [18], [22], [23], where
each node points its antenna based on a predefined sequence,
are proposed to provide guaranteed upper-bound on the worst-
case discovery delay. However, existing deterministic neighbor
discovery solutions with directional antennas either fail to
achieve bounded discovery delay, or require time synchroni-
sation among nodes, which may be not be practical in many
applications or require prior coordination among nodes.

In spite of the existing research in the literature, none of
them can solve the oblivious neighbor discovery problem by
ensuring nodes with heterogeneous antenna configurations and
without clock synchronization to discover each other within a
bounded delay in a fully decentralised manner without any
prior coordination, which is the focus of this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a time-slotted (but not necessarily synchro-
nised) two-dimensional wireless network operating on a single
frequency band. The set of nodes in the network is denoted

Fig. 1. Example of antenna configuration: the dotted blue and red circles
represent the communication range of node a and b; a has Na = 4 antenna
sectors, b has Nb = 6 sectors; a is situated in sector hb = 3 of b, b is situated
in sector ha = 0 of a.

by S with cardinality S � |S|. Each node i ∈ S is equipped
with a directional antenna with beamwidth θi (0 < θi ≤ 2π).
When θi = 2π, the antenna of node i degenerates to an
omni-directional one. Under such generic antenna model,
the communication range of node i can be divided into
Ni � 2π

θi
non-overlapping sectors, indexed from 0 to Ni − 1

in clockwise.1

To discover its neighbors, each node i ∈ S lets its antenna
scan the communication range which is a disk around itself.
As analysed in Section II, any probabilistic antenna scan
strategy cannot achieve bounded discovery delay and suffers
from the long-tail discovery latency problem in which two
neighbor nodes a and b within the communication range
of each other may experience extremely long delay before
they can discover each other. Motivated by this observation,
we consider deterministic neighbor discovery algorithms in
which each node switches its antenna in each slot based on
a specific pattern so as to discover its neighbors. We term
such antenna pattern the antenna scan pattern, or antenna scan
sequence and give its formal definition in the following.

Definition 1 (Antenna Scan Sequence): The antenna scan
sequence is defined as a sequence u � {ut}0≤t≤Tu−1 where
ut is the index of sector at which the antenna is steered, Tu

is the period of the sequence.2

Now consider a pair of neighbor nodes a and b and assume
that a is situated in the sector hb ∈ [0, Nb − 1] of b and b is
situated in the sector ha ∈ [0, Na − 1] of a, they can discover
each other if and only if they steer their antennas towards
each other. Formally, let u and v denote the antenna scan
sequences of a and b, with periods Ta and Tb, if there exists
t ∈ [0, TaTb − 1] such that ut = ha and vt = hb, a and b can
discover each other in slot t. Figure 1 and Example 1 further
illustrate the above definition. Table I lists the major notations
used in the paper.

Example 1: Consider the setting of Figure 1 with the fol-
lowing two scenarios:

• Scenario 1: u = {0, 1, 2, 3} with Ta = 4 and v =
{5, 4, 3, 2, 1, 0} with Tb = 6, i.e., a lets its antenna scan
counter-clockwise while b lets its antenna scan clockwise;

1To make our analysis concise, we assume that Ni is an integer. The
generation to non-integer Ni is trivial by letting the last sector be partially
overlapped with its neighbor sectors.

2A probabilistic neighbor discovery strategy can be regarded as a special
case where Tu → ∞.
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TABLE I

MAJOR NOTATIONS

Fig. 2. Example of antenna scan sequences: upper: Scenario 1;
lower: Scenario 2.

• Scenario 2: u = {0, 1, 2, 3} with Ta = 4 and v =
{0, 1, 2, 3, 4, 5} with Tb = 6, i.e., both of them let their
antenna scan counter-clockwise.

If b is situated in sector 0 of a (ha = 0) and a in sector 3 of b
(hb = 3), it can be checked that they can discover each other
in slot 8 in Scenario 1, while they cannot discover each other
in Scenario 2. The antenna scan sequences and the discovery
process are illustrated in Figure 2.

To model the situation where nodes are not synchronised,
we apply the concept of cyclic rotation to antenna scan
sequences. Given an antenna scan sequence u, a cyclic rotation
of u by k positions simply moves the first k elements in
u to the end, while shifting all other elements to the left.
Specifically, given an antenna scan sequence u, we denote
u(k) a cyclic rotation of u by k positions where k is referred
to as the cyclic rotation phase. Consider an example where
u = {0, 1, 2, 3} with Tu = 4, we have u(2) = {2, 3, 0, 1}.
The situation where k is fractional, corresponding to the case
where time slots of different nodes are not aligned, is analysed
in Section VI.

B. Problem Formulation

From Example 1, we can see that the antenna scan
sequences should be carefully devised to guarantee discov-
ery between any pair of neighbor nodes. To evaluate the

performance of a neighbor discovery algorithm, we introduce
the following two performance metrics:

• Discovery oblivity. The first metric, specific for the
problem of neighbor discovery with directional antennas,
is the discovery oblivity, which characterizes the capa-
bility of a neighbor discovery algorithm of discovering
neighbors regardless of their antenna beamwidth, relative
positions and clock drift. A neighbor discovery algorithm
is oblivious if it can guarantee discovery between any pair
of neighbors a and b for any combination (Na, Nb) ∈ N

2,
(ha, hb) ∈ [0, Na − 1]× [0, Nb− 1], and any initial clock
offset combination (t0a, t0b) ∈ [0, Ta − 1] × [0, Tb − 1].

• Worst-case discovery delay. Given two nodes a and b,
the worst-case discovery delay between them is defined
as the upper-bound of the latency (in number of slots)
before successful discovery for all possible clock drfits.

Armed with the above definitions and related mathematic
notations introduced in this section, we can formulate the
oblivious neighbor discovery problem.

Problem 1 (Oblivious neighbor discovery problem): The
oblivious neighbor discovery problem is defined as follows:

minimise T ,
subject to ∀t0a ∈ [0, Ta−1], t0b ∈ [0, Tb−1], ∀Na, Nb ∈ N,

and ∀ha ∈ [0, Na − 1], hb ∈ [0, Nb − 1],
∃t ≤ T such that ut(t0a) = ha, vt(t0b) = hb.

That is, devising antenna scan sequences to minimize T ,
the worst-case discovery delay, while guaranteeing discov-
ery between any pair of neighbor nodes a and b for any
combination of (Na, Nb), any combination of (ha, hb) ∈ [0,
Na − 1] × [0, Nb − 1], and any combination of (t0a, t0b).

IV. THEORETICAL FOUNDATION AND BOUND

Before presenting the design of oblivious neighbor discov-
ery algorithm, we first lay the theoretical foundation and bound
for any oblivious neighbor discovery algorithm. We start by
proving a structural property of the antenna scan sequence of
any oblivious neighbor discovery algorithm.

Lemma 1: If two nodes a and b can achieve oblivious
discovery with the worst-case discovery delay D by using the
antenna scan sequences u and v, then for any combination of
cyclic rotation phases (t0a, t0b) and any combination (ha, hb) ∈
[0, Na − 1] × [0, Nb − 1], there exists t < D such that
ut(t0a) = ha and vt(t0b) = hb.

Proof: We prove the lemma by contradiction. Assume
that there exits a combination (h0

a, h0
b) such that there does

not exist t < D such that ut(t0a) = h0
a and vt(t0b) = h0

b . Then
consider the case where a is situated in the sector h0

b of b
and b is situated in the sector h0

a of a, it can be noted that a
and b cannot discover each other within D slots in this case,
which contradicts the condition that they can achieve oblivious
discovery within D slots. �

Lemma 1 implies that for any t0a and t0b , the couple
(ut(t0a), vt(t0b)) (0 ≤ t < D) needs to cover all couples in
[0, Na − 1] × [0, Nb − 1] so as to ensure discovery within D
slots. This observation readily leads to the following theorem
on the worst-case discovery delay bound for any oblivious
neighbor discovery algorithm.
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Fig. 3. Illustration of the six cases in the proof of Lemma 2.

Theorem 1 (Worst-case Discovery Delay Bound): For any
oblivious neighbor discovery algorithm, the worst-case dis-
covery delay between any pair of neighbor nodes a and b
cannot be lower than NaNb.

Theorem 1 derives the performance limit of any oblivious
neighbor discovery algorithm. We can further generalise Theo-
rem 1 on the pair-wise neighbor discovery to the network-wise
neighbor discovery, as stated in the following corollary.

Corollary 1: For any network where the largest two
antenna sector numbers of neighbor nodes are N1 and N2,
the worst-case discovery delay for any pair of neighbor
nodes in the network to discover each other, denoted by
Dn, is lower-bounded by N1N2 for any oblivious neighbor
discovery algorithm. Asymptotically, when N1 � N2 � O(N),
Dn � O(N2).

V. DISTRIBUTED ALGORITHM DESIGN

In this section, we devise a neighbor discovery algorithm
achieving oblivious discovery between any pair of neighbors
a and b and approaching the theoretical performance limit
established in Section IV. Our design is composed of two
steps. In the first step, each node constructs a binary sequence
such that the sequences of any two distinct nodes are cyclic
rotationally distinct. Given any two sequences a and b of l
bits, they are cyclic rotationally distinct to each other other if
and only if a �= b(k) for any k ∈ [0, l − 1]. In the second
step, each node constructs its antenna scan sequence using the
sequence constructed in the first step.

A. Constructing Cyclic Rotationally Distinct Sequence

In our approach, the antenna scan sequence for each node
is constructed based on its globally unique ID (e.g., address),
which can be mathematically expressed as a binary sequence
of length l. Using globally unique IDs is a typical symmetry
breaking technic in distributed computing.

In the first step, each node independently generates a binary
sequence based on its ID such that the binary sequences of
any two nodes are cyclic rotationally distinct one to the other.
We term the sequences generated from the ID sequences the
extended ID sequences.

A simple way of constructing cyclic rotationally distinct
extended ID sequences has been proposed in [24] as sum-
marised below: let i denote the ID of node i, which is
an l-bit binary sequence; let 1(k) (0(k)) denote a binary

sequence of 1 (0) of length k; construct the following binary
sequence I � i||1(l)||0(l). It is proved in [24] that sequences
constructed in this way are cyclic rotationally distinct to each
other. A generalised algorithm has then been developed in [1]
producing shorter sequence.

We further improve the algorithms in [1] and [24] to the
algorithm below. The reason of developing a new algorithm is
two-fold: (1) The establishment of bounded discovery delay in
our problem requires the length of the extended ID sequence
to be odd, (cf. proof of Theorem 2) which cannot be achieved
by the algorithm in [24]; (2) The length of the extended ID
sequence generated by our algorithm is significantly shorter
than those in [1] and [24], which leads to shorter discovery
delay.

Our algorithm works as follows. Let i denote the ID of node
i whose length is l bits (l ≥ 2) where i(k) denotes bit k of i.
Let i1 and i2 denote the subsequence from i(1) to i(km − 1)
and from i(km) to i(l − 2), where km = 	 l

2
. The extended
ID sequence of i, denoted by I, is constructed as below.

I � 0(l1)||i1||10||i2||1(l2),

For example, if i = 11010010 and l1 = 3, l2 = 2, we have
I = 000110110001011. The lemma below proves that the
extended ID sequences generated by our algorithm are cyclic
rotationally distinct one to each other.

Lemma 2: Given any extended ID sequences a and b
generated from two ID sequences α and β, if l1 > l2 and
l1 + l2 > km, it holds that a and b are cyclic rotationally
distinct to each other, i.e., it holds that

α �= β =⇒ a �= b(k), ∀k ∈ [0, L),

where b(k) is b with a cyclic rotation of k bits, L = l + l1 +
l2 + 2 is the length of the extended ID sequences.

Proof:
We prove the lemma by considering the six possible scenar-

ios illustrated in Figure 3, and showing, in each scenario, that a
bit in a and another bit in b(k) have different values although
the two bits are in the same position within the respective
extended ID sequences. This is sufficient to prove that the
two extended ID sequences a and b are cyclic rotationally
distinct one to the other.

Case 1: k ∈ (0, l1]. As indicated by the arrow in Figure 3,
it holds that aL−1 = 1 and bL−1(k) = 0.

Case 2: k ∈ (l1, l1 + l2). As indicated by the arrow
in Figure 3, it holds that al+l1 = 1 and bl+l1(k) = 0.
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Fig. 4. Example of antenna scan sequences for node a and b (r denotes a ran-
domly number in [0, Ni−1]): they can discover each other in slots 2, 6 and 8.

Case 3 (Case 3 exists if km > l2, otherwise this case does
not exist and we proceed directly to Case 4): k ∈ [l1 + l2,
l1 + km]. Since l1 + l2 > km, as indicated by the arrow
in Figure 3, it holds that al1−1 = 0 and bl1−1(k) = 1.

Case 4: k ∈ (l1 + km, L − km]. As indicated by the arrow
in Figure 3, it holds that al1+km = 1 and bl1+km(k) = 0.

Case 5 (Case 5 exists if km > l1, otherwise this case does
not exist and we proceed directly to Case 6): k ∈ (L − km,
L − l1). As indicated by the arrow in Figure 3, it holds that
al1−1 = 0 and bl1−1(k) = 1.

Case 6: k ∈ [L − l1, L). Since l1 > l2, as indicated by the
arrow in Figure 3, it holds that a1 = 0 and b1(k) = 1.

Noticing that α �= β =⇒ a �= b, we thus conclude that
a �= b(k), ∀k ∈ [0, L). �

In our design, we set l1 and l2 such that the total length of
the extended ID sequence L is odd and minimum, e.g., when l
is even (hence km = l

2 ), we set l1 = �km

2 +1 and l2 = �km

2 ;
the length of the extended ID sequences is L = l+2� l

4+3 �
1.5l. Note that the length of the extended ID sequences in [1]
and [24] are asymptotically 3l and 2l.

B. Constructing Antenna Scan Sequence

In the second step, each node i constructs its antenna scan
sequence u based on its extended ID sequence, denoted as ei,
generated in the first step by choosing l1 and l2 such that
the resulting sequence length L is odd. Specifically, let pi

denote the smallest odd prime number not smaller than Ni

and co-prime to L; let bi denote the smallest integer satisfying
2bi ≥ Ni and set qi = 2bi ; the antenna scan sequence of
node i, u, is constructed as follows:

ut =

⎧
⎪⎨

⎪⎩

t mod pi ei
t = 0 and t mod pi < Ni,

t mod qi ei
t = 1 and t mod qi < Ni,

rand(Ni − 1) otherwise,

(1)

where rand(Ni − 1) denotes a random integer in [0, Ni − 1].
It can be noted that the period of the antenna scan sequence u
is Lpiqi without taking into account the random part. Figure 4
provides an example of the antenna scan sequences for two
nodes a and b and their discovery process.

C. Discovery Delay Analysis

In the following theorem, we prove the correctness of our
algorithm in achieving oblivious discovery and establish the
worst-case discovery delay bound.

Theorem 2: (Correctness and Worst-Case Discovery Delay
Bound:) Our neighbor discovery algorithm can ensure obliv-
ious discovery between any pair of neighbors a and b. The
worst-case discovery delay between them is upper-bounded
by L max{paqb, pbqa}, asymptotically O(NaNb).

Proof: For any system parameter combination (t0a, t0b),
(Na, Nb) and (ha, hb), it follows from Lemma 2 that there
exists 0 ≤ l0 < L such that ea

l0
(t0a) �= eb

l0
(t0b). Assume that

ea
l0

(t0a) = 0 while eb
l0

(t0b) = 1.
As pa is an odd prime and qb is a power-multiple of 2,

it holds that pa is co-prime with qb. Let u and v denote the
antenna scan sequences of a and b. We examine the slots tk =
l0 +kL where k ∈ N by considering {utk

(t0a)} and {vtk
(t0b)},

i.e., the antenna scan sequences u(t0a) and v(t0b ) at these slots.
It follows from (1) that

{
utk

(t0a) = t0a + l0 + kL mod pa,

vtk
(t0b) = t0b + l0 + kL mod qb.

Note that (1) L is odd, (2) pa is an odd prime and co-
prime to L, (3) qb is a power-multiple of 2, it holds that L, pa

and qb are co-prime one to another. By applying the Chinese
Remainder Theorem [25], we have for any parameter settings
(t0a, t0b), (Na, Nb) and (ha, hb), we can find k0 < paqb where

{
k0L mod pa = ha − t0a − l0 mod pa,

k0L mod qb = hb − t0b − l0 mod qb.

It then follows that
{

utk
(t0a) = t0a + l0 + kL mod pa = ha,

vtk
(t0b) = t0b + l0 + kL mod qb = hb.

Hence, a and b can discover each other in slot tk0 with the
worst-case discovery delay bounded by Lpaqb.

Symmetrically, when ea
l0

(t0a) = 1 while eb
l0

(t0b) = 0, we can
show by the same reasoning that the worst-case discovery
delay is upper-bounded by Lqapb. Therefore, it holds that the
worst-case discovery delay of our algorithm is upper-bounded
by L max{paqb, qapb}. In the asymptotical case, we have
pa � qa � Na and pb � qb � Nb and hence the delay
upper-bound is O(NaNb). �

We end this subsection with the following two remarks:
• Tightness of worst-case discovery delay. Theorem 2

establishes the worst-case discovery delay bound as
L max{paqb, pbqa}. We illustrate via an example in
Figure 5 that this bound is actually very tight. In the
example where the initial clock drift is t0a = 56 and
t0b = 0, a and b discover each other only at slot 82, which
corresponds to the discovery delay of 83 slots. The worst-
case discovery delay bound derived by Theorem 2 in this
example is 84.

• Upper-bound of average discovery delay. We can derive
the upper-bound of the average discovery delay by using
the same technique as the proof of Theorem 2. Specif-
ically, using the same notation, given a random pair of
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Fig. 5. Tightness of worst-case discovery delay.

t0a and t0b , the expectation of k0 is bounded by paqb−1
2 .

Assume that node IDs can be regarded as random binary
sequences, the expectation of l0 is bounded by L

2 . The
average discovery delay is thus upper-bounded by Lpaqb

2 ,
and asymptotically when pi � qi � Ni � N , it can be
bounded by LN2

2 . Note that this is a very conservative
and thus loose bound, as illustrated in the simulations.

D. An Improved Algorithm

Recall Theorem 1 that the worst-case discovery delay lower
bound is NaNb. In our algorithm, the worst-case delay is
determined by max{paqb, pbqa}. Without loss of generality,
assume that paqb ≥ pbqa and hence the worst-case delay is
paqb. In our design, pa is the smallest odd prime number Na.
It is well-known that for any Na, we can find pa which is
very close to Na. However, qb needs to be a power-multiple
of two. In the extremely unlucky case where Nb is in the
form of 2n + 1, we may have qb � 2Nb, thus leading to
paqb � 2NaNb.

Motivated by the above observation, we propose an
improved algorithm to further limit the worst-case discovery
delay even in the extremely unlucky case. In the improved
algorithm, each node i independently chooses pi as the
smallest odd prime number larger than max{3, Ni} and
qi = 2b1,i3b2,i where b1,i and b2,i are integers chosen from
[0, �log2 Ni] and [0, �log3 Ni] that minimizes qi−Ni under
the constraint qi ≥ Ni, i.e.,

(b1,i, b2,i) = argmin
b1,i,b2,i

(
2b1,i3b2,i − Ni

)
, s.t. 2b1,i3b2,i ≥ Ni.

Lemma 3 proves that qi is asymptotically close to Ni.
Lemma 3: For any ε > 0, given Ni sufficiently large, there

exist b1,i ∈ [0, �log2 Ni] and b2,i ∈ [0, �log3 Ni] such
that qi = 2b1,i3b2,i ≥ Ni and qi − Ni ≤ ε, i.e., Ni can be
arbitrarily closely approximated by qi.

Proof: We give the proof sketch. We prove the lemma
by showing for large enough Ni that there exist b1,i ∈
[0, �log2 Ni] and b2,i ∈ [0, �log3 Ni] such that

log2 Ni ≤ b1,i + b2,i log2 3 < log2 Ni + ε.

This follows from the fact that the fractional part of x log2 3
where x ∈ N, i.e., x log2 3 − 	x log2 3, are dense in [0, 1].
In fact, given any ε > 0, if we choose non-negative integers
{xi} so that fractional parts of x log2 3 form an ε

2 -set of [0, 1],
then we can choose the appropriate integer b2,i and then b1,i,
which is feasible provided that Ni is large enough. �

We can then use the same analysis as that of proof of
Theorem 2 to show that the worst-case discovery delay of the

improved algorithm is L max{paqb, pbqa} if L is configured
to be co-prime to 2 and 3. This result decreases by half the
worst-case asymptotic delay of the original algorithm in the
extremely unlucky case.

VI. DISCOVERY ANALYSIS WITH NON-ALIGNED SLOTS

Our previous results implicitly assume slots are aligned.
We now relax this assumption to study the effect of slot
non-alignment and asymmetrical slot length due to lack of
clock synchronization and relative clock drift between any two
nodes.

Analytically, for any pair of nodes a and b, we can write
the local time at b, termed as tb, as a function of the local
time of a, termed as ta, as below.

tb(ta) = ρab(ta − t0) + tb(t0),

where ρab is the relative rate of clock of node b as a function
of the clock of a, tb(t0) = t0 is the initial clock offset between
a and b. If a and b are perfectly synchronized, we have ρab = 1
and tb(t0) = 0. However, ρab may drift away from 1 in
practice. That is

1 − Δρmax ≤ ρab ≤ 1 + Δρmax,

where Δρmax denote the upper-bound of the drift and is
around the order of 10−6 in practice. Without losing generality,
we consider the case where the clock of b goes no slower
than a: ρab ≤ 1. We then distinguish two cases: (1) ρab = 1,
i.e., although the local time at a may differ to the local time
at b, their slot duration is the same; (2) ρab �= 1, i.e., the slot
duration of a and b is different.

A. Identical Slot Duration

We first investigate the first case ρab = 1. In neighbor
discovery, it is required that a neighbor discovery algorithm
should be able to ensure that any pair of neighbor nodes can
discover each other with an overlap of α slot where α ∈ (0, 1]
is a system-dependent parameter.3 A typical condition widely
imposed in the literature is to require a discovery to last at
least half of the slot duration, i.e., α = 0.5.

We next demonstrate that our algorithm can achieve
the above practical objective. To show this, consider two
nodes a and b whose extended ID sequences are denoted as
ea and eb. Given any parameter setting (t0a, t0b), (Na, Nb) and
(ha, hb) with non-aligned slots, it holds that either ut(ta0)
and vt(tb0) overlap for at least half slot duration for any

3A practical example is that switching antenna from one direction to another
incurs non-negligible delay.
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Fig. 6. Neighbor discovery with non-aligned slots but identical slot duration.

t ≥ 0 or ut(ta0) and vt(tb0 + 1) overlap for at least half slot
duration for any t ≥ 0. We thus investigate these two cases:

• Case 1: ut(ta0) and vt(tb0) overlap for at least half slot
duration for any t ≥ 0. In this case, the previous analysis
can be directly applied. The only difference is that instead
of an entire overlap, a discovery in this case is a partial
overlap of at least half slot duration.

• Case 2: ut(ta0) and vt(tb0 + 1) overlap for at least half
slot duration for any t ≥ 0. In this case, since u and
v are cyclic rotationally distinct to each other, we can
prove in the same way as Theorem 2 that within the same
delay bound, there exists t∗ such that ut∗(ta0) = ha and
vt∗(tb0+1) = hb. Hence a and b can discovery each other
in slot t∗ with an overlap of at least half slot duration.

Figure 6 illustrates the two cases of the neighbor discovery
with non-aligned slots with the scan sequences of the example
in Figure 4. As proved in this subsection as well as illustrated
in Figure 6, in both cases, a and b can discover each other
within the worst-case delay derived in Theorem 2 with an
overlap of more than half slot.

B. Non-Identical Slot Duration

We now investigate the more practical case with non-
identical slot durations where ρab < 1, Clearly the slots of a
and b are not necessarily aligned to each other. Mathematically,
we assume that each slot of b lasts ρab by normalizing the
slot duration of a as unit time. We first state the following
property [10].

Lemma 4: Given any ρab ∈ R, let p(n) denote the nth
prime number, it holds that

lim
n→∞

p(	ρabn
)
p(n)

= ρab.

That is, ρab can be well approximated by p(�ρabn�)
p(n) .

The theorem below establishes the worst-case discovery
delay bound of our approach in this case. For presentation
conciseness, we establish our result for our baseline discovery
algorithm. The same bound holds straightforwardly for the
improved approach.

Theorem 3: (Worst-Case Discovery Delay Bound: Non-
Identical Slot Duration:) The worst-case discovery delay of
our algorithm is upper-bounded by ρabL max{paqb, qapb}.

Proof: We divide each slot of nodes a and b into mini-
slots of duration 1

p(n) where n is sufficiently large as in [10].
Consequently, each slot of a and b contain p(n) and p(	ρabn
)
mini-slots. The antenna scan sequences of a and b in (1) can
then be written in mini-slots as below:

ua
t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tp(n) − la ea
t =0, t mod pap(n) < Na,

mod pap(n) and 0 ≤ la ≤ p(n) − 1,

tp(n) − la ea
t =1, t mod qap(n) < Na,

mod qap(n) and 0 ≤ la ≤ p(n) − 1,

rand(Na − 1) otherwise,

ub
t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tp(	ρabn
) − lb eb
t = 0, t mod pbp(	ρabn
)<Nb,

mod pbp(	ρabn
) and 0 ≤ lb ≤ p(	ρabn
) − 1,

tp(	ρabn
) − lb eb
t = 1, t mod qbp(	ρabn
)<Nb,

mod qbp(	ρabn
) and 0 ≤ lb ≤ p(	ρabn
) − 1,

rand(Nb − 1) otherwise,

Given that n is sufficiently large, specifically, p(	ρabn
) >
L max{paqb, qapb}, we can use the same co-primarity
analysis as that in the proof of Theorem 2 to show
that within at most L max{paqb, qapb}p(	ρn
) mini-slots
(i.e., ρabL max{paqb, qapb} time by normalizing the a’s slot
to unit time), we can find a mini-slot tm such that a and b
can discover each other. We then have that from mini-slot tm
to tm + p(	ρabn
) (i.e., one slot duration for b), both a and b
point his antenna towards each other, and can thus discover
each other with an overlap of at least half slot duration. �

VII. DISCOVERY BEACON SCHEDULING

Our theoretical analysis hinges on the fact that two neighbor
nodes are able to discover each other once they steer their
antennas to each other at the same slot for at least half of
a slot during which they exchange discovery beacons. This
assumption is also largely made in the literature. In this
section, we design discovery beacon scheduling to achieve
discovery once an overlap of at least half slot occurs. By over-
lap, we mean that in the overlapping slot, a and b steer their
antennas toward each other.

Before motivating and discussing our design, we present a
beacon scheduling mechanism initially proposed in [6] and
improved in [8]. In this approach, each node sends two
beacons each active slot, one at the beginning of the slot,
the other at the end. The node remains in listening mode in
the intermediate period. Under the condition that the slots
of two nodes are not perfectly aligned, they can receive a
beacon from the other node in each overlapping active slots.
To handle perfect slot alignment, the slot overflowing scheme
is developed in [8], where each active slot overflows by δ,
a small amount that is sufficient to receive a beacon from
another node. However, their approach cannot be applied in
our context as it requires that active slots are separated by
inactive slots to allow slot overflow, but in our context a node
remains active in each slot, making slot overflow impossible.

Motivated by the above argument, we devise the following
beacon scheduling scheme.

• Consider node i in slot t, we call slot t a p-slot if
ei

t = 0 and t mod pi < Ni, i.e., the condition of
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Fig. 7. Illustration of our beacon scheduling and the resulting mutual
discovery.

the first line of (1) is satisfied; in the same way we
define the q-slot. If the condition of the third line of (1)
holds, the node randomly chooses between a p-slot and a
q-slot. Recall the proof of Theorem 2, given any pair of
neighbors a and b, there must exist an overlap between
a p-slot of a and a q-slot of b and between a q-slot of a
and a p-slot of b.

• At each p-slot of duration Λi, node i sends two beacons,
one beacon scheduled δpΛi (δp < 1

2 ) after the beginning
of the slot and the other scheduled δpΛi before the end of
the slot, as illustrated in Figure 7. The beacon schedule in
the q-slots proceeds in the same way with the parameter
δq (δq < 1

2 ).
The following theorem formally proves that the proposed

beacon scheduling mechanism can guarantee mutual discovery
under arbitrary clock drift.

Theorem 4: Consider a pair of neighbor nodes a and b
whose slot durations are Λa and Λb. Without loss of generality,
assume Λa ≥ Λb. Our beacon scheduling mechanism can
guarantee mutual discovery between a and b if δp > δq and
the following condition holds:

Λb

Λa
≥ max

{
1
2
,

δp

1 − δq
,
1 − 2δp

1 − δq

}

. (2)

Proof: Recall Theorem 2 and Theorem 3, there exists
an overlap of at least Λb

2 between a p-slot of a and
a q-slot of b or between a p-slot of b and a q-slot of a.
Without loss of generality, assume that there exists an overlap
of at least Λb

2 between a p-slot of a and a q-slot of b,
as illustrated in Figure 7. Let tistart and tiend (i ∈ {a, b})
denote the starting and end time of the p-slot of a and the
q-slot of b. Let txp , txq (x = 1, 2) denote the time when a
and b transmit their p-beacons and q-beacons. Without loss
of generality, assume tastart = 0. In this context, we have
taend = Λa, tbend = tbstart + Λb, t1p = δpΛa, t2p = (1 − δp)Λa,
t1q = tbstart + δqΛb, t2q = tbstart + (1 − δq)Λb.

Since the overlap between the two slots in Figure 7 is at
least Λb

2 , we can bound tbstart as follows.

• If tbstart ≥ 0, it must hold that taend − tbstart ≥ Λb

2 . Hence
tbstart ≤ taend − Λb

2 = Λa − Λb

2 .
• If tbstart < 0, it must hold that tbend − tastart ≥ Λb

2 . Hence
tbstart = tbend − Λb ≥ tastart − Λb

2 = −Λb

2 .

We then prove the theorem by distinguishing four cases:
(1) 0 ≤ tbstart ≤ t1p, (2) t1p < tbstart ≤ Λa − Λb

2 , (3) −t1q ≤
tbstart < 0, and (4) −Λb

2 ≤ tbstart < −t1q . We detail the proof
of the first case. The proofs of other cases follow similarly
and are thus omitted.

To prove the first case 0 ≤ tbstart ≤ t1p. We first prove b
can hear at least one p-beacon of a. Since δp < 1

2 , under the
condition (2) we have

tbstart ≤ t1p = δpΛa ≤ Λa

2
≤ Λb < tbstart + Λb = tbend.

That is, t1p ∈ [tbstart, t
b
end). Hence b can hear the first p-beacon

of a if it does not collide with one of the q-beacons sent by
b. Note that under the condition (2)

t2q = tbstart + (1 − δq)Λb ≥ (1 − δq)Λb ≥ δpΛa = t1p,

the first p-beacon of a cannot collide with the second q-beacon
of b. We hence only need to consider the case where the first
p-beacon of a collides with the first q-beacon of b, i.e., t1p = t1q .
In this case, we have tbstart = δpΛa − δqΛb. Recall δq < δp

and Λb ≤ Λa, under the condition (2) it holds that

t2q = tbstart + (1 − δq)Λb = δpΛa + (1 − 2δq)Λb

< (1 − δp)Λa = t2p,

tbend = tbstart + Λb = δpΛa + (1 − δq)Λb > (1 − δp)Λa = t2p.

That is, t2p ∈ (t2q, t
b
end). Hence the second p-beacon of a can be

successfully received by b between t2q and tbend. Therefore, b
can successfully receive at least one p-beacon of a. Similarly,
we can prove that at least one q-beacon of b can be successfully
received by a, thus leading to mutual discovery. �

It is insightful to note that the condition (2) is easy to
satisfy in practice. To this end, suppose that we choose
δp = 0.2 and δq = 0.1, under which (2) becomes Λb

Λa
≥ 2

3 .
By using clock model introduced in Sec. VI, we have Λb

Λa
≥

1 − ΔρmaxTsyn, where Tsyn denotes the maximum interval
between two consecutive execution of network clock synchro-
nization. In practice, Δρmax = O(10−6). If Tsyn is set no
shorter than 3×105 seconds, i.e., the network is synchronized
at least once each 3.5 days, we can ensure that (2) is satisfied.

The devised beacon scheduling mechanism can be further
adapted in the collision-prone environment when the network
scales. In this context, more than one simultaneously trans-
mitted beacons lead to collision and thus cannot be recovered
at the receiver. To limit collision, we can desynchronize
p-beacons and q-beacons by adding a small random time
drift to δp and δq. Note that in such context, discovery delay
cannot be bounded due to collision. The utility of our neighbor
discovery algorithm is to ensure that any pair of neighbors
will eventually steer their antennas toward each other, without
which discovery can never be achieved.

VIII. BALANCING WORST-CASE AND

AVERAGE DISCOVERY DELAY

In the previous section, we have shown that the worst-
case discovery delay of our algorithm is bounded by
L max{paqb, pbqa} and this bound is very tight, i.e., there are
extremely unlucky cases where discovery cannot be achieved
before the worst-case delay. On the other hand, it is easy to
see that a purely random strategy where each node points
its antenna to a random direction each slot leads to an
average delay of NaNb even in such extremely unlucky cases.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: ON OBLIVIOUS NEIGHBOR DISCOVERY IN DISTRIBUTED WIRELESS NETWORKS 9

Fig. 8. Discovery delay comparison between our algorithm and the random discovery strategy with aligned slots under fixed Na and varying
Nb: left Na = 3, middle Na = 9, right Na = 18.

Fig. 9. Discovery delay comparison between our algorithm and the random discovery strategy with drifted slots under fixed Na and varying Nb: left Na = 3,
middle Na = 9, right Na = 18.

However, the worst-case discovery delay of any random dis-
covery strategy cannot be bounded. Generally, random or prob-
abilistic neighbor discovery algorithms usually perform well in
the average case by limiting the expected discovery delay, with
the main drawback being the lack of performance guarantee in
terms of worst-case discovery delay. The following question
naturally arises: How to decrease the average discovery delay
of our algorithm in those extremely unlucky cases while still
ensuring a bounded worst-case delay.

One solution to trade-off the worst-case and the average
discovery delay is to interleave random slots into the antenna
scan sequence. To that end, noticing that the antenna scan
sequence in our neighbor discovery algorithm (i.e., eq (1))
naturally has a set of random slots where Ni ≤ t mod pi

(when ei
t = 0) and Ni ≤ t mod qi (when ei

t = 1), during
which each node i randomly points its antenna. By tuning
pi and qi, we can set a desired number of random slots
while still guaranteeing that the worst-case discovery delay
is bounded. Specifically, larger values of pi and qi leads to
more random slots and hence decreases the average discovery
delay, with the increase in the worst-case delay. By tuning pi

and qi, the worst-case and the average discovery delay can be
traded off.

IX. PERFORMANCE EVALUATION

In this section, we conduct a suite of numerical analysis
and simulations to illustrate the theoretical results established
in previous analysis and to evaluate the performance of our
neighbor discovery algorithm in several typical settings.

A. Numerical Experiments: Pair-Wise Neighbor Discovery

We start with a set of numerical experiments to study the
baseline scenario of pair-wise discovery between a pair of

Fig. 10. Worst-case discovery delay comparison between the baseline and
the improved algorithms.

neighbor nodes a and b. Specifically, we implement our algo-
rithm using Matlab and trace the discovery delay for different
antenna configurations of a and b, i.e., different combinations
of (Na, Nb). The relative positions of a and b, represented
by (ha, hb) is also randomly generated. The initial clock drift
between a and b is randomly generated from [0, 1000] slots
with the relative rate of clock drift ρab is randomly generated
from [1 − 10−6, 1 + 10−6] which corresponds to a typical
wireless node setting. δp = 0.2 and δq = 0.1. Both a and b
have an ID of 8 bits randomly attributed to them. The results
in our experiments correspond to an average of 10000 runs
with confidence interval 95%.

Figure 8 and 9 trace the worst-case and average discovery
delay of our algorithm for 2 cases: (1) slots of a and b
are aligned with identical slot duration, (2) slots of a and b
are not aligned and follow the model described above. For
comparison, we also trace the average discovery delay of
the random strategy where each node steers its antenna at
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Fig. 11. Trading off worst-case and average discovery delay under fixed Na and varying Nb: left Na = 3, middle Na = 9, right Na = 18.

a random direction each slot. We cannot trace the worst-case
delay of the random strategy because in some cases, discovery
cannot be achieved within the simulation duration which is set
to 5 times the worst-case delay of our discovery algorithm.
From the results, we make the following observations.

• In all the simulated cases, the worst-case of our algorithm
is bounded, which is in accordance of our theoretical
result established in Theorem 2. However, the worst-
case delay of random algorithms is not bounded. More-
over, the results also demonstrate the the worst-case and
average discovery delay trade-off between the random
strategy and the deterministic one as ours.

• The performance with non-aligned slots outperforms that
with aligned slots, due to the optimisation technique to
emit beacons both at the beginning and at the end of
each slot. As a result, when the slots are not aligned,
the probability of a partial overlap between 2 slots is
higher.

Our simulation results seem to favor a well-designed deter-
ministic strategy as we see limited performance loss in terms
of average delay with the advantage of having strict worst-case
delay bound.

We then proceed to study the performance of the improved
algorithm analyzed in Sec. V-D. To this end, we trace the
performance gain in terms of the ratio between the worst-case
discovery delay of the baseline algorithm and the improved
algorithm for drifted slots, defined as Υ. The results are
shown in Figure 10. We can see from the results that the
improved algorithm can achieve shorter discovery delay when
the system scales, i.e., Na and Nb are not too small. This
is due to the requirement in the baseline algorithm that qi

needs to be power-multiples of two and may be significantly
larger than Ni, in the worst case qi � 2Ni; while in the
improved algorithm, qi is asymptotically close to Ni. Note that
the baseline algorithm outperforms the improved algorithm in
some cases when Na or Nb is 3; this is because the improved
algorithm requires pi is set to a prime number larger than 3.

We then investigate trading off worst-case and average
discovery delay by incorporating the mechanism proposed in
Section VIII. To that end, we pick settings where a and b can
only discover each other almost with the worst-case discovery
delay. We implement the mechanism proposed in Section VIII
and trace the resulting trade-off between the worst-case and
average discovery delay in Figure 11. Specifically, we imple-
ment two settings: (1) Small p and q, in this setting, p and q are
chosen as the smallest eligible values larger than 2N ;

(2) Large p and q, in this setting, p and q are chosen as the
smallest eligible values larger than 10N . We run the experi-
ment under non-aligned slots using the improved algorithm.
The results in Figure 11 clearly demonstrate the trade-off
between worst-case and average discovery delay: with larger
p and q, the worst-case discovery delay is more important,
while the average delay is less. The trade-off can thus be
parameterised to satisfy specific application requirement by
tuning p and q.

B. Simulation Analysis: Network-Wide Neighbor Discovery

In this subsection, we further evaluate our algorithm
under realistic conditions by performing a serious simulations
in 60GHz networks, where directional antennas are partic-
ularly attractive in to ensure high transmission quality and
acquire sufficient link budget to cater Gbps data rate.

In order to have an accurate simulation environment
for investigating 60 GHz networks, we have developed an
NS-2 extension that incorporates new features such as effective
SINR calculation for modeling co-channel interference and
support of directional antennas by following the development
in [26], which is is based on an NS-2 extension called
IEEE 802.11 Overhaul [27] which addresses the shortcom-
ings in the default NS-2 MAC and PHY modules. Specifi-
cally, we configure the PHY layer parameters based on the
High Speed Interface (HSI) mmWave PHY modes in IEEE
802.15.3c standard draft to simulate bi-directional high speed
communications in 60 GHz bands [28]. We also consider
three realistic antenna models of Ansys Corporation [29] also
used in [26] with beamwidth of 90, 60, 15 degree and a
maximum gain of 8.6, 12.1 and 17.7 dB, referred to as
ant-90, ant-60 and ant-15, respectively. These realistic antenna
propagation patterns allow us to capture the behaviors of
realistic directional antennas with side and back lobes.

We simulate a 60 GHz wireless network composed
of 100 static nodes randomly deployed in a 100m × 100m
square. We use the TwoRayGround propagation model with a
path loss exponent of 3.5, which is commonly used to model
signal propagation in the 60 GHz Non Line-of-Sight (NLOS)
indoor environment [28]. We set the clock skew of each
node to be randomly distributed within [-10ppm, 10ppm],
given that a skew of 10ppm corresponds to typical crystal
clocks operating at extremes of their temperature specification.
δp = 0.2 and δq = 0.1. Each node is randomly attributed an
antenna among ant-90, ant-60 and ant-15. Each node steers
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Fig. 12. Simulation results for network-wide neighbor discovery: (a) upper left, (b) upper right, (c) lower left, (d) lower right.

its antenna toward a direction for 80μs before moving to
another direction if not specified otherwise, i.e., the discovery
slot duration is 80μs based on local clock. The results in our
simulations correspond to an average of 10000 runs with 95%
confidence interval.

Throughout our simulation, we focus on the following
performance metrics: (1) first discovery delay, the delay until
the first neighbor is discovered; (2) average discovery delay;
(3) last discovery delay, the delay until the last neighbor is
discovered. These metrics are also used in [30] for simulation.
As justified in [30], the fast discovery of the first node is
motivated by emergency applications, where the transmission
of a message needs to be performed as soon as possible and
consequently to a next hop. The average discovery time char-
acterizes the average performance of any neighbor discovery
algorithm. The last discovery delay is important in applications
where the discovery of all neighbors of a node is required.

We first study the impact of the discovery beacon length
on the discovery performance of our algorithm. Figure 12(a)
traces the discovery delay under different beacon length. From
the results, we observe that the beacon length does not have
significant impact on the discovery performance. This is due
to the following two reasons. First, our algorithm can ensure
an overlap of at least half of a slot duration, which is sufficient
to receive discovery beacons of different length. Secondly,
the result also reflects the fact that in the simulated cases,
collisions among beacons only have limited impact on the
discovery performance because beacons are relatively short
compared to the slot duration, and antennas are directional,
which limits the collision probability.

We then study the impact of the neighbor discovery slot
duration on the performance. As illustrated in Figure 12(b),

the last and average discovery delay increase almost linearly
w.r.t. the neighbor discovery slot duration. Naturally, short
neighbor discovery slot duration facilitates the process of
neighbor discovery, but at the price of more frequent beacon
transmission. We further trace the impact of beacon loss on
the discovery performance. To this end, we simulate different
beacon loss rate and trace the corresponding discovery delay.
The results, as plotted in Figure 12(c), demonstrate that the
beacon loss has more impact on the last discovery delay. This
is intuitive as the loss of a beacon does not increase signifi-
cantly the first discovery delay because there are other nodes
that can be discovered shortly after, but the last discovery delay
may be largely increased as the concerned node needs to wait
for the next beacon which may take a while to arrive.

We complete the simulation by investigating the impact of
node density on the discovery performance. We thus vary the
number of nodes from 50 to 150 and trace the discovery
delay in Figure 12(d). We observe from the results that the
discovery delay does not vary significantly w.r.t. the node
density (or, the number of neighbors). This again reflects
that the impact of beacon collisions in our simulation is not
pronounced as nodes are equipped with directional antennas
and clocks are not synchronized which also desynchronises
the beacon transmission.

X. CONCLUSION

We have formulated and studied the oblivious neighbor dis-
covery problem. We have established the performance bound
of any neighbor discovery algorithm achieving oblivious dis-
covery. Guided by the theoretical results, we have designed
an oblivious discovery algorithm and proved that it achieves
guaranteed oblivious discovery with order-minimal worst-
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case discovery delay in the asynchronous and heterogeneous
environment. We have then studied how our algorithm can
be configured to achieve a desired trade-off between average
and worst-case performance. In future research, we plan to
investigate the energy-constrained case where nodes stay in
dormant state most of time while only wakes up periodically.
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