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Abstract—Extensive research in recent years has shown the benefits of cooperative relaying in wireless networks, where nodes

overhear and cooperatively forward packets transmitted between their neighbors. Most existing studies focus on physical-layer

optimization of the effective channel capacity for a given transmitter-receiver link; however, the interaction among simultaneous flows

between different endpoint pairs, and the conflicts arising from their competition for a shared pool of relay nodes, are not yet well

understood. In this paper, we study a distributed pricing framework, where sources pay relay nodes to forward their packets, and the

payment is shared equally whenever a packet is successfully relayed by several nodes at once. We formulate this scenario as a

Stackelberg (leader-follower) game, in which sources set the payment rates they offer, and relay nodes respond by choosing the flows

to cooperate with. We provide a systematic analysis of the fundamental structural properties of this generic model. We show that

multiple follower equilibria exist in general due to the nonconcave nature of their game, yet only one equilibrium possesses certain

continuity properties that further lead to a unique system equilibrium among the leaders. We further demonstrate that the resulting

equilibria are reasonably efficient in several typical scenarios.

Index Terms—Cooperative communication, relay selection, Stackelberg game, pricing.

Ç

1 INTRODUCTION

COOPERATIVE relaying has emerged in recent years as an
important technique in wireless networks with un-

stable links. Cooperative relaying takes advantage of the
broadcast nature of the medium and provides additional
diversity against link outages (caused, e.g., by dynamic
fading or shadowing effects) by allowing nearby nodes that
overhear the transmitted signal to make additional trans-
missions to assist in delivering the data to its destination.
The extensive research on the topic has resulted in a wide
variety of proposed cooperation methods. For a single relay,
these range from simple decode-and-forward of the data
packet itself [1], [2] to coded cooperation where the relay
transmits additional error-correcting code bits rather than
retransmitting the original data [3]. Similar ideas have been
extended to multiple-relay cooperation, where the receiver
decodes the data by combining the relayed signals received
either over separate multiplexed subchannels (e.g., CDMA
[4] or TDMA [5]), or over the same subchannel with
multiple receiving antennas using space-time codes [6], [7].

The vast majority of studies in the area have tackled the
issue from a pure optimization perspective, focusing on
strategies to maximize the performance (measured in terms
of capacity or effective error rate) of the communication
between a given source/destination pair with the aid of
nearby relay nodes. However, when there are several pairs
of nodes communicating in each other’s vicinity, the use of
cooperative relaying techniques creates a conflict if the relay
nodes are within range of several endpoint pairs simulta-
neously. This conflict arises since, if a relay node takes a
cooperative action (transmission) to assist a packet on one
link, then it cannot do the same on another link at the same
time. Moreover, the additional transmissions by the relay
node(s) increase the interference for other links and thus
adversely impact their capacities, even if the other links do
not employ cooperative relaying directly. Such interactions
among flows between different source/destination pairs in
the presence of cooperative relaying, and distributed
mechanisms for efficient allocation of cooperative relay
nodes among the different flows (which may have different
requirements and utilities), remain not yet well understood.

Motivated by the above observation, this paper proposes
a pricing framework, based on the idea of “pay for
cooperation,” to encourage efficient use of the relay nodes.
Under this framework, each flow (i.e., a source-destination
pair) offers a payment per successfully received packet,
which is shared equally among all relay nodes that
participated in the delivery of that packet. Hence, the
utility of a relay node is defined as its share of received
payment minus its own cost of cooperation (e.g., due to
energy spent for relaying). For a flow, the utility is defined
as a generic concave function of the packet delivery rate
minus the cost paid to the relay nodes. We model the
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resulting scenario as a Stackelberg game [8], in which the
relay nodes are the followers that respond to payment rates
set by the flows (i.e., each relay chooses which flow or mix
of flows to serve so as to maximize its utility, given the
payment rates offered by the flows and the actions of its
competing peers); and the flows are the leaders that set the
payment rates to maximize their own utility in anticipation
of the Nash equilibrium (NE) response of the followers. We
point out that, notwithstanding our interest in the coopera-
tive relaying context, this model is very generic and can be
applied in any scenario where a set of “jobs” compete for
the services of a pool of “workers,” such that the jobs set
their payment rates, workers are free to choose the job(s)
they will attempt, and the payment from each job is
eventually shared equally among all the workers that
completed it successfully.

The idea of pricing as a distributed control mechanism,
to encourage autonomous and independent network users
to make rational decisions that result in a social benefit for
the entire network, has a long history. Its best-known
application is the Network Utility Maximization (NUM)
framework, originally proposed by Kelly et al. [9] and
widely used since in the contexts of congestion control in
the Internet (cf. [10] and references therein), as well as
power and rate control in wireless networks [11], [12]. In the
NUM approach, the network sets shadow prices for using its
resources, and the goal is to set them so that the
optimization of individual user responses will coincide
with the distributed optimization of the social network
utility. However, the NUM framework has limited applic-
ability in the wireless cooperative relaying context, where
the interaction among network “users” and “resources” can
be complicated. Since nodes can play the dual role of
sources of their own flows and relays for other flows at the
same time, the distinction between the network “resources”
and “users” is blurred, and there may not be an
independent entity that can objectively set optimal prices
in the network.

The research on alternative frameworks, suitable for
networks of autonomous nodes, has ranged from incentive
mechanisms such as reputation or mutual credits (see [13]
and references therein) to, more recently, market-based
schemes where nodes directly negotiate rates to be paid in
exchange for forwarding each other’s packets [14], [15], [16].
The operation of such market-based schemes is markedly
different from the NUM approach, in that the flow sources
take an active part in setting the prices they are willing to pay
for forwarding their traffic. However, the results in [14], [15],
[16] apply for a network model where the market is
decoupled from the routing protocol. In other words, the
routes of flows are assumed to be determined by a low-layer
protocol and the nodes can only decide whether or not to
route their peers’ traffic along those routes; in particular, it is
implicit that every packet can only be forwarded along a
single route. Several mechanisms are proposed in [17] to
encourage selfish nodes to declare their true costs and actions
in order for the routing algorithm to choose the optimal
paths, and a distributed protocol that uses cryptographic
techniques to enforce the forwarding is described in [18].

Our work is inspired by the market-based pricing
methodology, and can be viewed as its adaptation to the
cooperative relaying context with multiple flows and relay

nodes. However, the opportunistic nature of cooperative
relaying with multiple relays—where any given packet may
end up being relayed along a number of routes and it is not
known in advance which one(s) will be successful—leads to
several important differences between our model and those
in past studies of packet forwarding in ad hoc networks.
First, unlike most pricing methods in existing literature that
only involve one kind of selfish players, our framework
features two types of players (the relay nodes and the flow
sources), each of which is not only in competition with its
peers but also with players of the other type. In particular,
this fact sets it apart from the scenario considered in [19],
which studied the properties of a pricing game involving an
access point (AP) and a single source node aided by a single
(predetermined) cooperative relay node using an Amplify-
and-Forward or Decode-and-Forward scheme; and the
scenario in [20], which used a buyer/seller game model
for relay selection to stimulate cooperation and improve the
system performance, but only for a single-flow case.
Furthermore, in any scheme where prices are applied to
control forwarding along a single predetermined route, the
expected utility of a player depends only on its own
strategy once the prices are set, whereas in our case the
payment from a flow is shared among all relay nodes
participating in the relaying of that flow. As a result, a
node’s utility depends on the strategies of its peers, which
leads to a competition scenario with much more complex
interactions among the players. It turns out that the sharing
of payment leads to utility functions that are nonconcave,
requiring an original study of the game equilibrium
properties that cannot draw on existing well-known results.

This paper presents a detailed study of the Stackelberg
game among the flows and relay nodes and its equilibrium
properties. Specifically, we establish that the followers’
game admits two kinds of Nash equilibria, including a
unique symmetrical NE where all relay nodes play the same
mixed strategy, and a boundary NE where each relay node
dedicates itself to a single flow. We further show that, from
the leaders’ perspective, a Stackelberg equilibrium may not
exist if the followers play the boundary NE, yet it always
exists and exhibits desirable uniqueness and convergence
properties if the followers respond with the symmetrical
NE. We emphasize that these novel results are substantially
different from any other pricing method studied in the past.
We also present several numerical examples to demonstrate
the prices and utilities achieved in the game, and show that
the equilibrium in general is reasonably efficient (i.e., has a
low “price of anarchy” [21]).

The rest of this paper is structured as follows: Section 2
presents our system model and pricing framework and
formulates the Stackelberg cooperative relaying game.
Section 3 analyzes the properties of the followers’ game
and the corresponding equilibria, while Section 4 investi-
gates equilibrium properties in the leaders’ game, including
existence, uniqueness, and dynamic convergence thereto.
Section 5 includes some numerical examples demonstrating
the efficiency of the equilibria. Finally, the paper is
concluded in Section 6.

2 SYSTEM MODEL AND PRICING FRAMEWORK

For the sake of concreteness, we present the game model
and its analysis in the context of cooperative relaying in
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wireless networks. Nevertheless, as explained in the
Introduction, the model can be readily applied in a variety
of distributed scenarios where generic “jobs” compete for a
common pool of “workers.” Therefore, the following
description and the use of terms such as “links,” “flows,”
“transmission,” etc., should be understood generically.

2.1 Wireless Network Model

We consider a set F of flows in a synchronized slotted
wireless network. We use Sf andDf to denote the source and
destination of flow f 2 F , respectively. Each flow transmits a
continuous stream of packets, where each packet from every
flow takes an identical transmission time (a slot). A set R of
potential relay nodes, with Rj j ¼ R � 2, may retransmit
packets to assist them reach their destinations. We assume
that the different flows coexist on different “channels” in the
network, such as CDMA or FDMA. Thus, if relay node i 2 R
decides to cooperate with flow f , it must tune itself to receive
the packets from Sf ; a node cannot overhear multiple flows
simultaneously. All nodes cooperating with flow f relay
every packet from that flow to Df immediately after
receiving it, i.e., simultaneously to each other. We assume
that the different relay signals do not mutually interfere; e.g.,
they can be multiplexed on separate subchannels (as in [4],
[5]) or based on space-time coding with multiple-antenna
receivers [7]. A packet is considered successful if it is received
error-free from at least one of the relay retransmissions.1

Accordingly, we consider a simple wireless link model in
which any link is either “good” (i.e., error-free), or “bad”
otherwise. We assume that links between different pairs of
nodes are independent, which generally holds, in practice,
for any realistic spacing between nodes (of at least a
wavelength of the carrier frequency). For the sake of
simplicity, the analysis, in this paper, assumes links that
are memoryless on a packet time scale; that is, the probability
of being in the “good” state is fixed and independent
between subsequent slots. We denote this probability by Pf

sn

for the link between Sf and any relay node, and Pf
nd for the

link between any relay node and Df . Thus, we assume a
symmetrical setting where link probabilities are identical a
priori among all relays (though not necessarily among all
flows). The extension of our analysis to asymmetric and/or
nonmemoryless (e.g., on-off) links is left for future work.

2.2 Pricing Framework

We denote the cost (e.g., in terms of energy) for a relay node
to cooperate with a packet from flow f by ef . For a selfish
relay node to make a cooperative transmission, it must
expect to receive a payment in return that is greater than its
energy cost. Each flow f offers a payment of Cf per
successful packet, where Cf is decided by the flow itself
(i.e., Cf is the strategy of f). Hence, the utility of flow f 2 F
is defined as the net payoff that f gets per slot:

Uf¼4uf
�
Pf
suc

�
� CfPf

suc; ð1Þ

where Pf
suc is the probability of a packet of f to be

successfully received at the destination (which depends
on the relay node strategies, as described below). The
function ufðPf

sucÞ characterizes the application payoff (e.g.,
satisfaction level) of f from a delivery probability of Pf

suc.
We assume ufðPf

sucÞ is continuously differentiable, strictly
increasing and weakly concave in Pf

suc (i.e., u00fðPf
sucÞ � 0),

with ufð0Þ ¼ 0.
We turn to consider the utility of the relay nodes. If a

packet is successful, the payment of Cf is shared equally
among all nodes that successfully relayed it toDf . We denote
by rfi the probability of node i to relay a packet from flow f ;
thus, the vector ri ¼ frfi ; f 2 Fg, where

P
f r

f
i � 1, is the

strategy of relay node i. For brevity, we henceforth denote
Kf¼4Pf

snP
f
nd. Thus, the expected payoff per slot for node i is

Vi¼
4X
f2F

CfKfrfi
XR�1

l¼0

PfðlÞ
lþ 1

� efrfi

" #
; ð2Þ

where

PfðlÞ¼4
X
T �Rnfig
Tj j¼l

Y
j12T

Kfrfj1

Y
j2 62T
j2 6¼i

�
1�Kfrfj2

�
ð3Þ

is the probability that there are l additional nodes beside i
that successfully relay the packet of f to its destination as
well. Note that, from the flow’s perspective, the total
success probability is Pf

suc ¼ 1�
Q

i2Rð1�Kfrfi Þ.

2.3 Stackelberg Game Formulation

We model the cooperative transmission with pricing as a
Stackelberg game, in which the leaders choose their strategy
first, and the followers respond by choosing their strategies
accordingly, knowing the leaders’ strategies [8]. In our
setting, the game is defined as follows:

Follower’s problem. Each follower (relay node i)
chooses its strategy ri to maximize its utility Vi in response
to the leaders’ strategies C¼4fCf; f 2 Fg and the strategies
of its peers r�i¼4frj; j 6¼ ig. Thus, each node i solves the
following problem:

r�i ðr�i;CÞ ¼ argmaxViðri; r�i;CÞ; ð4Þ

and a vector of followers’ strategies is an NE if it
corresponds to a fixed point of (4).

Leader’s problem. Each leader (i.e., a flow f or its
source-destination pair) chooses its strategy Cf to maximize
its utility function Uf , given the strategies of its peers
C�f¼4fCf 0 ; f 0 6¼ fg and anticipating that the followers will
eventually respond with a collection of strategies that
constitutes an NE according to (4). Thus, the leader’s
problem is described as

Cf � ¼ argmaxUfðCf;C�f ; r�i ðhCf;C�f iÞÞ: ð5Þ

The solution of the game is characterized by a Stackelberg-
Nash equilibrium (SNE), a strategy profile from which no
player (leader or follower) has incentive to deviate uni-
laterally.

To conclude this section, we point out that the main goal
in this work is to establish and demonstrate some funda-
mental structural properties of the resulting equilibria in the
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above generic market-based framework. Accordingly, our
model contains several implicit simplifying assumptions,
which we highlight below. First, we assume that the flow
endpoints are honest, and indeed make the payments in
equal shares to all successful relay nodes, as detected by the
destination. We do not consider in detail the question of
payment enforcement or other design issues that would arise in
a practical mechanism implementing our scheme, other than
mentioning that existing solutions (e.g., the cryptographic
approach of [18]) could generally be used for our case as
well.2 Second, in order to allow the discussion to focus on the
fundamental properties and insights, we assume, for
simplicity, that the flow sources and relay nodes are distinct,
and that all flows and nodes operate at the same rate (thus,
the notion of “time slot” is identical for all players, and every
flow has an endless supply of new packets to transmit in
every slot). These assumptions are made mainly for the
purpose of presentation clarity; they are not essentially
critical to the analysis or the resulting equilibrium proper-
ties, and can be alleviated in a straightforward manner (so as,
e.g., to cover the case where nodes may simultaneously play
the role of sources and relay nodes for different flows).
Finally, we point out that, even though our analysis focuses
only on the case of symmetrical relay nodes, the numerical
evaluation part (Section 5) includes an illustration of a
nonsymmetrical case as well, and demonstrates that, indeed,
certain system properties from our analysis apply in the
general case to some extent. Space constraints do not allow
us to consider the above extensions in greater detail within
this paper, and therefore, they are left for future work.

3 EQUILIBRIUM ANALYSIS OF THE

FOLLOWERS’ GAME

The goal of our subsequent analysis is to find and
characterize the properties of the SNE of the above game.
To that end, we first study the followers’ game and obtain
the best-response strategies and equilibrium properties for a
given vector of leaders’ strategies C. Before proceeding, we
emphasize that, in general, the utility functions in this game
(Vi) are not concave. To see this, consider the simple
example of a single flow served by three nodes over
perfectly reliable links (Kf ¼ 1) with Cf ¼ 1 and ef ¼ 0.
Then, the utility function of relay node 1 reduces to

V1 ¼ r1 ð1� r2Þð1� r3Þ þ
r2 þ r3 � 2r2r3

2
þ r2r3

3

� �
;

which is, in fact, nonconcave; for example,

V1

r1 ¼ 1

r2 ¼ 0:5

r3 ¼ 0:5

0
B@

1
CA ¼ 7

12
<

1

2
V1

r1 ¼ 1

r2 ¼ 0

r3 ¼ 0

0
B@

1
CAþ V1

r1 ¼ 1

r2 ¼ 1

r3 ¼ 1

0
B@

1
CA

2
64

3
75

¼ 2

3
:

As a result, many well-known generic properties of games
with concave utility functions, such as equilibrium

existence and uniqueness, do not hold in our case. This
fact is illustrated in the following simple yet insightful
example, which also demonstrates some of the equilibrium
properties we prove subsequently.

Example 1. Consider a system with two flows offering
identical payments of C1 ¼ C2 ¼ 1, e1 ¼ e2 ¼ 0, and two
relay nodes with perfectly reliable links. In this system,
the following equilibria exist in the followers’ game:

. r1 ¼ r2 ¼ ð12 ; 1
2Þ (i.e., each node allocates half of its

cooperation to each of the flows). To see that this is
an NE, note that, for r2 fixed at ð12 ; 1

2Þ, the utility
function of node 1 reduces toV1 ¼ ðr1

1 þ r2
1Þ � ð12þ 1

4Þ,
which is maximized by any strategy with r1

1 þ r2
1 ¼

1 (intuitively, the node maximizes the received
payment by increasing its cooperation effort to the
maximum, and is indifferent between the two
flows). The same logic holds for node 2 with r1

fixed. We refer to this NE, where all nodes apply an
identical strategy, as the symmetrical NE.

. r1 ¼ ð1; 0Þ, r2 ¼ ð0; 1Þ (or vice versa). Indeed,
when each node cooperates with one flow, there
is no incentive for any of them to deviate by
shifting some of the cooperation probability to the
other flow, where the expected payment rate is
lower due to competition with the other node. We
refer to such an NE, where every node cooperates
only with one flow, as a boundary NE.

It is easily confirmed that the system has no other
equilibria.

As we show below, this simple example is indicative of
the followers’ game properties in general. It can be noted
that the existence of an equilibrium per se in the followers’
game could be readily shown with well-known generic
tools, e.g., the Kakutani fixed point theorem. However, such
tools do not provide the more detailed structural properties
of the equilibria, which we obtain via direct analysis.
Indeed, the main result of this section is that, for any C, the
followers’ game always admits a unique symmetrical
equilibrium, as well as at least one boundary equilibrium.
These properties will subsequently turn out to be crucial for
the discussion of the leaders’ game and the overall system
equilibrium in Section 4.

3.1 Symmetrical Equilibria

We commence our discussion of the equilibrium properties
by considering the best response of relay node i, with the
strategy ri ¼ ðr1

i ; . . . ; r
jF j
i Þ. The corresponding optimization

problem from the perspective of node i can be stated as
follows:

max
ri

Viðri; r�iÞ s:t:
X
f2F

rfi � 1 and rfi � 0; 8f 2 F: ð6Þ

Since Vi is continuously differentiable in rfi , it follows that
the first-order Kuhn-Tucker conditions corresponding to
problem (6) are necessary for optimality. On the other hand,
we note from (2) that, for a fixed r�i, the function Viðri; r�iÞ is
linear in ri (the coefficient of each rfi is constant). This implies
that the same Kuhn-Tucker conditions are sufficient for
optimality as well. We conclude that a strategy profile is an
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equilibrium if and only if there exist �i � 0 and f�fi � 0; f 2
Fg such that the following conditions are met:

@Vi

@rfi
¼ �i � �fi 8f 2 F ; ð7Þ

�i
X
f2F

rfi � 1

 !
¼ 0; ð8Þ

�fi r
f
i ¼ 0: ð9Þ

We now focus on symmetrical strategy profiles, where all

nodes use an identical strategy. To that end, we define the

function

gfðxÞ¼4@Vi
@rfi

�����
rfj¼x;8j2R

ð10Þ

(note the index i is dropped since the function does not

depend on the choice of any specific i). Computing the

derivative of (2) and noticing that, in a symmetrical strategy

profile, all the summation terms in the right-hand side of (3)

are identical, we obtain an explicit expression for gfðxÞ:

gfðxÞ ¼ CfKf
XR�1

l¼0

R� 1

l

� �
ðKfxÞlð1�KfxÞR�1�l

lþ 1
� ef

¼ Cf 1� ð1�KfxÞR

Rx
� ef ;

ð11Þ

in particular, gfð0Þ ¼ limx!0 g
fðxÞ ¼ CfKf � ef . For conve-

nience, we also define hfðxÞ¼4 1�ð1�KfxÞR
Rx ; thus gfðxÞ ¼

CfhfðxÞ � ef .
At this point, we state some monotonicity properties that

will be useful in several subsequent proofs.

Lemma 1. The following monotonicity properties hold:

1. gfðxÞ and hfðxÞ are strictly decreasing in x;
2.

dhfðxÞ
dx

is strictly increasing in x;
3.

dhfðxÞ=dx
½hfðxÞ�2

is strictly decreasing in x.
4.

� h
0fðxÞ
hfðxÞ

Kfx

ð1�KfxÞR�1

is increasing in x.

Proof. See Appendix. tu

We now state the main result of this section.

Theorem 1. For any vector of flow prices C, there exists a unique
set of f�f ; f 2 Fg such that the symmetrical strategy profile
rfj ¼ �f ; 8j 2 R is a Nash equilibrium. Furthermore, there
exist � � 0,f�f � 0; f 2 Fg, such that

gfð�fÞ ¼ �� �f 8f 2 F ; ð12Þ

�
X
f2F

�f � 1

 !
¼ 0; ð13Þ

�f�f ¼ 0 8f 2 F : ð14Þ

Proof. First, we note that, at the symmetrical strategy profile
defined by f�f ; f 2 Fg, we have (by definition)

@Vi

@rfi

�����
rfi ¼�f ;r�i

¼ gfð�fÞ:

Thus, (12)-(14) coincide with the Kuhn-Tucker conditions
(7)-(9) in this case. Accordingly, the set f�f ; f 2 Fg
corresponds to a symmetrical NE if and only if it satisfies
(12)-(14).

It remains to show that there exists a unique combina-

tion of f�fg, �, and f�fg satisfying (12)-(14). To that end,

define the function V ðxÞ, where x ¼ ðx1; . . . ; xjF jÞ, as

follows: V ðxÞ¼4
P

f2F
R xf

0 gfð�Þd�. Consider the following

optimization problem:

max
x

V ðxÞ s:t:
X
f2F

xf � 1 and xf � 0; 8f 2 F : ð15Þ

Since V ðxÞ is a sum of integrals of decreasing functions
(Lemma 1), it is continuously differentiable and concave,
and, therefore, the above constrained optimization
problem over a compact region must have a unique
solution, which can be denoted by f�f ; f 2 Fg. This
solution must satisfy the Kuhn-Tucker conditions corre-
sponding to problem (15), which are precisely the
conditions listed in (12)-(14). tu

3.2 Boundary Equilibria

We now turn our attention to equilibria consisting of
boundary strategies. We say that node i plays a boundary
strategy if rfi is either 0 or 1 for all f 2 F . Our main result in
this section is stated next.

Theorem 2. For any vector of flow prices C, there exists a
boundary equilibrium with rfi 2 f0; 1g for all i 2 R, f 2 F .

Proof. We construct a simple algorithm that finds a
boundary equilibium, as follows: Initially, start with
the strategy rfi ¼ 0 for all i 2 R, f 2 F . Thereafter,
proceed with R iterations to assign the relay nodes to
flows, where in each iteration k ¼ 1; . . . ; R,

. denote Rf ¼
P

i r
f
i , f 2 F , to be the number of

nodes assigned to flow f so far;
. find the flow f� such that setting rf

�

k ¼ 1
maximizes Vk;

. if assigning rf
�

k ¼ 1 results in Vk � 0, stop; other-
wise assign rf

�

k ¼ 1 and proceed to the next
iteration.

We elaborate on the second step in the above. From (2), if
node k is assigned to flow f in the iteration where Rf
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other nodes already assign a strategy probability of 1 to
that flow, then the node’s utility will be

CfKf
XRf

l¼0

1

lþ 1

Rf

l

� �
ðKfÞlð1�KfÞR

f�l � ef ¼

Cf � 1� ð1�K
fÞR

fþ1

Rf þ 1
� ef ;

ð16Þ

and the flow f� to which node k should be assigned is
thus the one that maximizes (16) among all flows in the
iteration.

We now show by induction that after each iteration k,
the strategies so far frig constitute an equilibrium among
relay nodes i ¼ 1; . . . ; k. This is clearly true for k ¼ 1.
Assume that it is true for k ¼ n� 1, and consider
iteration k ¼ n. Let fn be the flow chosen by node n. By
construction, fn is the flow offering the maximum
payment share to node n, which thus has no incentive
to deviate any probability to other flows where the
expected payment share is smaller. Since the relay nodes
are symmetric, the same holds for all other nodes
assigned to flow fn before iteration n. Now, consider
any node j assigned to a flow fj 6¼ fn. By the induction
assumption, node j had no incentive to deviate before
iteration n, and since the only change from iteration n�
1 to n is that Rfn has increased (i.e., fn will now offer an
even lesser payment share to new nodes than before), it
follows that j will have no incentive to deviate after
iteration n either. Therefore, the strategies after each
iteration are in equilibrium among the nodes assigned so
far, which eventually leads to a boundary equilibrium
after all R nodes are assigned. tu

We emphasize that, unlike the symmetrical equilibrium,
the boundary equilibrium is not necessarily unique (even
after allowing for permutation of the nodes), since (16) in a
particular iteration may be maximized by more than one
flow. For example, consider again the system from Example
1, except that now C1 ¼ 2 and C2 ¼ 1. Applying the
algorithm in the proof of Theorem 2, the first node is assigned
to flow 1; then, the second node becomes indifferent between
the two flows (it can either cooperate with flow 2 and receive
the full payment of C2 ¼ 1, or with flow 1 and receive half of
the payment of C1 ¼ 2). Consequently, r1 ¼ ð1; 0Þ and either
r2 ¼ ð1; 0Þ or r2 ¼ ð0; 1Þ are boundary equilibria (in fact, r2 ¼
ðr1

2; r
2
2Þwith any r1

2 þ r2
2 ¼ 1 will bring about an equilibrium).

We conclude this section by showing the following
property of strictly interior equilibria in the followers’
game. To that end, a strictly interior equilibrium is defined
as an equilibrium where the cooperation probability of any
relay node with every flow is strictly positive.

Theorem 3. If a strictly interior equilibrium exists in the
followers’ game, then it is symmetrical.

Proof. Suppose, to the contrary, that in a strictly interior
equilibrium r, there exists a flow f0 and relay nodes i; j
such that rf0

i < rf0

j . Consider the partial derivative

@Vi

@rfi
¼ CfKf

XR�1

l¼0

PfðlÞ
lþ 1

� ef ; ð17Þ

where PfðlÞ is defined by (3). Separating the terms in (17)
that depend on rfj from those that do not, we obtain

@Vi

@rfi
¼ CfKf

XR�2

l¼0

Pf
j ðlÞ
lþ 1

�Kfrfj
XR�2

l¼0

Pf
j ðlÞ

ðlþ 2Þðlþ 1Þ

" #
� ef ;

ð18Þ

where

Pf
j ðlÞ¼

4 X
T �Rnfi;jg
jT j¼l

Y
j12T

Kfrfj1

Y
j2 62T
j2 6¼i;j

�
1�Kfrfj2

�
ð19Þ

does not depend on either rfi or rfj . A similar expression
can be obtained for

@Vj

@rfj
, separating the terms that depend

on rfi from those that do not. It follows that, for the flow f0,

rf0

i < rf0

j ¼)
@Vi

@rf0

i

>
@Vj

@rf0

j

: ð20Þ

On the other hand, consider the Kuhn-Tucker condi-
tions (7)-(9) for the equilibrium r. Since r is strictly
interior, it follows that �fi ¼ 0; 8i 2 R; f 2 F . Thus, from
(7) and (20), we have

�i ¼
@Vi

@rf0

i

>
@Vj

@rf0

j

¼ �j; ð21Þ

which therefore leads to rfi < rfj for all f 2 F (not just f0),
and, therefore,

P
f2F r

f
i <

P
f2F r

f
j � 1. However, (8)

then implies �i ¼ 0, which is obviously a contradiction
with (21). tu

4 ANALYSIS OF THE LEADERS’ GAME

In this section, we study the properties of the leaders’ game
and its equilibrium (which is the overall SNE of the system).
Our task is complicated by the findings of section 3, namely,
that once the leaders’ strategies C are set, the followers’
equilibrium is not unique. To get around this complication,
we first analyze the leaders’ game under the assumption
that the followers always respond by playing in their
symmetrical equilibrium (which is always unique). For this
case, we establish that an equilibrium in the leaders’ game
always exists, is unique, and is strongly stable in the sense
that the game always converges to it from any initial vector
of flow prices under best-response dynamics. We then show
that an SNE may not exist at all if the followers may play an
equilibrium other than the symmetrical one.

4.1 Followers Play Symmetrical Equilibrium

We explore how the followers’ symmetrical equilibrium
defined in Theorem 1 depends on the payment rate Cf of a
specific flow f 2 F , with all other rates C�f remaining
fixed. To streamline the discussion, we view the value of �f

in the equilibrium corresponding to a setting of Cf as a
function �f ¼ F ðCfÞ (a scalar function, since we focus only
on �f and are not interested in the strategy values for other
flows). Also, we define the value of � that satisfies (13) in
the equilibrium as a function � ¼ �ðCfÞ.

We begin by exploring these functions for extreme
values of Cf . Clearly, with Cf ¼ 0, the utility of cooperating
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with flow f for any relay node is nonpositive, implying
�f ¼ F ðCf ¼ 0Þ ¼ 0. Denote �0 ¼ �ðCf ¼ 0Þ; then, if Cf is
gradually increased, the equilibrium remains unchanged as
long as gfð0Þ ¼ KfCf � ef � �0, since (12) can still be
satisfied with some �f � 0. We conclude that F ðCfÞ ¼ 0

and �ðCfÞ ¼ �0 for all Cf � Cf
min¼
4 �0þef

Kf .

On the other hand, if Cf is very large (more precisely,

Cf � Cf
max¼

4½ðmaxf 0 6¼fC
f 0Kf 0 � ef 0 Þ þ ef � R

1�ð1�Kf ÞR , which im-

plies that gfð1Þ ¼ Cf 1�ð1�Kf ÞR
R � ef � gf 0 ð0Þ ¼ Cf 0Kf 0 � ef 0 for

any f 0 6¼ f), then the equilibrium conditions will be satisfied

by �f ¼ F ðCfÞ ¼ 1 and � ¼ �ðCfÞ ¼ gfð1Þ, with �f
0
> 0 and

therefore �f
0 ¼ 0 for all f 0 6¼ f . Intuitively, ifCf is so large that

even a share of just 1
R of the payment from f is larger than the

full payment from any other flow, then no node will deviate

from cooperating fully with f .
We now proceed to explore the functionsF ðCfÞ and �ðCfÞ

between these extremes, i.e., in the range Cf
min � Cf � Cf

max.
The following lemmas state the necessary monotonicity
properties of these functions; for clarity of presentation, the
detailed proofs of these lemmas are deferred to the
Appendix.

Lemma 2. The function �ðCfÞ is continuous and nondecreasing

in Cf .

Lemma 3. The function F ðCfÞ is continuous, and, in the range

Cf
min � Cf � Cf

max, strictly increasing in Cf .

Lemma 4. The function F ðCfÞ is concave in Cf in the range

Cf
min � Cf � Cf

max.

Proof. See Appendix. tu

We are now equipped to explore how the utility received
by flow f depends on its choice of Cf , i.e., we consider (with
a slight abuse of notation) the function UfðCf;C�f Þ. We also
define the best-response function of flow f to be
BfðC�f Þ¼4argmaxCf UfðCf;C�f Þ. The following two lem-
mas state important properties of these functions:

Lemma 5. For a fixed C�f , the function UfðCf;C�f Þ is concave

in Cf .

Proof. Consider the derivative of the utility function with
respect to Cf , assuming that the followers respond with a
symmetrical equilibrium as analyzed above:

@Uf
@Cf

¼
	
u0fðPf

sucð�fÞÞ � Cf

 @Pf

sucð�fÞ
@�f

@�f

@Cf
� Pf

sucð�fÞ; ð22Þ

where �f ¼ F ðCfÞ. Since ufðPf
sucÞ is concave by

assumption, Psucð�fÞ ¼ 1� ð1�Kf�fÞR is increasing
and concave in �f , and �f is concave in Cf by Lemma 4,
it follows that

@Uf
@Cf is nonincreasing in Cf , i.e., Uf is

indeed concave in Cf . tu

Lemma 6. The best-response function of flow f is bounded by

0 � BfðC�f Þ � u0fð0Þ.
Proof. Notice that Uf can be written as

Uf ¼
ufðPf

sucÞ
Pf
suc

� Cf

� �
Pf
suc:

Obviously, in the best response, the utility is nonnegative

(a utility of 0 can always be obtained by Cf ¼ 0). Hence,

0 � BfðC�f Þ � max
Pf
suc

uf ðPf
sucÞ

Pf
suc

. However, the concavity of

ufðPf
sucÞ and ufð0Þ ¼ 0 imply that

uf ðPf
sucÞ

Pf
suc

� u0fð0Þ for any

0 � Pf
suc � 1, and the lemma follows. tu

From Lemma 6, we conclude that if u0fð0Þ � C
f
min ¼

�ðCf¼0Þþef
Kf , then the flow can never achieve a positive utility.

The strategy Cf used in this case is immaterial, since no
node will cooperate with f under any 0 � Cf � u0ð0Þ, thus
the payment of f to the nodes is 0 in any case. For
concreteness, we define BfðC�f Þ ¼ u0fð0Þ in that case; this
ensures the continuity of the best-response function with
respect to C�f , since �ð0Þ is itself a continuous function of
C�f .

Otherwise, if u0ð0Þ > Cf
min, the optimal Cf is obtained by

solving
@Uf
@Cf ¼ 0. Due to the concavity of Uf in Cf (Lemma 5),

a unique solution is guaranteed; furthermore, we observe
that if uf is continuously differentiable, then the best-
response function is continuous as well.

We now state the main result of this section.

Theorem 4. If the followers always respond by playing in their
(unique) symmetrical NE, then an equilibrium of the leaders’
game (i.e., an SNE of the overall system) exists and is unique.3

Proof. Define the mapping BðCÞ ¼ fBfðC�f Þ; f 2 Fg to be
the collection of best-response functions to the respective
strategy vectors of other flows. Since each component of
BðCÞ is continuous and bounded (Lemma 6), the entire
mapping is continuous and bounded. Therefore, it has a
fixed point, which is an equilibrium of the leaders’ game.
This establishes the existence of the SNE.

In order to prove the uniqueness of the fixed point, we
note that, in an equilibrium, for every flow f 2 F , unless
�f ¼ 0, the equation

@Uf
@Cf ¼ 0 must be satisfied. The proof

then proceeds by contradiction, showing that it is
impossible to have two different points that solve the
equation. For convenience, the details of the (long) proof
are presented in the Appendix. tu

So far, we have considered only the static properties of
existence and uniqueness of the equilibrium in the leaders’
game. In the final part of this section, we show that the game
always converges to the equilibrium dynamically from any
initial vector of strategies under a general assumption on the
sequence of best-response strategy updates.

Lemma 7. The best-response function BfðC�f Þ is monotonic and
nondecreasing in each component of C�f .

Proof. Consider two vectors of flow prices hCf
a ;C

�f
a i,

hCf
b ;C

�f
b i, such that Cf

a ¼ BfðC�f
a Þ, C

f
b ¼ BfðC�f

b Þ, and
the only difference between C�f

a and C�f
b is that one

component Cf 0 ; f 0 6¼ f , is changed between Cf 0

a and Cf 0

b ,
where Cf 0

a < Cf 0

b . The lemma then states that Cf
a � C

f
b .

If Cf
b ¼ u0fð0Þ, then the lemma holds trivially since Cf

b

is already the upper bound of possible values of Cf

(Lemma 6). Therefore, assume Cf
b < u0fð0Þ, i.e., Cf

b is the
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3. To be precise, the equilibrium is unique subject to the above definition
of Bf ðC�f Þ in the case of u0f ð0Þ � C

f
min; in other words, we assume a flow’s

best response is always uniquely defined and ignore the degree of freedom
that exists if the flow’s best-response utility is 0 anyway.



solution of the equation
@Uf
@Cf ¼ 0 at hCf

b ;C
�f
b i, and denote

�b and �fb to be the respective quantities of the
corresponding followers’ equilibrium.

Next, consider the followers’ equilibrium at the price
vector hCf

b ;C
�f
a i, and denote the respective quantities by

�ba, �
f
ba. By applying Lemma 2 from the perspective of

flow f 0, we conclude that �ba � �b; consequently, (12) and
the monotonicity of gfð�fÞ then implies that �fba � �

f
b .

Finally, consider (22). Since each of the terms on the

right-hand side of (22) is decreasing in �f , it follows that

if
@Uf
@Cf ¼ 0 for �f ¼ �fb , then

@Uf
@Cf must be nonpositive for

�f ¼ �fba when the value of Cf is the same (Cf ¼ Cf
b ).

Lemma 5 then implies that the solution of
@Uf
@Cf ¼ 0 under

C�f
a is obtained for Cf ¼ Cf

a such that Cf
a � C

f
b . tu

Theorem 5. Assume that the leaders’ game follows a best-

response dynamics from some initial vector of prices Cf ð0Þ,
i.e., from time to time, an asynchronous update step is taken
where some flow f 2 F updates its strategy from CfðnÞ to
Cfðnþ 1Þ ¼ BfðC�f ðnÞÞ, and the sequence of flows doing the
update steps can be arbitrary as long as the number of steps
between consequent updates of every individual flow is

bounded. Then, limn!1Cf ðnÞ ¼ C�, where C� is the (unique)
equilibrium of the leaders’ game.

Proof. First, consider an arbitrary sequence of update steps
commencing from an initial vector of Cf ð0Þ ¼ h0; 0; . . . ; 0i,
and denote the resulting sequence of flow price vectors by
Cf

minðnÞ. Obviously, for any flow f , the first time the flow
updates its strategy will be a nondecreasing update. In
light of Lemma 7, it follows by induction that all updates
must be nondecreasing, i.e., Cf

minðnÞ is a nondecreasing
sequence. Since Cf

minðnÞ is bounded as well (Lemma 6), it
follows that it must converge to a limit. Due to the
continuity of the best-response function BðCf Þ, this limit
must be its (unique) fixed point C�.

In a similar manner, consider a sequence of best-
response updates from an initial vector of Cf ð0Þ ¼
fu0fð0Þg (i.e., the upper bounds of the respective flows’
best responses, as per Lemma 6), denoted by Cf

maxðnÞ. By
the same token, Lemma 7 implies that all the updates in
the sequence must be nonincreasing, and the sequence
must therefore converge to C�.

Finally, consider a sequence of best-response updates
Cf ðnÞ commencing from an arbitrary initial vector of flow
prices Cf ð0Þ. Without loss of generality, assume that all the
prices are within the bounds set by Lemma 6 (otherwise,
consider instead the sequence only after every flow has
had at least one opportunity to update its strategy). From
Lemma 7, it follows that Cf

minðnÞ � Cf ðnÞ � Cf
maxðnÞ,

provided that for every n, the update step is performed
by the same flow in all three sequences. Since, as
established above, Cf

minðnÞ and Cf
maxðnÞ converge to C�,

it follows that the same is true for Cf ðnÞ as well. tu

4.2 Followers Play Boundary Equilibrium

In this section, we show that the SNE existence property
established in Theorem 4 does not extend in general to the
case that the followers’ response maybe any other than the
symmetrical equilibrium. To that end, we first prove a
structural property of any SNE in a system where the

followers play in a boundary equilibrium, and then show
that in some cases no strategy profile can possibly satisfy
that property.

Theorem 6. If relay nodes always respond to flow price settings

by playing a boundary equilibrium, then at any SNE:

1. if Rf denotes the number of nodes cooperating with
flow f , then either the set F0 ¼ ff 0jRf 0 ¼ 0g is
nonempty or the utility of every relay node is 0;

2. the utility values of all relay nodes are identical and
equal to Hth¼4maxf 0 2 F 0½uf 0 ðKf 0 Þ � ef 0 � (or 0 if Hth

is negative).

Proof. To show the first property, assume to the contrary
that the set F0 is empty (i.e., Rf > 0 for all f 2 F ). The
utility of each node cooperating with f is given by

HfðRfÞ¼4
Cf 1� ð1�KfÞR

f
h i

Rf
� ef : ð23Þ

Consider the flow f 2 F with the highest HfðRfÞ, and
assume that HfðRfÞ > 0. Then, since HfðRfÞ �
Hf 0 ðRf 0 Þ > Hf 0 ðRf 0 þ 1Þ for any f 0 2 F , there exists an
� > 0 by which Cf can be reduced such that the new
HfðRfÞ is still both positive and higher than Hf 0 ðRf 0 þ 1Þ
for any f 0 2 F , and, therefore, no node will deviate from
cooperating with f . Therefore, Cf cannot be the best-
response strategy of f .

If F0 is nonempty, consider the flow f 62 F 0 with the

highest HfðRfÞ. We observe that, if HfðRfÞ > Cf 0Kf 0 �
ef
0

for all f 0 2 F 0, then, again, Cf is not the best-response

strategy for f since it can be reduced by some � > 0

without triggering a deviation of any relay node. On the

other hand, if there exists any flow f̂ 62 F 0 with

Hf̂ðRf̂Þ < Hth, then it follows that there exists a f 0 2 F
which can “poach” one of relay nodes currently

cooperating with f̂ and obtain a positive utility, by

setting Cf 0 ¼ uf 0 ðKf 0 Þ
Kf 0 � � for some sufficiently small � > 0.

Combining the above observations, we conclude that, if

Hth � 0, then HðRfÞ ¼ Hth for any f 62 F 0, i.e., all relay

nodes receive an identical utility of Hth. tu
Corollary. In a system with two symmetrical flows (i.e., with

identical ufð�Þ and Kf for f 2 f1; 2g) and ef ¼ 0; f 2 f1; 2g,
an SNE does not exist.

Proof. Consider the options allowed by Theorem 6. If the
utility of all nodes is 0, then, with ef ¼ 0, this implies
Cf ¼ 0 for both flows. Clearly, this is not an SNE since
each flow has an incentive to increase its Cf to a small
positive value so as to encourage the nodes to cooperate
with it and thereby obtain a positive utility.

On the other hand, if all nodes receive a positive
utility of Hth > 0, the first property of the theorem
implies that one of the flows (say, flow 2) does not have
any nodes cooperating with it, and therefore, the other
flow (say, flow 1) is bearing the payment for all the
nodes, i.e.,

C1 ½1� ð1�KfÞR�
R

¼ Hth ¼ ufðKfÞ:
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The utility of flow 1 is therefore

U1 ¼ uf
�
1� ð1�KfÞR

�
� C1

	
1� ð1�KfÞR



¼ uf

�
1� ð1�KfÞR

�
�R � ufðKfÞ

< uf
�
R �Kf

�
�R � ufðKfÞ � 0;

where the inequalities follow from the monotonicity and

concavity of uf and the fact that R � 2. It follows that the

first flow cannot be in a best-response strategy. There-

fore, no SNE is possible in this system. tu
Remark. The fact that R � 2 is crucial in the proof of the

corollary above. If R ¼ 1, i.e., there is only one relay node

in the network, then the “followers’ equilibrium”

degenerates simply to that node cooperating with the

flow f that provides the highest Hfð1Þ ¼ CfKf � ef � 0,

resulting in Pf
suc ¼ Kf for that flow. It can be seen that a

vector C that satisfies the following conditions is then a

system SNE:

. 0 < Cf̂ � ufðKf̂Þ=Kf̂ and Cf̂Kf̂ � ef̂ � 0 for one
particular f̂ 2 F ;

. for all other f 0 6¼ f̂ , uf 0 ðKf 0 Þ � ef 0 � Cf̂Kf̂ � ef̂ ;

. for at least one f 0 6¼ f̂ , uf 0 ðKf 0 Þ � ef 0 ¼ Cf̂Kf̂ � ef̂ .

In particular, such a vector always exists for symmetrical

flows with ef ¼ 0 for all f 2 F , by setting Cf ¼ uf ðKf Þ
Kf for all

flows. In the corresponding equilibrium, the relay node will

then cooperate with one of the flows f̂ , yet the utility of all

flows is 0 and cannot be improved: flow f̂ cannot reduce its

Cf̂ by any amount since that will cause the node to switch

to a different flow, while any attempt to increase the offered

payment by another flow will only result in a negative

utility for that flow.

5 NUMERICAL EXAMPLES

In this section, we demonstrate some of the theoretical

results of the paper and gain further insight on the behavior

of the game via a numerical study. We aim to present

several scenarios indicative of the typical interactions

among the players in the game, beginning with the simple

case of two flows competing for the service of one relay,

continuing with two flows with multiple relay nodes (up to

R ¼ 5), and finally considering the asymptotic case where

the number of flows and relay nodes is large. In particular,

we use these examples to comment on the issue of

equilibrium efficiency, which was not explicitly addressed in

the analytical part of the paper.

5.1 Competition between Heterogeneous Flows:
Single Relay

We start with a degenerate scenario consisting of two flows
and single relay node (F ¼ f1; 2g;R ¼ f1g). For the flows,
we adopt a linear utility function, as follows:
ufðPf

sucÞ ¼ mfP
f
suc; f 2 F . In the following, we fix m1 ¼ 1

and vary m2 to study how the game results depend on the
heterogeneous flow utilities. We set P 1

sn ¼ P 1
nd ¼ 0:8 and

P 2
sn ¼ P 2

nd ¼ 0:4 (which translates to K1 ¼ 0:64 and
K2 ¼ 0:16), reflecting a difference in channel qualities
between the endpoint pairs of the flows and the relay.
Finally, we assume ef ¼ 0 for both flows. It is easily verified
that the socially optimal operating point (i.e., one that
maximizes the total utility of all flows) is achieved if the
relay node cooperates entirely with the flow with the higher
utility, i.e., r ¼ ð1; 0Þ if m1K

1 � m2K
2, and r ¼ ð0; 1Þ

otherwise; therefore, the total maximum social utility is
Umax ¼ maxð0:64; 0:16m2Þ.

Fig. 1 plots the flow strategies C1; C2 in the resulting SNE
as a function of m2. Clearly, the relay node serves the more
profitable flow with probability 1 at the equilibrium. Fig. 2
illustrates the utility for the flow side (U1 þ U2) and the
relay side (V1), as well as the maximum social utility Umax. It
is evident that Umax ¼ V1 þ U1 þ U2, i.e., the SNE always
coincides with the socially optimal operating point. In other
words, the proposed pricing mechanism and the resulting
competition between the flows guides the relay node to
operate efficiently without any information on the flows’
utilities.

It is interesting to observe how the total system utility
gets divided between the flows and the relay node. If m2 is
small, flow 1 can obtain the relay service for a very cheap
cost, since flow 2 is limited in the price it can offer due to its
own low utility. The full utility is thus retained by flow 1.
As m2 increases, flow 1 must increase its price so as to
remain just slightly more attractive to the relay than the
maximum offer flow 2 is able to make. Thus, the relay node
gets paid more for its service, while the utility retained by
the flow decreases. At m2 ¼ K1

K2
¼ 4, the price war between

the flows is at its peak, and the entire system utility of 0.64
is enjoyed by the relay node. For m2 > 4, the first flow can
no longer compete with the price able to be offered by flow
2; therefore, flow 2 can secure the service of the relay node
by matching (or offering just slightly above) the maximum
of flow 1, i.e., C2 ¼ 4. From that point, the utility retained by
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Fig. 1. Prices C1; C2 at the SNE (single relay case).

Fig. 2. Utility partition among flows and relay.



the relay node is constant, and all further increases in m2

are reflected in the utility of flow 2.

5.2 Multiple Flows and Multiple Relay Nodes

We first consider a scenario with two flows and two relay

nodes, which is more representative of the interactions

among players in a multiple-flow and multiple-relay

system. Apart from the second relay, all parameters are

set to the same values as before. The results (for the case

where the relay nodes play the symmetrical equilibrium)

are shown in Figs. 3, 4, and 5. Fig. 3 shows the prices offered

by the flows in the SNE. Fig. 4 displays the equilibrium

efficiency as the “Price of Anarchy” [21], defined as the ratio

between the optimal social utility and the system utility

achieved at the equilibrium. Fig. 5 plots the convergence

trajectories of the flows’ best-response strategies for the case

of m2 ¼ 3.

From the results, we observe that the price of anarchy

tends to 1 when the flows are heterogeneous, i.e., when m2

is either very small or very large. This is explained by the

fact that, in those extremes, both the equilibrium strategy

and the global optimum require the relay nodes to

cooperate fully with only one of the flows, respectively.

Otherwise, for intermediate ranges of m2, the SNE is less

efficient since the symmetrical followers’ equilibria tend to

assign a nonzero cooperation probability to each of the

flows, as neither flow is in a position to offer a price large

enough to attract both relays entirely to itself. Nevertheless,

we observe that even the worst price of anarchy is only

slightly greater than 1.
To further investigate the efficiency of the proposed

pricing framework, we conduct a range of simulations with

two flows and R (1 � R � 5) relay nodes, using more

sophisticated utility functions, namely power-law utility

(ufðPf
sucÞ ¼ mfðPf

sucÞ
a, 0 < a � 1) and logarithmic utility

(ufðPf
sucÞ ¼ mflogð1þ Pf

sucÞ). For each R, we run 100 random

scenarios with mf ,ef , and Kf uniformly distributed in the

range of mf 2 ½1; 100�, ef 2 ½0; 10�, Kf 2 ½0; 1�, respectively.

Fig. 6 plots the average ratio between Uopt, the total system

utility at the global optimum, and USNE , the total utility at

the SNE. Fig. 7 shows a representative histogram of the ratio

USNE=Uopt (for R ¼ 4 with logarithmic utility; a similar

histogram is observed in other cases). These results suggest

that the proposed pricing framework can bring about a

reasonably efficient equilibrium with only a small system

utility loss due to players’ selfishness.
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Fig. 3. Prices C1; C2 at SNE (two-relay scenario).

Fig. 4. Price of anarchy for two-relay scenario.

Fig. 5. Convergence of prices to SNE: scenario 2.

Fig. 6. Average ratio between Uopt and USNE .

Fig. 7. Histogram of USNE=Uopt for R ¼ 4.



5.3 Large System Scenario: Many Flows and Many
Relay Nodes

In this section, we demonstrate the asymptotic properties of
the game in a large-scale symmetrical scenario, consisting of
100 relay nodes and 10 flows with identical parameters of
Kf ¼ 0:6, ufðPf

sucÞ ¼ Pf
suc, and ef ¼ e for all flows. Clearly,

in this case, the cooperation probabilities of all relay nodes
with all flows are identical (rfi ¼ r; 8i 2 R; f 2 F ), whether
in the (unique) system equilibrium or in the optimal
operating point (i.e., one that maximizes the total system
utility). Accordingly, we vary the energy cost e and
compare the cooperation probability and the total utility
achieved in the unique SNE versus the optimum, as a
function of e.

The results are shown in Figs. 8 and 9. When the energy
cost is either very high or very low, the strategy of the relay
nodes at the SNE tends to the same as in the optimum, i.e.,
respectively, not to cooperate at all (r ¼ 0) or to cooperate
completely (rfi ¼ 1

Fj j for every f 2 F ). Otherwise, we
observe that the relay nodes’ strategy at the SNE is more
conservative than in the optimum, leading to a lower Pf

suc

for the flows and consequently a lower total system utility;
however, once again we observe that the price of anarchy
remains small, not exceeding 1.28 anywhere.

5.4 An Asymmetrical Scenario

Our analysis in this paper has established several funda-
mental properties of equilibria in systems with symmetrical
relay nodes, i.e., whereKf and ef for any f 2 F are the same

across all nodes. In the final part of this section, we aim to
illustrate that, to some extent, the equilibrium and conver-
gence properties carry over to asymmetrical scenarios as
well, where the success probability Kf

i for flow f is not the
same for different i 2 R. To that end, we consider a system of
two flows and two relay nodes, with K1

1 ¼ K2
1 ¼ 0:8,

K1
2 ¼ 0:5, K2

2 ¼ 0:4, e1 ¼ e2 ¼ 0, ufðPf
sucÞ ¼ mfP

f
suc, where

m1 ¼ 1 and m2 ¼ 2.
With regard to the followers’ game, for any C ¼ ðC1; C2Þ,

an interior strategy profile r ¼ frfi g; 0 � r
f
i � 1 is an equili-

brium if it satisfies the condition

@Vi

rfi
¼ 0 i; f ¼ 1; 2:

Consequently, we explore the dynamics of the game from
the leaders’ perspective, starting initially from C1 ¼ C2 ¼ 0
and allowing each flow, in turn, to make a best-response
update of its strategy, i.e., at each step n, find CfðnÞ that
maximizes ufðCfðnÞ; C�fðn� 1ÞÞ, under the assumption that
the followers will play in an interior equilibrium (if it exists).
The resulting price trajectories are shown in Fig. 10. We
observe that CðnÞ converges to C� ¼ ð0:780; 1:106Þ, which is
a fixed point of the best response, or a system SNE; the
corresponding followers’ equilibrium is r1 ¼ ðr1

1; r
2
1Þ ¼

ð0:335; 0:665Þ and r2 ¼ ðr1
2; r

2
2Þ ¼ ð0:194; 0:806Þ. Incidentally,

it is interesting to note that, with the same vector of prices C�,
a boundary equilibrium in the followers’ game exists as well
(namely, r1 ¼ ð0; 1Þ, r2 ¼ ð1; 0Þ). This example clearly shows
that some of the properties established in the paper, e.g., the
existence of interior and boundary equilibria in the fol-
lowers’ game and the convergence to the SNE, apply to some
extent beyond the limited symmetrical node model con-
sidered in the paper. Establishing the precise conditions for
the existence and uniqueness of the system equilibrium, and
the dynamic convergence thereto, for the general asym-
metric case, remains an important topic for future work.

6 CONCLUSION

We have proposed a market-based pricing framework for
wireless networks with autonomous nodes in the context of
cooperative relaying. An important difference between our
model and other related studies that feature payment for
packet forwarding is that a packet maybe relayed by several
nodes simultaneously, and, therefore, the payment is

768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

Fig. 8. Cooperation probability as a function of e.

Fig. 9. Network utility at symmetric optimum and SNE.

Fig. 10. Trajectory of prices: asymmetrical scenario.



shared among several nodes that have participated in its

delivery. We have shown that this variation leads to

substantially different properties of the resulting game

model. In particular, we have established that the game

among the relay nodes (followers) possesses several kinds

of Nash equilibria, including a unique symmetrical NE and

at least one boundary NE. Furthermore, we have estab-

lished that the game among the flows (leaders) always

possesses a unique and strongly stable Stackelberg equili-

brium if the followers respond in their symmetrical NE, but

an equilibrium may not exist at all if the followers play in a

boundary NE. Finally, we demonstrated that the resulting

system equilibrium is reasonably efficient from a social

perspective, particularly when the flows have very hetero-

geneous utilities.
Our work was motivated by cooperative relaying in

wireless networks and presented in terms of modeling the

competition among flows and relay nodes in that context.

Nevertheless, the model we studied, and its novel aspect of

shared payment, are generic and readily applicable to many

other distributed systems where several “workers” may

carry out the same “job” (e.g., for reliability purposes) and

share the payment equally. Our study, in this paper, focused

on the fundamental properties of the game, namely, existence

and uniqueness of equilibria. Some important theoretical

questions that remain to be investigated are the bounds on

equilibrium efficiency (e.g., expressed as the price of

anarchy), as well as extensions of the fundamental equili-

brium properties to general asymmetrical systems. These

important directions remain the subject for future work.

APPENDIX

Proof of Lemma 1. For convenience, we introduce a

variable change of y¼41�Kfx, and slightly abuse

notation by referring to gfðyÞ and hfðyÞ as functions of y.
We compute the derivatives of hfðyÞ:

dhfðyÞ
dy

¼ Kf

Rð1� yÞ2
1þ ðR� 1ÞyR �RyR�1
	 


; ð24Þ

d2hfðyÞ
dy2

¼ Kf

Rð1� yÞ3
2� ðR� 1ÞðR� 2ÞyR
	

þ2RðR� 2ÞyR�1 �RðR� 1ÞyR�2


: ð25Þ

Denote the expressions in [brackets] in (24) and (25) by

A1ðyÞ and A2ðyÞ, respectively. Then,

1. Since A1ð1Þ ¼ 0 and dA1ðyÞ
dy ¼ �RðR� 1ÞyR�2ð1�

yÞ < 0 for R > 1 and 0 < y < 1, it follows that
A1ðyÞ is strictly positive for all 0 < y < 1. Hence,
hfðyÞ is strictly increasing in y, i.e., hfðxÞ (and
therefore gfðxÞ as well) is strictly decreasing in x.

2. Since A2ð1Þ ¼ 0 and dA2ðyÞ
dy ¼ �RðR� 1ÞðR� 2Þ �

yR�3ð1� yÞ2 < 0 for R > 1 and 0 < y < 1, it
follows that A2ðyÞ is strictly positive for all
0 < y < 1. Hence, dh

f ðyÞ
dy is strictly increasing in y,

which implies that dhf ðxÞ
dx ¼ �

dhf ðyÞ
dy is strictly

increasing in x.
3. To show that

dhfðxÞ=dx
½hfðxÞ�2

is decreasing in x, or, equivalently, that

dhfðyÞ=dy
½hfðyÞ�2

is decreasing in y, it suffices to show that

hfðyÞ d
2hfðyÞ
dy2

� 2
dhfðyÞ
dy

� �2

< 0:

By a straightforward calculation, this is shown to
be equivalent to

ðRþ 1Þyþ ðR� 1ÞyRþ1 � ðRþ 1ÞyR

� ðR� 1Þ < 0:
ð26Þ

Denote A3ðyÞ to be the expression on the left-hand
side of (26). Since A3ð1Þ ¼ 0 and

dA3ðyÞ
dy

¼ ðRþ 1Þ � ½1þ ðR� 1ÞyR �RyR�1�

¼ ðRþ 1ÞA1ðyÞ > 0

for all 0 < y < 1, property 3 follows.
4. Noticing that

�h
0fðxÞ
hfðxÞ

Kfx

ð1�KfxÞR�1
¼

dh0f ðyÞ
dy

hfðyÞ
1� y
yR�1

¼ 1þ ðR� 1ÞyR �RyR�1

ð1� yRÞyR�1
;

ð27Þ

it suffices to show that the derivative of the above
with respect to y is nonpositive, i.e.,

�ðR� 1Þ þ ð3R� 2ÞyR �R2y2R�1

þ ðR� 1Þ2y2R � 0:
ð28Þ

Denote the expression on the left-hand side of (28)
by A4ðyÞ. Since A4ð1Þ ¼ 0, it suffices to show that
dA4

dy � 0, which is equivalent to

ð3R� 2Þ �Rð2R� 1ÞyR�1 þ 2ðR� 1Þ2yR � 0:

However,

ð3R� 2Þ �Rð2R� 1ÞyR�1 þ 2ðR� 1Þ2yR

� ð3R� 2ÞRyR�1 � ð3R� 2ÞðR� 1ÞyR

�Rð2R� 1ÞyR�1 þ 2ðR� 1Þ2yR

¼ RðR� 1ÞðyR�1 � yRÞ ¼ A1ðyÞ;

and A1ðyÞ � 0 for 0 < y < 1 has already been
shown in the proof of property 1 above. The proof
of the lemma is thus complete. tu

Proof of Lemma 2. The continuity of � with respect to Cf is

immediate from (12)-(14) and the continuity of gf . To

establish the monotonicity, suppose to the contrary that

�1 ¼ �ðCf
1 Þ > �ðCf

2 Þ ¼ �2 for some Cf
1 < Cf

2 . Then, �1 >

�2 � 0 implies that, in the equilibrium corresponding to
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Cf
1 ,
P

f 02F �
f 0 ¼ 1. Therefore, the set F0 ¼ ff 0j�f 0 > 0g is

nonempty, and all flows f 0 2 F 0 satisfy gf
0 ð�f 0 Þ ¼ �1

(since �f
0
> 0 implies �f

0 ¼ 0). In the second equilibrium

(corresponding to Cf
2 ), since �2 < �1, it follows that each

gf
0 ð�f 0 Þ must be smaller than in the first equilibrium.

However, we note that for any f 0 6¼ f the function gf
0

has

not changed, and for f itself the function gf even

increased (since Cf
1 < Cf

2 ). Since gf
0 ð�f 0 Þ are strictly

decreasing functions (Lemma 1), it follows that �f
0

must

have strictly increased in the second equilibrium for all

f 0 2 F 0, which is obviously impossible. tu
Proof of Lemma 3. Again, the continuity of �f with respect

to Cf is immediate from the continuity of gf and (12)-
(14). We now prove the monotonicity. Assume
Cf

min � C
f
1 < Cf

2 � Cf
max. Consider the following alter-

natives:

. �ðCf
2 Þ ¼ 0. By Lemma 2, this implies �ðCf

1 Þ ¼ 0

as well. In both equilibria (corresponding to Cf
1

and to Cf
2 ), since gfð0Þ � 0 by the definition of

Cf
min, it follows that (12) is satisfied with �f ¼ 0

and gfð�fÞ ¼ Cfhfð�fÞ � ef ¼ 0. It follows that
Cf

1h
fðF ðCf

1 ÞÞ ¼ C
f
2h

fðF ðCf
2 ÞÞ, which implies

F ðCf
1 Þ < F ðCf

2 Þ by the monotonicity of hf

(Lemma 1).
. �ðCf

2 Þ > 0. Thus, in the equilibrium correspond-
ing to Cf

2 , �f þ
P

f 0 6¼f �
f 0 ¼ 1; moreover, by the

definition of Cf
max, the set F0 ¼ ff 0j�f 0 > 0g con-

tains at least one flow f 0 6¼ f , and all flows f 0 2
F 0 n ffg satisfy gf

0 ð�f 0 Þ ¼ �ðCf
2 Þ. Since the func-

tions gf
0

for all flows f 0 2 F 0 n ffg are the same in
both equilibria and are strictly decreasing in the
respective �f

0
, and �ðCf

1 Þ � �ðCf
2 Þ by Lemma 2, it

follows that, for all f 0 2 F 0 n ffg, �f
0

in the
equilibrium of Cf

2 are not higher than in that of
Cf

1 . Therefore, F ðCf
1 Þ � F ðC

f
2 Þ. Since hfð�fÞ is

decreasing in �f and Cf
1 < Cf

2 , this leads to

�ðCf
1 Þ ¼ C

f
1h

fðF
�
Cf

1

�
Þ � ef

< Cf
2h

fðF
�
Cf

2

�
Þ � ef ¼ �

�
Cf

2

�
:

Consequently, the �f
0

of all flows f 0 2 F 0 n ffg in
equilibrium 2 are, after all, strictly lower than in
equilibrium 1; therefore, F ðCf

1 Þ < F ðCf
2 Þ. tu

Proof of Lemma 4. From Lemma 3, it follows that, for every
0 < �f < 1, there exist unique Cf ¼ F�1ð�fÞ, �, and
f�f 0 ; f 0 6¼ fg that define a symmetrical equilibrium
together with �f . Therefore, we can view these quantities
as functions of �f , and consider their derivatives with
respect to �f .

We rewrite (12) as follows:

Cfhfð�fÞ � ef ¼ �; ð29Þ

and, for any flow f 0 6¼ f such that �f
0
> 0,

Cf 0hf
0 ð�f 0 Þ � ef 0 ¼ �: ð30Þ

Taking the derivative of both sides in (29) and (30) with
respect to �f , we obtain, respectively,

dCf

d�f
hfð�fÞ þ Cf dh

fð�fÞ
d�f

¼ d�

d�f
; ð31Þ

Cf 0 dh
f 0 ð�f 0 Þ
d�f 0

d�f
0

d�f
¼ d�

d�f
; ð32Þ

or, rearranging (32),

d�f
0

d�f
¼

d�
d�f

Cf 0 dhf
0

d�f
0

: ð33Þ

We now distinguish between two subregions of �. If

�f þ
P

f 0 6¼f �
f 0 < 1, then � ¼ 0 in a vicinity of �f . Thus,

d�
d�f
¼ 0; also, gfð�fÞ ¼ Cfhfð�fÞ � ef ¼ 0. From (31), we

thus obtain

dCf

d�f
¼ �C

fdhfð�fÞ=d�f
hfð�fÞ ¼ � e

fdhfð�fÞ=d�f

hfð�fÞ½ �2
; ð34Þ

which, by Lemma 1, is nondecreasing in �f with ef � 0.
Otherwise, if �f þ

P
f 0 6¼f �

f 0 ¼ 1, then
P

f 0
d�f
0

d�f
¼ �1 in

the vicinity of �f . Together with (33), this implies

d�

d�f
¼ �

X
f 0 6¼f

Cf 0 dh
f 0 ð�f 0 Þ
d�f 0

; ð35Þ

which can be fed back into (31) to yield

dCf

d�f
¼ � 1

hfð�fÞ Cf dh
fð�fÞ
d�f

þ
X
f 0 6¼f

Cf 0 dh
f 0 ð�f 0 Þ
d�f 0

" #

¼ �ð�þ e
fÞdhfð�fÞ=d�f

hfð�fÞ½ �2
� 1

hfð�fÞ
X
f 0 6¼f

Cf 0 dh
f 0 ð�f 0 Þ
d�f 0

:

ð36Þ

We observe that, since � is increasing in �f and gf
0 ð�f 0 Þ is

decreasing in �f
0
, it follows that each �f

0
is decreasing in �f .

Therefore, dh
f 0 ð�f0 Þ
d�f
0 , which is increasing in �f

0
by Lemma 1, is

decreasing in �f . It follows that (36) is increasing in �f .

Combining our findings that both (34) and (36) are

nondecreasing in �f , and noticing that the jump in dCf

d�f
at

the boundary between the two subregions (namely, the

difference between (36) at � ¼ 0 and (34)) is positive, we

conclude that the function Cf ¼ F�1ð�fÞ is convex, and,

therefore, F ðCF Þ is concave in the entire range

Cf
min � Cf � Cf

max. tu
Proof of Theorem 4 (Uniqueness). We repeat the observa-

tion that, in an equilibrium, for every flow f0 2 F , unless
�f0 ¼ 0, the equation

@Uf0
@Cf0
¼ 0 must be satisfied. Using

(22) and further applying either (34) or (36) (depending
on whether the regime of

P
f2F �

f < 1 or
P

f2F �
f ¼ 1

holds in the equilibrium), it can be verified by a
straightforward simplification that this equation is
equivalent to either
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RKf0ðu0f0
� Cf0Þð1�Kf0�f0ÞR�1

�f0
¼ �Cf0h0f0 �f0

� �
¼ �

ef0 � �f0
� �

h0f0 �f0
� �

hf0 �f0ð Þ ;

ð37Þ

if
P

f2F �
f < 1, or

RKfðu0f0
� Cf0Þð1�Kf0�f0ÞR�1

�f0
¼ �

X
j2F

Cjh0j; ð38Þ

in the case of
P

f2F �
f ¼ 1.

Assume, by contradiction, that there exist two
different equilibria a and b, and denote the respective
quantities by fCf

a ; �
f
a; �a; �

f
ag and fCf

b ; �
f
b ; �b; �

f
bg, where

Cf
a 6¼ C

f
b for some f 2 F . Without loss of generality,

assume
P

f �
f
a �

P
f �

f
b .

At this stage, we establish two auxiliary lemmas that
are used later in the proof.

Lemma 8. There exists an f 2 F such that �fa > �fb .

Proof. Assume to the contrary that �fa ¼ �
f
b for all f 2 F ,

and, without loss of generality, that Cf
a > Cf

b for some

f 2 F . According to the definition of the best-response

function BfðC�f Þ, if �fa ¼ �
f
b ¼ 0, then Cf

a ¼ C
f
b ¼ u0fð0Þ.

Therefore, there must exist a flow f0 with Cf0
a > Cf0

b and

�f0
a ¼ �

f0

b > 0. Consequently, �f0
a ¼ �

f0

b ¼ 0. This leads to

�a ¼ Cf0
a h

f0ð�f0
a Þ � ef0 > Cf0

b h
f0ð�f0

b Þ � ef0 ¼ �b. It follows

that Cf 0
a > Cf 0

b for all f 0 2 F such that �f
0
a ¼ �

f 0

b > 0.

Furthermore, either �a or �b must be nonzero, implying

that
P

f2F �
f
a;b ¼ 1.

It follows that (38) must be satisfied in both equilibria,
which can be seen to be impossible. Indeed, Cf0

a > Cf0

b

implies that the left-hand side of (38) is smaller in
equilibrium a than in b; on the other hand, since Cf

a � C
f
b

for all f 2 F , the right-hand side of (38) is larger in
equilibrium a than in b. This contradiction completes the
proof of the lemma. tu

Lemma 9. If �a � �b and �fa > �fb for some f 2 F , then

Cf
a > Cf

b .

Proof. Since �fa > �fb � 0 implies �fa ¼ 0, we have (from (12))

Cf
ah

fð�faÞ � ef ¼ �a � �b � �
f
b ¼ C

f
b h

fð�faÞ � ef :

Since hfð�fÞ is a monotonically decreasing function

(Lemma 1), the above inequality readily implies

Cf
a > Cf

b . tu
We now turn to prove the SNE uniqueness by consider-

ing the following possible three cases.
Case 1.

P
f �

f
a < 1 (and therefore

P
f �

f
b < 1, implying

that �a ¼ �b ¼ 0). Consider the flow f0 such that �f0
a > �f0

b ;

therefore �f0
a ¼ 0 and Cf0

a > Cf0

b by Lemma 9.
Since (37) must hold at both equilibria, applying Lemma

1 (property 4), we get

RKf0ðu0f0

���
a
�Cf0

a Þ ¼
ef0h0f0 �f0

a

� �
� �f0

a

hf0

�
�f0
a

�
� ð1�Kf0�f0

a ÞR�1
>

�
ef0 � �f0

b

�
h0f0
�
�f0

b

�
� �f0

b

hf0

�
�f0

b

�
� ð1�Kf0�f0

b Þ
R�1
¼ RKf0ðu0f0

���
b
�Cf0

b Þ;

which implies that u0f0

���
a
> u0f0

���
b
, contradicting the concavity

of uf0
.

Case 2.
P

f �
f
a ¼

P
f �

f
b ¼ 1. Without loss of generality,

assume �a � �b. We divide F into two subsets, F 1 ¼
ff j�fa > �fbg and F 2 ¼ ff j�fa � �

f
b g. Note that both F 1 and

F 2 must be nonempty, and that it follows from Lemma 9

that Cf
a > Cf

b for all f 2 F 1.
In this case, (38) must be satisfied for every f0 2 F 1 in

both equilibria. Since �f0
a > �f0

b , Cf0
a > Cf0

b , and the function

uf0
is concave, it is clear that the left-hand side of (38) is

greater in equilibrium b than in a. As a result, the same must

be true for the right-hand side of (38) as well.
Now, consider (38) for a flow f0 2 F 2. Since the right-

hand side of (38) is the same for all flows (it does not

depend on f0), the left-hand side must again be greater in

equilibrium b than in a. Since, for f0 2 F 2, �f0
a � �

f0

b (and

again taking into account the concavity of uf0
), it follows

that Cf0
a � C

f0

b . In other words, Cf
a � C

f
b for all f 2 F , which

contradicts the fact that the right-hand side of (38) is greater

at equilibrium b.
Case 3.

P
f �

f
a ¼ 1 >

P
f �

f
b . This case is similar to the

previous two, except that now (38) must hold at equilibrium

a and (37) applies in equilibrium b.
Again, consider a flow f0 such that �f0

a > �f0

b . Clearly,

�a � �b ¼ 0. Lemma 9 therefore implies that Cf0
a > Cf0

b .

Combining (37) and (38), and applying property 3 from

Lemma 1, we obtain

RKf0
�
u0f0

��
b
� Cf0

b

��
1�Kf0�f0

b

�R�1

�f0

b

¼ �
ef0h0f0

�
�f0

b

�
	
hf0
�
�f0

b

�
2
< �
ð�a þ ef0Þh0f0 �f0

a

� �
	
hf0

�
�f0
a

�
2 <
X
f2F

ð�a þ efÞh0f �f0
a

� �
	f�

�f0
a

�
2
¼
RKf0

�
u0f0

��
a
� Cf0

��
1�Kf0�f0

a

�R�1

�f0
a

;

which contradicts with �f0
a > �f0

b and Cf0
a > Cf0

b .
The uniqueness of the fixed point of BðCÞ, and therefore

of the system equilibrium, is thus established. tu
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