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On Optimality of Myopic Policy for
Restless Multi-Armed Bandit Problem:

An Axiomatic Approach
Kehao Wang and Lin Chen

Abstract—Due to its application in numerous engineering prob-
lems, the restless multi-armed bandit (RMAB) problem is of funda-
mental importance in stochastic decision theory. However, solving
the RMAB problem is well known to be PSPACE-hard, with the
optimal policy usually intractable due to the exponential computa-
tion complexity. A natural alternative approach is to seek simple
myopic policies which are easy to implement. This paper presents a
generic study on the optimality of the myopic policy for the RMAB
problem. More specifically, we develop three axioms characterizing
a family of generic and practically important functions termed as
regular functions. By performing a mathematical analysis based
on the developed axioms, we establish the closed-form conditions
under which the myopic policy is guaranteed to be optimal. The
axiomatic analysis also illuminates important engineering implica-
tions of the myopic policy including the intrinsic tradeoff between
exploration and exploitation. A case study is then presented to il-
lustrate the application of the derived results in analyzing a class of
RMAB problems arising from multi-channel opportunistic access.

Index Terms—Myopic policy, opportunistic spectrum access
(OSA), restless multi-armed bandit (RMAB) problem.

I. INTRODUCTION

T HE restless multi-armed bandit (RMAB) problem, one of
the most well-known generalizations of the classic multi-

armed bandit (MAB) problem, is of fundamental importance
in stochastic decision theory due to its generic nature and its
application in numerous engineering problems such as wireless
channel access, communication jamming and object tracking.
The standard formulation of the RMAB problem can be briefly
summarized as follows1: There is a bandit of independent
arms, each evolving as a two-state Markov process. At each time
slot, a player chooses of the arms to play and
receives a certain amount of reward depending on the state of
the played arms. Given the initial state of the system, the goal
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1Please refer to Section III for a detailed formulation of the RMAB problem
studied in this paper.

of the player is to find the optimal policy of playing the arms at
each slot so as to maximize the aggregated discounted long-term
reward.

Despite the significant research efforts in the field, the
RMAB problem in its generic form still remains open. Until
today, few results are reported on the structure of the optimal
policy. Obtaining the optimal policy for a general RMAB
problem is often intractable due to the exponential computation
complexity. Hence, a natural alternative is to seek simple my-
opic policies maximizing the short-term reward.2 However, the
optimality of such myopic policies is not always guaranteed. In
such context, a natural while fundamentally important question
arises: Under what conditions is the myopic policy guaranteed
to be optimal?

In this paper, we answer the above posed question by per-
forming an axiomatic study. More specifically, we develop three
axioms characterizing a family of functions which we refer to as
regular functions, which are generic and practically important.
We then establish the optimality of the myopic policy when the
reward function can be express as a regular function and when
the discount factor is bounded by a closed-form threshold de-
termined by the reward function. We also illustrate how the de-
rived results, generic in nature, are applied to analyze a class
of RMAB problems arising from multi-channel opportunistic
access.

Compared with the existing literature addressing the opti-
mality of the myopic policy of the RMAB problem such as [1],
[2], the contribution of this paper is twofold.

1) When studying the optimality of the myopic policy, most
existing works focus on the homogeneous case where
each channel follows the identical Markov chain model,
including our previous work [3] focusing on the optimality
of the myopic policy. However, the analysis in [3] relies
on some specific properties of the homogeneous channels
to establish the optimality. These properties are no more
applicable in the heterogeneous case where the Markov
chains characterizing the channels are not identical, which
requires an original study that cannot draw on existing
results. To the best of our knowledge, very few results
have been obtained for the heterogeneous case. Our work
presented in this paper fills this void by establishing the
conditions on the optimality of the myopic policy for the
heterogeneous case.

2) In contrast to the research line followed by the related
works in [1] and [2] aiming at showing the optimality/non-

2The myopic policy is also termed as greedy policy in the literature.
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optimality of the myopic policy in given application sce-
narios, our work makes a more generic effort by focusing
on the conditions ensuring the optimality without assuming
any specific system setting.

From the methodological perspective, we adopt an axiomatic
approach to streamline the analysis in the paper. On one hand,
such axiomatic approach provides a hierarchical view of the ad-
dressed problem and leads to clearer and more synthetic analysis.
On the other hand, the axiomatic approach also helps reduce the
complexity of solving the RMAB problem and illustrates some
important engineering implications behind the myopic policy.

The paper is organized as follows. Section II provides a brief
summary on the related work on the RMAB problem in the lit-
erature. Section III formulates the RMAB problem and defines
the myopic policy in the generic case. Section IV establishes the
three axioms characterizing a family of generic functions and
introduces the notion of regular functions. Section V further de-
fines the pseudo value function and investigates the structural
properties which are crucial to study the optimality of the my-
opic policy. Section VI establishes the conditions under which
the myopic policy is optimal. Section VII provides a case study
on the application of the major results. Finally, the paper is con-
cluded in Section VIII.

II. RELATED WORK

The root of the RMAB problem is the classic multi-armed
bandit (MAB) problem in stochastic decision theory, originally
proposed by Robbins [4]. In the standard MAB problem, a
player activates one arm at each time slot and obtains a reward
determined by the state of the activated arm. Only the activated
arm changes its state as modeled by a Markov chain, with the
states of the inactivated arms frozen. The objective is to maxi-
mize the long-term reward by choosing which arm to activate at
each time slot. The breakthrough in characterizing the optimal
policy is the seminal work of Gittins in [5] showing that there
exists an index for each arm independent of the states of other
arms and that playing the arm with the highest index results
to be optimal. The index is later termed the Gittins index [6].
With the index structure of the myopic policy, the originally

-dimensional problem can be reduced to independent
one-dimensional problems.

However, when generalized to the RMAB problem, where
the player is allowed to activate multiple arms and more impor-
tantly, the state of arms evolves even if the arm is not activated,
the index-based policy is no more optimal. In fact, finding the
optimal policy in the generic RMAB problem is shown to be
PSPACE-hard by Papadimitriou et al. in [7]. Whittle proposed
a heuristic index policy, called Whittle index policy [8] which
are shown to be asymptotically optimal in certain limited regime
under some specific constraints [9]. Unfortunately, not every
RMAB problem has a well-defined Whittle index. Moreover,
computing the Whittle index can be prohibitively complex. In
this regard, Liu et al. studied in [10] the indexability of a class of
RMAB problems relevant to dynamic multi-channel access ap-
plications. However, the optimality of the myopic policy based
on Whittle index is not ensured in the general cases, especially
when the arms follow non-identical Markov chains.

More recently, there are two major thrusts in the study of
the myopic policy in the RMAB problem. Since the optimality

of the myopic policy is not generally guaranteed, the first re-
search thrust is to study how far it is to the optimal and design
approximation algorithms and heuristic policies. The works of
[11]–[13] follow this line of research. Specifically, a simple my-
opic policy, termed as greedy policy, is developed in [11] that
yields a factor 2 approximation of the optimal policy for a sub-
class of scenarios referred to as Monotone bandits. The other
thrust, more application-oriented, consists of establishing the
optimality of the myopic policy in some specific application sce-
narios, particularly in the context of opportunistic spectrum ac-
cess. The works in [1], [2], [14], and [15] belong to this category
by focusing on specific forms of reward functions. More specifi-
cally, [1] studies the structure of the myopic sensing policy in the
case where the user is allowed to sense one out of the channels
each slot and establishes the optimality of the myopic policy for

. Reference [14] extends the work of [1] to the general
case by proving the optimality of the myopic sensing
policy under certain conditions on the channel parameters and
the discount factor in the utility function. [15] further relaxes
the conditions and proves the optimality when the channels are
positively correlated. Reference [2] studies the optimality of the
myopic sensing policy when the user are allowed to sense mul-
tiple channels and transmit the packets on the idle channels. The
myopic policy is showed to be optimal when channels are pos-
itively correlated under such reward model. Our previous work
[16], however, shows that a slightly different structure of reward
function can lead to totally contrary result. In a broader con-
text, some researchers explore the non-Bayesian versions of the
RMAB problem where the underlying Markov chains are un-
known and have to be learned [17]–[19].

III. SYSTEM MODEL AND PROBLEM FORMULATION

For the sake of concreteness, we present the system model
and formulate the RMAB problem in the context of channel
access in a multi-channel opportunistic communication system.
Nevertheless, the model can be readily generalized to the
generic RMAB problem and applied in a variety of applica-
tions. Therefore, the following description and the use of terms
should be understood generically.

A. Multi-Channel Opportunistic Access Model

We consider a multi-channel opportunistic communication
system, in which a user is able to access a set of inde-
pendent channels, each characterized by a Markov chain of two
states, good (1) and bad (0). The channel state transition matrix

for channel is given as follows:

In our work, we focus on the positively correlated channel
setting such that . Note that this channel
setting corresponds to the realistic scenarios where the channel
states are observed to evolve gradually over time. We assume
that channels go through a state transition at the beginning of
each slot . The system operates in a synchronously time slotted
fashion with the time slot indexed by , where

is the time horizon of interest. This generic multi-channel op-
portunistic communication model can be naturally cast into the
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opportunistic spectrum access (OSA) problem in cognitive radio
systems where an unlicensed secondary user can opportunisti-
cally access the temporarily unused channels of the licensed pri-
mary users, with the availability of each channel evolving as an
independent Markov chain.

Due to hardware constraints and energy cost, the user is al-
lowed to sense only of the channels at each
slot . We denote the set of channels chosen by the user at slot

by where and . We assume that
the user makes the channel selection decision at the beginning
of each slot after the channel state transition. Based on the state
of the sensed channels in slot , denoted by

where , the user obtains a certain amount of
reward, characterized by the reward function . A simple
example of the reward function is ,
meaning that the user gains one unit of reward for each channel
sensed good (i.e., ), thus available for transmitting one
packet on that channel. The user’s objective is to maximize the
expected discounted long-term reward by designing a channel
sensing policy that sequentially selects the channels to sense in
each slot. The detailed mathematical formulation of the opti-
mization problem is given in next subsection.

Obviously, by sensing only out of channels, the user
cannot observe the state information of the whole system.
Hence, the user has to infer the channel states from its past
decision and observation history so as to make its future
decision. To this end, we define the channel state belief
vector (hereinafter referred to as belief vector for briefness)

, where is the conditional
probability that channel is in state good (i.e., ) at
slot given all past states, actions and observations.3 Due to the
Markovian nature of the channel model, the belief vector can
be updated recursively using Bayes’ rule as follows:

(1)

where

(2)

denotes the operator for the one-step belief update for
non-sensed channels.

Lemma 1: If all channels are positively correlated, the fol-
lowing structural properties of hold:

• is monotonically increasing in ;
• .

Proof: Noticing that can be written as

Lemma 1 holds straightforwardly.

B. Optimal Sensing Problem and Myopic Sensing Policy

We are interested in the user’s optimization problem to find
the optimal sensing policy that maximizes the expected
total discounted reward over a finite horizon. Mathematically, a
sensing policy is defined as a mapping from the belief vector

3The initial belief � ��� can be set to if no information about the

initial system state is available.

to the action (i.e., the set of channels to sense) in
each slot

(3)

The following gives the formal definition of the optimal
sensing problem:

(4)

where is the reward collected in slot under the
sensing policy with the initial belief vector
is the discounting factor characterizing the feature that the
future rewards are less valuable than the immediate reward.

To get more insight on the structure of the optimization
problem and the complexity to solve it, we derive the dynamic
programming formulation of (4) as follows:

(5)

(6)

where is the value function corresponding to the max-
imal expected reward from time slot to with the
believe vector following the evolution described in (1)
given that the channels in the subset are sensed in state good
and the channels in are sensed in state bad. Particularly,
the term corresponds to the expected accumulated dis-
counted reward starting from slot to , calculated over all
possible realizations of the selected channels (i.e., the channels
in ).

Solving (4) using the above recursive iteration is computa-
tionally heavy due to the fact that the belief vector

is a Markov chain with uncountable state space,
resulting the difficulty in tracing the optimal sensing policy .
Hence, a natural alternative is to seek simple myopic sensing
policy which is easy to compute and implement that maximizes
the immediate reward, formally defined as follows:

Definition 1 (Myopic Sensing Policy): Let the expected re-
ward function denote the expected
immediate reward obtained in slot under the sensing policy

. The myopic sensing policy, consists of sensing the chan-
nels that maximizes .

Despite its simple and robust structure, the optimality of the
myopic sensing policy is not guaranteed. More specifically,
when the channels are stochastically identical (i.e., all channels
follow the same Markovian dynamics ) and
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positively correlated, the myopic sensing policy is shown to be
optimal when the user is limited to sense one channel each slot

and obtains one unit of reward when the sensed channel
is good [1]. The analysis of [15] and our work [16] further
extend the study on the generic case where . However, the
authors of [15] show that the myopic sensing policy is optimal
if the user gets one unit of reward for each channel sensed to
be good,4 while our work [16] shows that the myopic sensing
policy is not guaranteed to be optimal when the user’s objective
is to find at least one good channel.5 Given that such nuance on
the reward function leads to totally contrary results, a natural
while fundamentally important question arises: how does the
expected slot reward function impact the optimality
of the myopic sensing policy? Or more specifically, under what
conditions on is the myopic sensing policy guaranteed
to be optimal?

In the sequel analysis in Sections IV–VI by performing an
axiomatic study, we shall give affirmative answer to the above
posed questions and study some important engineering implica-
tions behind the myopic sensing policy.

IV. AXIOMS

This section introduces a set of three axioms characterizing a
family of generic and practically important functions, to which
we refer as regular functions. The axioms developed in this sec-
tion and the implied fundamental properties serve as a basis for
the further analysis on the structure and the optimality of the
myopic sensing policy in Sections V and VI.

Throughout this section, for the convenience of pre-
sentation, we sort the elements of the believe vector

for each slot such that
(i.e., the user senses channel 1 to channel

) and let .6 The three
axioms derived in the following characterize a generic function

defined on .
Axiom (Symmetry): A function is sym-

metrical if it holds that

Axiom (Monotonicity): A function
is monotonically increasing if it is monotonically increasing in
each variable , i.e.,

Axiom (Decomposability): A function
is decomposable if it holds that

4Formally, in [15], the expected slot reward function is defined as� ������
�� ������� � � ���
5In our work [16], the expected slot reward function is defined as � ������ �

� � �� � � ����
6For presentation simplicity, by slightly abusing the notations without intro-

ducing ambiguity, we drop the time slot index �.

Axioms 1 and 2 are intuitive. Axiom 3 on the decomposability
states that can always be decomposed into two terms that
replace by 0 and 1, respectively. The three axioms introduced
in this section are consistent and non-redundant. Moreover, they
can be used to characterize a family of generic functions, re-
ferred to as regular functions, defined as follows.

Definition 2 (Regular Function): A function is called regular
if it satisfies all the three axioms.

The following definition studies the structure of the myopic
sensing policy if the expected reward function is regular.

Definition 3 (Structure of Myopic Sensing Policy): Sort the
elements of the belief vector in descending order such that

, if the expected reward function is regular, then
the myopic sensing policy, where the user is allowed to sense
channels, consists of sensing channel 1 to channel .

Remark: In case of tie, we sort the channels in tie in the de-
scending order of calculated in (1). The argument is
that larger leads to larger expected payoff in next slot

. If the tie persists, the channels are sorted by indexes.
We would like to emphasize that the developed three axioms

characterize a set of generic functions widely used in practical
applications. To see this, we give two examples to get more in-
sight: 1) The user gets one unit of reward for each channel that is
sensed good. In this example, the expected reward function (for
each slot), denoted as , is the expected slot reward function is

and 2) the user gets one unit of reward if at
least one channel is sensed good. In this example, the expected
reward function is . It can be ver-
ified that in both examples, is regular by satisfying the three
axioms.

V. PROPERTIES OF PSEUDO VALUE FUNCTION

Armed with the three axioms developed in the previous sec-
tion, this section first defines the pseudo value function and then
derives several fundamental properties of the pseudo value func-
tion, which are crucial in the study on the optimality of the my-
opic sensing policy.

To make the following presentation more convenient, we sort
for each slot in the descending order such that

and let . We start by
giving the formal definition of the pseudo value function in the
recursive form.

Definition 4 (Pseudo Value Function): The pseudo value
function, denoted as , is recursively defined as in (7),
shown at the bottom of the next page. is the
expected total reward from slot to under the policy of
sensing the channels in for slot and then sensing the
best channels from slot to . If ,
then is the total reward generated by the myopic
sensing policy.

It can be seen from backward induction that the myopic
sensing policy is optimal if achieves its maximum
with . Before establishing the optimality
of the myopic sensing policy in next section, this section
investigates the basic structural properties of the pseudo value
function, as stated in the following two lemmas.

Lemma 2 (Symmetry): If the expected reward function
is regular, the correspondent pseudo value function is
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symmetrical in any two channel or for all
, i.e.,

Proof: The proof is given in the Appendix.
Lemma 2 implies that a symmetrical pseudo value function

is also robust against channel permutation given that all the per-
mutated channels are sensed or none of them are sensed. Hence,
it can be defined on two sets: the set of channels to be sensed
and of those not to be sensed.

Lemma 3 (Decomposability): If the expected reward function
is regular, then the correspondent value function

is decomposable: i.e., and

(8)

Proof: The lemma can be proven by backward induction
noticing the structure of in (7).

Lemma 3 can be applied one step further to prove the fol-
lowing corollary.

Corollary 1: If the reward function is regular, then for
any and , it holds that

(9)

VI. MYOPIC SENSING POLICY: OPTIMALITY CONDITION

Equipped with the results derived in Section V, we are ready
to study the optimality of the myopic sensing policy in this sec-
tion. We start by showing the following two important auxil-
iary lemmas (Lemma 4 and Lemma 5) and then establish the
sufficient condition under which the optimality of the myopic
sensing policy is ensured.

For the convenience of discussion, we firstly state some no-
tations before developing the auxiliary lemmas. Let

and , let
, and define

In Lemma 4, we consider two belief vectors
and that

differ only in one element . Let and denote the
largest elements in and , respectively,7 Lemma 4 gives
the lower bound and the upper bound on .

Lemma 4: If the expected reward function is regular,
and , it holds that

if and (10)

if and (11)

if but (12)

Proof: The proof is detailed in the Appendix.
Remark: Lemma 4 bounds the difference between

and by distinguishing three cases. It is important to
note that the case where but is impossible. Other-
wise there exists but . On one hand, it follows
from that or in case of tie , channel

is chosen. On the other hand, it follows from that
or in case of tie , channel is chosen. The

two statements clearly contradict with each other noticing that
.

We proceed one step further by considering and
with and differing in one element in the sense

that and with . Lemma 5 establishes the
sufficient condition under which .

Lemma 5: holds for if the
following two conditions are satisfied:

1) the expected slot reward function is regular;
2) .

Proof: The case holds trivially as . We now
show that the lemma holds for .

7The tie, if there exists, is resolved in the way as stated in the remark after
Definition 3.

(7)
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By Corollary 1 and (7), we have

(13)

where denotes the believe vector at
slot with and . It can be noticed
that and differs only in two elements as
illustrated by (14), shown at the bottom of the page.

We then develop

Following Lemma 4, it holds that
and

noticing that

Noticing that is decreasing in , if the two

conditions in the lemma hold, it follows from (13) that

which completes our proof.
Remark: It is insightful to note that the proof of Lemma 5

hinges on the fundamental trade-off between exploitation, by
accessing the channel with the higher estimated good proba-
bility (channel in the proof) based on currently available in-
formation (the belief vector) which greedily maximizes the im-
mediate reward (i.e., in the global utility function), and explo-
ration, by sensing unexplored and probably less optimal chan-
nels (e.g., channel in the proof) in order to learn and predict
the future channel state, thus maximizing the long-term reward
(i.e., the second term in the global utility function). If the user is
sufficiently short-sighted (i.e., is sufficiently small), exploita-
tion naturally dominates exploration (i.e., the immediate reward
overweighs the potential gain in future reward), resulting the
better performance of sensing channel w.r.t. . The main re-

sult of Lemma 5 consists of quantifying this tradeoff between
exploitation and exploration.

Armed with Lemma 5, we are now able to derive the central
result of this section (Theorem 1) that can answer the questions
posed at the end of Section III.

Theorem 1: The myopic sensing policy is optimal if the fol-
lowing two conditions hold: 1) the expected slot reward function

is regular and 2) .

Proof: We prove the theorem by backward induction. The
theorem holds trivially for . Assume that it holds for

, i.e., the optimal sensing policy is to sense
the best channels from time slot to . We now show that
it holds for .

To this end, assume, by contradiction, that given the belief
vector , the optimal sensing policy is to
sense the best channels from time slot to and at slot

to sense channels , given that the
latter contains the best channels in terms of belief values at
slot . There must exist and where such that

. It then follows from Lemma 5 that

implying that sensing at slot
and then following the myopic sensing policy is better than

sensing channels at slot and then following the
myopic sensing policy, which contradicts with the assumption
that the latter is the optimal sensing policy. This contradiction
completes our proof.

We conclude this section by studying the optimality of
the myopic sensing policy for the case of infinite time horizon

in the following theorem. The proof follows straightfor-
wardly from Theorem 1 by noticing that
for any .

Theorem 2: In the infinite horizon case , the myopic
sensing policy is optimal if the following conditions hold: (1)

is regular; (2) .

VII. APPLICATION: CASE STUDY

To illustrate the application of the results obtained in this
paper, this section presents a comparative and synthetic anal-
ysis on the RMAB problem with different reward functions an-
alyzed in [2] and [16]. Note that the different formulations of
the RMAB problem in [2] and [16] are the motivating examples
of our work, in which a nuance on the reward function leads to
totally contrary results on the optimality of the myopic sensing
policy, as summarized in Section III.

Consider a synchronously slotted cognitive radio communi-
cation system where an unlicensed secondary user can oppor-
tunistically access a i.i.d. channels partially occupied by the

(14)
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licensed primary users. The state of each channel follows the
Markov chain presented in Section III with the good (bad, re-
spectively) state representing that the channel is unoccupied (oc-
cupied) by the primary user. At the beginning of each time slot,
the secondary user selects a subset of channels to sense
and seeks to maximize its reward over slots. The works in [2]
and [16] focus on two specific reward functions and study the
optimality of the myopic sensing policy in maximizing the ag-
gregated reward.

In [2], the secondary user gets one unit of reward by accessing
an unoccupied channel. Its objective is thus to find as many good
channels as possible so as to maximize the throughput given
that it can transmit on all the good channels. Formally, the ex-
pected slot reward function is , which is a
regular and linear function. Noticing that in this case of i.i.d.
Markov channels, , it holds that if
the second condition in Theorem 1 holds for all . The
myopic sensing policy is optimal in this case. This result is co-
herent with that obtained in [2] with a more stringent condition
on the optimality. This is due to the fact that the analysis in [2]
on the homogeneous channels is no longer applicable in the het-
erogeneous case. The generic analysis presented in this paper
thus covers the homogeneous case at the price of more stringent
conditions.

In [16], the secondary user can only transmit on one channel
(e.g., due to hardware constraints). As a result, to maximize its
throughput, it aims at maximizing the probability of finding at
least one good channel. Formally, the expected slot reward func-
tion is , which is regular. To study the
optimality of the myopic sensing policy in this context, we apply
Theorem 1. If the initial belief value
for all , by Lemma 1, we can show that

In this example, .
It then follows from Theorem 1 that the myopic sensing policy
is optimal if

This result confirms the result obtained in [16] that the myopic
sensing policy is not always optimal, and further extends it by
giving a sufficient condition under which the myopic sensing
policy is ensured to be optimal.

Despite the focus of this section in the domain of oppor-
tunistic communication, the problem formulation is applicable
in many other fields. One such example is the jamming problem
where the jammer is constraint to jam only of channels
with Markovian traffic and aims at maximizing its utility which
can be modeled by functions such as and depending on
the particular system setting. Another example is the oppor-
tunistic multiuser scheduling problem under imperfect channel
state information which, studied in [20], has similar mathemat-
ical structure to the RMAB problem.

VIII. CONCLUSION

We have investigated the optimality of the myopic policy in
the RMAB problem, which is of fundamental importance in

many engineering applications. We have developed three ax-
ioms characterizing a family of generic and practically impor-
tant functions which we refer to as regular functions. By per-
forming a mathematical analysis based on the developed ax-
ioms, we have characterized the closed-form conditions under
which the optimality of the myopic policy is ensured. The appli-
cation of the derived results is demonstrated by analyzing a class
of RMAB problems arising from multi-channel opportunistic
access. As future work, a natural direction we are pursuing is
to investigate the RMAB problem with multiple players with
mutual conflicts and to study the structure and optimality of the
myopic policy in that context.

APPENDIX A
PROOF OF LEMMA 2

The lemma holds trivially for slot noticing that
, which is a regular

function and is thus symmetrical.
We now show that is symmetrical for .

Noticing the form of given in (7), it suffices to show
that is symmetrical in any and any

. We distinguish the following two cases:
• Case 1: ;
• Case 2: .
For the first case, by rewriting in (7) and developing

and in , we have

where
denotes the updated belief vector

for slot under the belief vector with
and .



WANG AND CHEN: ON OPTIMALITY OF MYOPIC POLICY FOR RESTLESS MULTI-ARMED BANDIT PROBLEM 307

On the other hand, by exchanging and , following the
similar notation and analysis, we have

It can be noticed that holds in this case.
For the second case, noticing that , we have

Noticing that neither channel nor channel is sensed in slot
and that from slot to , the user senses the best chan-

nels, following the update (1), after sorting the elements in de-
scending order, and generate the same belief
vector . It then follows that .

Combining the results in both cases, it holds that
is symmetrical. Hence, is symmetrical, thus con-
cluding the proof of Lemma 2.

APPENDIX B
PROOF OF LEMMA 4

We prove the lemma by backward induction. For slot , it is
straightforward to check that (10) and (11) hold. We now prove
(12). To this end, noticing that for and
differ in exactly one channel, let denote this channel.
It follows from the definition of the myopic sensing policy that

. We then have

Therefore, (12) holds for slot .
Assume that Lemma 4 holds for , we now prove

that it holds for slot .

We first prove (10). By rewriting in (7) and developing
in , we have

where denotes the updated belief vector
for slot under the belief vector with .

By similar analysis on , we have

Therefore,

Let and denote the set of channels sensed in slot
based on the myopic policy (the set of best channels) with
the belief vector and , it can be noted that

and differ in one element (
in and in ). Hence, and differ in
at most one element. We distinguish two cases:



308 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 1, JANUARY 2012

1) : for this case, it follows from the induction of
(10) and (11) that

2) : for this case, we further distinguish the fol-
lowing two subcases:

a) but : for this subcase, there must exist
such that but . Since the

myopic sensing policy consists of choosing the best
channels, it holds that (1) as is chosen
in but is not and (2) as is chosen in

but is not. This contradicts with and
implies that this subcase is impossible to happen.

b) but : for this subcase, it follows from
the induction of (12) that

Combing the analysis of Case 1 and Case 2, we have

Noticing (7) that
, we have

We thus complete the proof of (10) for slot .
We then prove (11). Noticing and , we have

where and are the belief vector for slot
generated by and based on the belief update (1). We
distinguish four cases.

1) and for : i.e., is
not chosen from the slot to in either scenario. For
this case, it is straightforward to check that

, and furthermore .
2) There exists such that and

for and . For this
case, it follows from the induction of (10) that

Noticing that in this case, for
and that , it holds that

It then follows from (7) that

3) There exists such that and
for and . For this
case, by the induction (12),

It then follows from and (1) that

Therefore,

4) There exists such that and
for and . For this
case, it holds that for
and and differ in one element, assume that

and . It follows from the definition
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of the myopic sensing policy that and
, which leads to contradiction since

leads to
following Lemma 1. This case is thus impossible.

Combing the analysis of the four cases, we complete the proof
of (11) for slot .

We now prove (12). For this case, there exists with
such that and differ in one element:

and .8 We have

On one hand, we have shown that (10) holds for slot . Hence,
it holds that

On the other hand, we have shown that (11) holds for slot .
Hence, it holds that

It then follows that

Thus, we complete the proof of (12).
Combining the above analysis, Lemma 4 is proven.
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