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Abstract—The timing channel is a logical communication chan-
nel in which information is encoded in the timing between events.
Recently, the use of the timing channel has been proposed as a
countermeasure to reactive jamming attacks performed by an en-
ergy-constrained malicious node. In fact, while a jammer is able to
disrupt the information contained in the attacked packets, timing
information cannot be jammed, and therefore, timing channels
can be exploited to deliver information to the receiver even on a
jammed channel. Since the nodes under attack and the jammer
have conflicting interests, their interactions can be modeled by
means of game theory. Accordingly, in this paper, a game-theoretic
model of the interactions between nodes exploiting the timing
channel to achieve resilience to jamming attacks and a jammer
is derived and analyzed. More specifically, the Nash equilibrium
is studied in terms of existence, uniqueness, and convergence
under best response dynamics. Furthermore, the case in which
the communication nodes set their strategy and the jammer reacts
accordingly is modeled and analyzed as a Stackelberg game, by
considering both perfect and imperfect knowledge of the jammer’s
utility function. Extensive numerical results are presented, show-
ing the impact of network parameters on the system performance.

Index Terms—Anti-jamming, timing channel, game-theoretic
models, Nash equilibrium.

I. INTRODUCTION

A timing channel is a communication channel which ex-
ploits silence intervals between consecutive transmissions

to encode information [1]. Recently, use of timing channels
has been proposed in the wireless domain to support low rate,
energy efficient communications [2], [3] as well as covert and
resilient communications [4], [5].

In this paper we focus on the resilience of timing channels
to jamming attacks [6], [7]. In general, these attacks can com-
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pletely disrupt communications when the jammer continuously
emits a high power disturbing signal, i.e., when continuous
jamming is performed. However, continuous jamming is very
costly in terms of energy consumption for the jammer [8]–
[10]. This is the reason why in most scenarios characterized
by energy constraints for the jammer, e.g., when the jammer
is battery powered, non continuous jamming such as reactive
jamming is considered. In this case the jammer continuously
listens over the wireless channel and begins the transmission
of a high power disturbing signal as soon as it detects an on-
going transmission activity. Effectiveness of reactive jamming
has been demonstrated and its energy cost analyzed in [6],
[10]–[12].

Timing channels are more—although not totally [4]—
immune from reactive jamming attacks. In fact, the interfering
signal begins its disturbing action against the communication
only after identifying an ongoing transmission, and thus after
the timing information has been decoded by the receiver. In [4],
for example, a timing channel-based communication scheme
has been proposed to counteract jamming by establishing a low-
rate physical layer on top of the traditional physical/link layers
using detection and timing of failed packet receptions at the
receiver. In [5], instead, the energy cost of jamming the timing
channel and the resulting trade-offs have been analyzed.

In this paper we analyze the interactions between the jammer
and the node whose transmissions are under attack, which we
call target node. Specifically, we assume that the target node
wants to maximize the amount of information that can be
transmitted per unit of time by means of the timing channel,1

whereas, the jammer wants to minimize such amount of infor-
mation while reducing the energy expenditure.2 As the target
node and the jammer have conflicting interests, we develop a
game theoretical framework that models their interactions. We
investigate both the case in which these two adversaries play
their strategies simultaneously, and the situation when the target
node (the leader) anticipates the actions of the jammer (the
follower). To this purpose, we study both the Nash Equilibria
(NEs) and Stackelberg Equilibria (SEs) of our proposed games.

1Note that in this context energy is not a concern for the target node, since by
exploiting the timing channel, a significant reduction in the energy consumption
can be obtained as demonstrated in [2].

2Up to now, despite the wide literature in this context, a universal model
describing how jammers and target nodes behave in real adversarial scenarios
is missing. Therefore, in our study we tried to propose a high-level model
that describes rational and realistic behavior of each player, by considering
several elements that are related to hardware parameters and the energy/power
concerns.
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The main contributions of this paper can be therefore sum-
marized as follows: 1) we model the interactions between a
jammer and a target node as a jamming game; 2) we prove
the existence, uniqueness and convergence to the Nash equi-
librium (NE) under best response dynamics; 3) we prove the
existence and uniqueness of the equilibrium of the Stackelberg
game where the target node plays as a leader and the jammer
reacts consequently; 4) we investigate in this latter Stackelberg
scenario the impact on the achievable performance of imperfect
knowledge of the jammer’s utility function; 5) we conduct an
extensive numerical analysis which shows that our proposed
models well capture the main factors behind the utilization of
timing channels, thus representing a promising framework for
the design and understanding of such systems.

Accordingly, the rest of this paper is organized as follows.
Related work is presented in Section II. In Section III the
proposed jamming game model is presented. A theoretical
study of the existence and uniqueness of the NE as well as
of the convergence of the game to that equilibrium under best
response dynamics is derived in Section IV. Existence and
uniqueness of the SE are discussed in Section V, together with
some considerations relevant to imperfect knowledge scenarios.
Then, numerical results are illustrated in Section VI. Finally, in
Section VII conclusions are drawn.

II. RELATED WORK

Wireless networks are especially prone to several attacks due
to the shared and broadcast nature of the wireless medium.
One of the most critical attacks is jamming [6], [7]. Jamming
attacks can partially or totally disrupt ongoing communications,
and proper solutions have been proposed in various application
scenarios [6], [9], [10]. Continuous jamming attacks can be
really expensive for the jammer in terms of energy consumption
as the transmission of jamming signals needs a significant,
and constant, amount of power. To reduce energy consump-
tion while achieving a high jamming effectiveness, reactive
jamming is frequently used [5], [11]–[13]. In [12] and [13]
the feasibility and detectability of jamming attacks in wireless
networks are analyzed. In these papers above, methodologies
to detect jamming attacks are illustrated; it is also shown that
it is possible to identify which kind of jamming attack is
ongoing by looking at the signal strength and other relevant
network parameters, such as bit and packet errors. In [11]
Wilhelm et al. investigate the feasibility of reactive jamming
attacks by providing a real implementation of a reactive jam-
mer in a software-defined radio environment where a reactive
jammer prototype is implemented on a USRP2 platform and
network users are implemented on MICAz motes. Authors
show that reactive jamming attacks are feasible and efficient,
and that low reaction times can be achieved; then, they highlight
the need to investigate proper countermeasures against reactive
jamming attacks.

Several solutions against reactive jamming have been pro-
posed that exploit different techniques, such as frequency hop-
ping [14], [15], power control [16] and unjammed bits [17]
(see [6], [7] for surveys). However, such solutions usually rely on
users’ cooperation and coordination, which might not be guar-

anteed in a jammed environment. In fact, the reactive jammer
can totally disrupt each transmitted packet and, consequently,
no information can be decoded and then used to this purpose.

Timing channels have been frequently exploited to support
covert low rate [1], energy efficient [2], [3] and undetectable
communications [18]. Also, they have been proposed as anti-
jamming solutions [4], [5]. More specifically, in [4] Xu et al.
propose an anti-jamming timing channel that exploits inter-
arrival times between jammed packets to encode information
to be transmitted, showing how timing channels are suitable
to guarantee low rate communications even though a reactive
jammer is disrupting transmitted packets. Actually, in [4] two
constraining assumptions are made, that is, i) to perform an
attack, the jammer first has to recognize the preamble of a
packet, and ii) the jamming signal is transmitted as long as the
jammer senses activity on the channel.

In [5] an analysis of energy consumption and effectiveness of
a reactive jammer attack against timing channels is presented.
Moreover, it is shown how a trade-off between energy con-
sumption and jamming effectiveness can be sought. It is also
demonstrated that continuous jamming can be very costly in
terms of energy consumption.

Since the jammer and the target node(s) have opposite inter-
ests and the actions of the ones depend on those of the others,
game theory is a valid tool to study such scenarios [15], [16],
[19], [20]. An anti-jamming stochastic game in cognitive radio
networks is proposed in [15], where authors provide learning
mechanisms for users to counteract jamming attacks; also, it
is shown that users can exploit frequency hopping to avoid
jamming attacks by taking hopping decisions depending on
the channel state. Often the jammer has to adapt its attack
depending on network operations; hence, in literature it is
frequently assumed that the jammer plays as a follower after the
leader, i.e., the target node, has manifested its strategy. Such a
scenario can be modeled as a Stackelberg game. For example, in
[16] a Stackelberg game is proposed to model the interactions
between target nodes and a smart jammer that is able to vary
its transmission power to maximize its own utility function. In
[19] Altman et al. analyze a game where both the target node
and the jammer have energy constraints. Finally, as specifically
relevant to our work, we mention the study carried out by
Sengupta et al. [20] on a power control game modeling a
network of nodes exploiting the timing channel, which maxi-
mize SINR and throughput by properly setting the transmission
power level and the silence duration. In [20] however, although
game theory is applied to timing channel networks, jamming
issues are not considered.

As compared to the solutions proposed so far in the literature,
our paper is the first together with [21] by Anand et al. to
develop a game-theoretical model of the interactions between
the jammer and a target node exploiting the timing channel. The
main differences between our work and [21] can be summarized
as follows:

• in [21] the target node focuses on deploying camouflaging
resources (e.g., the number of auxiliary communications
assisting the covert communication) to hide the underlying
timing channel. In our work, instead, the target node
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establishes a timing channel that exploits the silence pe-
riod between the end of an attack and the beginning of a
subsequent packet transmission to counteract an ongoing
jamming attack;

• in [21], only the Nash Equilibrium (NE) is studied,
whereas in our work we study both the NE and SE
(Stackelberg Equilibrium). Furthermore, we compare the
achievable performance of each player, and find that the
SE dominates the NE (i.e., both players improve their
achieved utilities), thus allowing each player to improve
its own utility;

• in our work, the target node is able to transmit covert
information even if the jammer has successfully disrupted
all the bits contained in a packet. On the other hand,
the authors in [21] assume that the jamming attack is
successful if the Signal-to-Interference ratio (SIR) of the
attacked node measured at the receiver side is higher than
the one of the target node. In our approach, instead, we
do not make any assumption on the SIR as, by exploiting
our proposed timing channel implementation, it is possible
to transmit some information even when the jammer has
successfully corrupted each packet.

In addition, we only assume that the jammer is aware of
timing channel communications ongoing between the target
node and the perspective receiver, whereas we relax the two
assumptions in [4]. Specifically, we assume that i) to start
an attack the jammer has only to detect a possible ongoing
transmission activity (e.g., the power on the monitored channel
exceeds a given threshold), and ii) the transmission of the
jamming signal does not necessarily stops when the packet
transmission by the target node ends, that is, the jammer is
able to introduce some transmission delay in timing channel
communications by extending its jamming signal duration.

III. GAME MODEL

Let us consider the scenario where two wireless nodes,
a transmitter and a receiver, want to communicate, while a
malicious node aims at disrupting their communication. To this
purpose, we assume that the malicious node executes a reactive
jamming attack on the wireless channel. In the following we re-
fer to the malicious node as the jammer, J, and the transmitting
node under attack as the target node, T .

The jammer senses the wireless channel continuously. Upon
detecting a possible transmission activity performed by T , J
starts emitting a jamming signal. As shown in Fig. 1, we
denote as TAJ the duration of the time interval between the
beginning of the packet transmission and the beginning of
the jamming signal emission. The duration of the interference
signal emission that jams the transmission of the j-th packet
can be modeled as a continuous random variable, which we call
Yj. To maximize the uncertainty on the value of Yj, we assume
that it is exponentially distributed with mean value y.

We assume that when no attack is performed the target
node communicates with the receiver by applying traditional
transmissions schemes; on the other hand, when it realizes to be
under attack, it exploits the timing channel to transmit part of

Fig. 1. Interactions between the jammer and the target node.

(or all) the information.3 The latter is encoded in the duration of
the interval between the instant when the jammer J terminates
the emission of the jamming signal and the beginning of the
transmission of the next packet. Hence, it is possible to consider
a discrete time axis and refer to each timing channel utilization
by means of an integer index j. The silence period duration
scheduled after the transmission of the j-th packet and the
corresponding jamming signal can be modeled as a continuous
random variable, Xj, uniformly distributed4 in the range [0,x].
The amount of information transmitted per each use of the
timing channel depends on the value of x and the precision Δ
of the clocks of the communicating nodes as shown in [2]. In
our model we assume that the parameters Δ and TAJ which are
hardware dependent are known a-priori to both the target node
and the jammer, whereas the strategies x and y are estimated by
means of a training phase. This is consistent with the complete
information assumption which is common in game theoretic
frameworks.

To model the interactions between the target node and the
jammer we propose a jamming game framework, defined by a
3-tuple G = (N ,S ,U), where N is the set of players, S is the
strategy set, and U is the utility set. The set N is composed by
the target node T and the jammer J, while the strategy set is
S = ST × SJ , where ST and SJ are the set of strategies of the
target node and the jammer, respectively.

In our model we assume that the jammer is energy-
constrained, e.g., it is battery-powered; hence, its choice of
y (i.e., the average duration of the signal emission that jams
the packet transmission) stems from a trade-off between two
requirements, i.e., i) reduce the amount of information that
the target node T can transmit to the perspective receiver, and
ii) keep the energy consumption as low as possible. Observe
that requirement i) would result in the selection of a high value
for y, whereas requirement ii) would result in a low value for y.
On the other hand, the target node has to properly choose the
value of x (i.e., the maximum silence period duration scheduled
following the transmission of the j-th packet and the subsequent
jamming signal) in order to maximize the achievable capacity
C (x,y), i.e., the amount of information that can be sent by
means of the timing channel, while minimizing its energy con-
sumption. Therefore, it is reasonable to consider that the values

3Attack detection can be achieved by the target node either by means of ex-
plicit notification messages sent back to T by the receiver or by inference after
missing reception of ACK messages. Details on attack detection operations are
however out of the scope of this paper.

4The uniform distribution assumption is due to the fact that, as well known,
this distribution maximizes the entropy, given the range in which the random
variable is defined.
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of x and y represent the strategies for the target node T and
the jammer J, respectively. Accordingly, the set of strategies
for both players, ST and SJ , can be defined as the set of all the
feasible strategies x and y, respectively.

The utility set of the game is defined as U = (UT ,UJ ),
where UT and UJ are the utility functions of the target node
and the jammer, respectively. As already said, the target node
aims at maximizing its own achievable capacity, C (x,y) while
also minimizing its energy consumption. The jammer, on its
side, aims at reducing the capacity achieved by the target
node by generating interference signals, whose duration is y
(in average), while keeping its own energy consumption low.
Accordingly, the utility functions UT (x,y) and UJ(x,y) to be
maximized are defined as follows:{

UT (x,y) = +C(x,y)− cT ∗ ·TP ·PT

UJ(x,y) =−C(x,y)− cT · y ·P (1)

where PT and PJ are the transmission power of the target node
and the jammer, respectively, TP is the duration of a transmitted
packet in seconds, cT ∗ and cT are positive transmission costs
expressed in [bit/(s · J)] which weight the two contributions
in the utility functions and therefore, in the following will be
referred to as weight parameters. Note that while the energy
consumption of the jammer varies as a function of the strategy y
of the jammer itself, on the contrary the energy consumption of
the target node during a cycle only depends on the duration TP

of the packet and not on the strategy. Furthermore, a low value
of cT means that the jammer considers its jamming effective-
ness more important than its energy consumption, while a high
cT value indicates that the jammer is energy-constrained and,
as a consequence, it prefers to save energy rather than reducing
the capacity of the target node. We observe that cT = 0 models
the case of continuous jamming without any energy constraint,
which is of limited interested and out of the scope of this paper,
since we focus on studying the trade-off between the achievable
capacity and the consumed energy.

Let us now calculate the capacity C(x,y) which appears in
the utility function (1). To this purpose, we denote the interval
between two consecutive transmissions executed by T as a
cycle. The expected duration of a cycle is

tCycle = TAJ + y+ x/2. (2)

The capacity C(x,y) can be derived as the expected value of the
information transferred during a cycle, cCycle(x,y), divided by
the expected duration of a cycle, tCycle. It is easy to show that
cCycle(x,y) is approximately

cCycle = log2 (x/Δ) . (3)

Note that at each timing channel utilization the target node T
is expected to transmit at least one bit; then, from (3) it follows
that x ≥ 2Δ.

Eqs. (2) and (3) can be exploited to calculate the capacity
C(x,y), i.e.,

C(x,y) =
log2 (x/Δ)

TAJ + y+ x/2
. (4)

TABLE I
PARAMETER SETTINGS USED IN OUR SIMULATIONS

Fig. 2. Utility function of the target node (UT (x,y)) as a function of x for
different values of the average jamming signal duration y (cT ∗ ·P = 2 ·106).

Hereafter we illustrate a simple numerical example that
refers to the same realistic scenarios addressed in [11]. The
considered parameter settings are reported in Table I. It is also
assumed that both the target node and the jammer transmit their
respective signals by using the maximum allowed transmitting
power, i.e., PT = PJ = P.

Fig. 2 shows the utility function of the target node T as a
function of x, for different values of y.

We note that UT (x,y) increases when x increases until it
reaches a threshold after which the utility function starts de-
creasing. This is due to the fact that, when x is higher than such
a threshold, the silence duration is large enough to cause an
increase in the transmission delay and, consequently, a decrease
in the transmission capacity. This is a well known result in
timing channel communications [22]. In Fig. 2 we also note that
the achievable performance noticeably depends on the jamming
signal duration y. In fact, when y increases, the capacity of
the target node decreases as the jamming attack forces the
transmitter in delaying its timing channel communications by
increasing x. Fig. 3 shows the impact of the energy consumption
on the utility achieved by the target node. As expected, the
higher the product cT ·P is, the lower the achieved utility is.
Note that, as the energy consumption in any cycle is constant
and does not depend on either x or y, the energy cost of the
target node UT (x,y) would only result in a slight shift in the
utility function of the target node.

Fig. 4 shows instead the utility function of the jammer
UJ(x,y) vs. y for different values of x.

Note that for high values of y the utility function UJ(x,y)
does not practically depend on x. This is because high y values
imply C(x,y) ≈ 0 regardless of the specific value of x. Such
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Fig. 3. Utility function of the target node (UT (x,y)) as a function of x for
different values of the product cT ∗ ·P (y = 2.8 ·10−4 s).

Fig. 4. Utility function of the jammer (UJ(x,y)) as a function of y for different
values of the maximum silence period duration x (cT ·P = 2 ·106).

a behavior is evident in Fig. 4. We observe that for high
values of y the capacity achieved by the target node C(x,y)
is negligible and, thus, the utility function of the jammer can
be approximated as UJ(x,y) � −cT · y ·P. In other words, the
utility of the jammer decreases linearly with y. To this purpose,
in Fig. 5 we show the utility of the jammer UJ(x,y) for different
values of the product cT ·P. It is evident that, as expected, when
the cost of transmitting the interference signal at the jammer is
high (i.e., cT ·P is high) the utility function UJ(x,y) decreases
rapidly and linearly.

IV. NASH EQUILIBRIUM ANALYSIS

In this Section we solve the game described in Section III,
and we find the Nash Equilibrium points (NEs), in which both
players achieve their highest utility given the strategy profile of
the opponent. In the following we also provide proofs of the
existence, uniqueness and convergence to the Nash Equilibrium
under best response dynamics.

Fig. 5. Utility function of the jammer (UJ(x,y)) as a function of y for different
values of the product cT ·P (x = 5 ·10−4 s).

Let us recall the definition of Nash equilibrium.
Definition 1: A strategy profile (x∗,y∗) ∈ S is a Nash Equi-

librium (NE) if ∀(x′,y′) ∈ S

UT (x
∗,y∗)�UT (x

′,y∗)

UJ(x
∗,y∗)�UJ(x

∗,y′)

that is, (x∗,y∗) is a strategy profile where no player has incentive
to deviate unilaterally.

One possible way to study the NE and its properties is to look
at the best response functions (BRs). A best response function is
a function that maximizes the utility function of a player, given
the opponents’ strategy profile. Let bT (y) be the BR of the target
node and bJ(x) the BR of the jammer. These functions can be
characterized as follows:

bT (y) = arg max
x∈ST

UT (x,y)

bJ(x) = argmax
y∈SJ

UJ (x,y).

In our model it is possible to analytically derive the closed
form of the above BRs by analyzing the first derivatives of
UT (x,y) and UJ (x,y), and imposing that ∂

∂x UT (x,y) = 0 and
∂
∂y UJ (x,y) = 0.

It is easy to see that ∂
∂x UT (x,y) = 0 leads to

1
x
− 1

2
log

( x
Δ

) 1
TAJ + y+ x

2
= 0. (5)

Eq. (5) can be rewritten as follows:

2(TAJ + y)
eΔ

=
x

eΔ
· log

x
eΔ

. (6)

Note that eq. (6) is in the form β = α logα, and, by exploiting
the definition of Lambert W-function, say W (z), which, for any
complex z, satisfies z =W (z)eW (z), it has solution α = eW (β).
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Therefore, eq. (6) can also be rewritten as

x = Δe
W

(
2(TAJ+y)

eΔ

)
+1

which is, by definition, bT (y).
In order to derive the closed form of bJ(x) we first solve

∂
∂y UJ (x,y) = 0. It can be easily proven that ∂

∂y UJ (x,y) = 0
leads to

log
( x

Δ

)
= η

(
TAJ +

x
2
+ y

)2

which can be rewritten as follows:

bJ(x) =

√
log

(
x
Δ
)

η
−TAJ −

x
2

where η = cT ·P · log2.
Therefore, we can write

bT (y) =Δeψ(y)+1 (7)

bJ(x) =

{
χ(x), if χ(x)� 0
0, if χ(x)< 0

(8)

where

ψ(y)=W

(
2[TAJ + y]

eΔ

)
, χ(x)=

√
log

(
x
Δ
)

η
−TAJ −

x
2
. (9)

Note that the best response of the jammer bJ(x) depends on the
value of the weight parameter cT . Also, it can be shown that

there exists a critical value of the weight parameter, say c(max)
T ,

such that bJ(x) < 0 ∀x ∈ ST ,∀cT ≥ c(max)
T . In fact, since the

function χ(x) is strictly decreasing in cT , limcT→+∞ χ(x) < 0
and limcT→0 χ(x) = +∞, the intermediate value theorem

ensures the existence of c(max)
T . By looking at the first derivative

of the χ(x) function in (9), it can be shown that c(max)
T =

1
P log(2)

1
2Δ(Δ+T ) . Therefore, if cT ≥ c(max)

T the only possible strat-

egy of the jammer is bJ(x) = 0, and then, as the strategy set of
the jammer (SJ ) is a singleton, the game has a trivial outcome.

A. Existence of the Nash Equilibrium

It is well known that the intersection points between bT (y)
and bJ(x) are the NEs of the game. Therefore, to demonstrate
the existence of at least one NE, it suffices to prove that bT (y)
and bJ(x) have one or more intersection points. In other words,
it is sufficient to find one or more pairs (x∗,y∗) ∈ S such that

(bT (y
∗),bJ(x

∗)) = (x∗,y∗). (10)

To this aim, in the following we provide some structural
properties of the utility functions, UT (x,y) and UJ (x,y), that
will be useful in solving eq. (10).

Lemma 1: For the utility functions UT (x,y) and UJ (x,y),
the following properties hold5:

• UT (x,y) is strictly concave for x ∈ [2Δ,x′] and is mono-
tonically decreasing for x > x′ where x′ = bT (y)

• UJ (x,y) is strictly concave ∀y ∈ SJ .
Theorem 1 (NE Existence): The game G admits at least an NE.

Proof: If we limit the strategy of the target node to [2Δ,x′],
it follows from Lemma 1 that there exists at least an NE since
both the utility functions are concave in the restraint strategy set
[23]. However, this does not still prove the existence of the NE
in the non-restraint strategy set ST . Let (x∗,y∗) denote the NE
with a restraint strategy set [2Δ,x′]; we can easily observe that
(x∗,y∗) is also the NE of the jamming game with non-restraint
strategy set. To show this, recall Lemma 1 that states that
UT (x,y) is monotonically decreasing for x> x′. The transmitter
has thus no incentive to deviate from (x∗,y∗) and the jammer
has no incentive to deviate from it either. Therefore, (x∗,y∗) is
the NE of the jamming game. �

B. Uniqueness of the Nash Equilibrium

After proving the NE existence in Theorem 1, let us prove the
uniqueness of the NE, that is, there is only one strategy profile
such that no player has incentive to deviate unilaterally.

Theorem 2 (NE Uniqueness): The game G admits a unique
NE that can be expressed as given in (11), shown at the bottom
of the page, where η = cT ·P · log2 and

c̃T =
4

Δ2P log2
e−2[W( 2T

eΔ )+1]/

(
W

(
2T
eΔ

)
+1

)
. (12)

The proof consists in exploiting formal and structural proper-
ties of the best response functions to show that their intersection
is unique, that is, eq. (10) admits a unique solution. For a
detailed proof see Appendix A.

C. Convergence to the Nash Equilibrium

We now analyze the convergence of the game to the NE when
players follow Best Response Dynamics (BRD). In BRD the
game starts from any initial point (x(0),y(0)) ∈ S and, at each
successive step, each player plays its strategy by following its
best response function. Thereby, at the i-th iteration the strategy

5The proof of Lemma 1 which is straightforward (although quite long),
consists in calculating the first and second derivatives of the utility functions
and studying them.

(xNE,yNE) =

⎧⎪⎪⎨
⎪⎪⎩

(
Δe

1
2W

(
8

ηΔ2

)
, Δ

2

[
1
2W

(
8

ηΔ2

)
−1

]
e

1
2W

(
8

ηΔ2

)
−TAJ

)
if cT < c̃T(

ΔeW( 2T
eΔ )+1,0

)
otherwise

(11)
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profile (x(i),y(i)) can be formally expressed by the following
BRD iterative algorithm:⎧⎨

⎩
x(i) = bT

(
y(i−1)

)
y(i) = bJ

(
x(i−1)

)
.

Let b(x,y) = (bT (y),bJ(x))T be the best response vector and
Jb be the Jacobian of b(x,y) defined as follows

Jb=

[ ∂
∂x bT (y) ∂

∂y bT (y)
∂
∂x bJ(x) ∂

∂y bJ(x)

]
=

[
0 ∂

∂y bT (y)
∂
∂x bJ(x) 0

]
. (13)

It has been demonstrated [24] that, if the Jacobian infinity
matrix norm ‖Jb‖∞ < 1, the BRD always converges to the
unique NE. In the following we prove the following theorem:

Theorem 3 (NE Convergence—Sufficient Condition): The
relationship

cT >
1

9Δ2 log2P
1(

W
(

2TAJ
eΔ

)
+1

)
e

2
(

W
(

2TAJ
eΔ

)
+1

) (14)

G is a sufficient condition for the game G to converge to the NE.
Furthermore, it converges to the NE in at most logJmax

b

ε
‖s1−s0‖

iterations for any ε, where Jmax
b = maxJb and si = (xi,yi).

To demonstrate the theorem,

1) we prove that the relationship

max
x∈ST

(
1

ηx2 log
(

x
Δ
)
)

< 9 (15)

is a sufficient condition for the BRD to converge to the
NE in at most logJmax

b

ε
‖s1−s0‖ iterations. This is the focus

of Lemma 2;
2) we define a game G ′ and demonstrate that G converges

to G ′ in two iterations at most. This is the focus of
Lemma 3;

3) we demonstrate that the condition in (14) is a sufficient
condition for G ′ to satisfy (15) and converge to the same
NE of G . This is the focus of Lemma 4.

Lemma 2: The BRD converges to the unique NE from
any (x(0),y(0)) ∈ S if maxx∈ST (

1
ηx2 log( x

Δ )
) < 9 in at most

logJmax
b

ε
‖s1−s0‖ iterations.

The proof is based on showing that the above relationship
is a sufficient condition for the Jacobian infinity matrix norm
‖Jb‖∞ to be always lower than 1, and thus, according to
[24], convergence of the BRD follows. We refer the reader to
Appendix B for a detailed proof of Lemma 2.

Let us now observe that bJ(x) is lower-bounded as it is
non-negative (bJ(x) � 0) and, since it is concave, it has a

maximum, say yM , for x̂ = Δe
1
2W ( 2

ηΔ2 ), and thus it is upper-
bounded (bJ(x) � yM = bJ(x̂)). Also, it is easy to prove that
bT (y) is a non-negative strictly increasing function, hence, it
is lower-bounded by xm = bT (0). We can thus define a new
strategy set S ′ = S ′

T × S ′
J = [xm,xM]× [0,yM], where S ′ ⊂ S

and xM = bT (yM), which is relevant in the following lemma:

Lemma 3: Given any starting point (x(0),y(0)) ∈ S , the BRD
is bounded in S ′ in at most two iterations. That is, (x(i),y(i))∈ S ′

for i = 2,3, . . . ,+∞.
Proof: Let S (1) be the strategy set at the first iteration.

From eqs. (7) and (8) we have that bJ(x) is lower and upper-
bounded by y = 0 and y = yM , respectively, thus y(1) ∈ [0,yM].
Furthermore, as bT (x) is lower-bounded by x = xm and y(0) ∈
SJ = [0,+∞[, it follows that x(1) ∈ [xm,+∞). Hence, we have

that S (1) = S (1)
T × S (1)

J = [xm,+∞)× [0,yM], S (1) ⊂ S . Due to

the boundedness of y(1) which assumes values in S (1)
J , it can be

shown that at the second iteration x(2) ∈ [xm,xM] while y(2) ∈
[0,yM], thus, we have that (x(2),y(2)) ∈ S ′. We can extend the
same reasoning to the j-th iteration (∀ j = 3,4, . . . ,∞) to obtain
that (x( j−1),y( j−1)) ∈ S ′. Therefore, it follows that (x( j),y( j)) is
still in S ′, which concludes the proof. �

Lemma 4 (NE Convergence): If the parameter cT satisfies
the condition:

cT > c′T =
1

9Δ2 log2P
1(

W
(

2TAJ
eΔ

)
+1

)
e

2
(

W
(

2TAJ
eΔ

)
+1

) (16)

then G ′ converges to the NE of G .
Proof: Since the function on the left-hand side of eq. (15)

is non-negative and strictly decreasing, and the minimum value

of ST is xm = ΔeW (
2TAJ

eΔ )+1, then

max
x∈ST

(
1

ηx2 log
(

x
Δ
)
)

=
1

ηx2
m log

( xm
Δ

) . (17)

It is easy to show that if eq. (16) holds, then

1

ηx2
m log

( xm
Δ

) < 9

and therefore, recalling eq. (17), eq. (15) holds. From Lemma 2
we thus obtain that G ′ converges to its NE.

We still need to demonstrate that G and G ′ converge to the
same equilibrium point. To this purpose it is sufficient to prove
that the equilibrium point of G is in S ′. Theorem 2 guarantees
that the game G admits a unique equilibrium, which has to be in
S . Let (xNE,yNE) be the NE, i.e., the unique intersection point
between bT (y) and bJ(x). As bJ(x) takes values in [0,yM] it
follows that yNE ∈ [0,yM]; therefore, xNE = bT (yNE) ∈ [xm,xM].
It follows that (xNE,yNE) ∈ S ′, which concludes the proof. �

V. STACKELBERG GAME

In a Stackelberg game one of the players acts as the leader by
anticipating the best response of the follower. In our scenario,
the jammer plays its strategy when a communication from the
target node is detected on the monitored channel; thus, it is
natural to assume that the target node acts as the leader followed
by the jammer. Obviously, given the strategy of the target node
x, the jammer will play the strategy that maximizes its utility,
that is, its best response bJ(x).6 This hierarchical structure of

6In the following, given that the value of cT ∗ does not impact on the game,
for worth of simplicity we assume that cT ∗ = 0.
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the game allows the leader to achieve a utility which is at
least equal to the utility achieved in the ordinary game at the
NE, if we assume perfect knowledge, that is, the target node
is completely aware of the utility function of the jammer and
its parameters, and thus it is able to evaluate bJ(x). Whereas,
if some parameters in the utility function of the jammer are
unknown at the target node, i.e., the imperfect knowledge case,
the above result is no more guaranteed as it is impossible to
evaluate the exact form of bJ(x). In this section we analyze the
Stackelberg game and provide useful results about its equilib-
rium points, referred to as Stackelberg Equilibria (SEs).

Definition 2: A strategy profile (x∗,y∗) ∈ S is a Stackelberg
Equilibrium (SE) if y∗ ∈ SJ

NE(x) and

x∗ = argmax
x′

UT (x
′,y∗)

where SJ
NE(x) is the set of NE for the follower when the leader

plays its strategy x.
In the following we will prove that, in the case of perfect

knowledge, there is a unique SE for any value of the weight pa-
rameter cT , and we demonstrate that the target node can inhibit
the jammer under the perfect knowledge assumption. Next, we
will investigate the implications of imperfect knowledge on the
game outcome.

A. Perfect Knowledge

Under the perfect knowledge assumption, the target node
selects x in such a way that UT (x,bJ(x)) is maximized, where
UT (x,bJ(x)) is calculated in eqs. (18a) and (18b), shown at the
bottom of the page, by replacing expression (8) in eqs. (4) and
(1). By analyzing the first derivative of χ(x), it can be shown

that χ(x) has a maximum in x̂ = Δe
1
2W ( 2

ηΔ2 ) and, consequently,
χ(x) is strictly decreasing for x > x̂ and strictly increasing for
x < x̂.

In the following we show that for any value of cT there exists
a unique Stackelberg Equilibrium, and this is when the jammer
does not jam the timing channel.7 Furthermore, we show that
the leader can improve its utility at the Stackelberg equilibrium
if and only if cT < c̃T .

Theorem 4: For any value of the parameter cT , the
Stackelberg game GT has a unique equilibrium.

Proof: First, we prove that the game admits a unique

equilibrium for cT ≥ c(max)
T . Recall that cT ≥ c(max)

T implies
bJ(x) = 0; therefore, SJ is singleton and the unique feasible
strategy for the jammer at the SE is ySE = 0. In fact, due to the
high cost associated to the emission of the jamming signal, the

7In this case the jammer is expected to transmit the interference signal for
a short time interval only because this suffices to disrupt communications, as
occurs in traditional communication channels.

Fig. 6. Graphical representation of χ(x) and UT (x,bJ(x)) in the Stackelberg
game. The solid line is the actual utility of the target node in each strategy
subset.

jammer is inhibited ∀x ∈ ST . Hence, it can be easily proved that

the strategy profile at the SE is (xSE,ySE) = (ΔeW (
2TAJ

eΔ )+1,0),
that is, at the SE the target node selects the strategy that
maximizes the capacity of the non-jammed timing channel
(where indeed ySE = 0).

Instead, if cT < c(max)
T , from eq. (9) we have that χ(x̂) > 0.

Thus, for the intermediate value theorem there exist x1 < x̂ and
x2 > x̂ such that χ(x1) = χ(x2) = 0, as shown in Fig. 6.

Let us denote ST 1 = {x ∈ [2Δ,x1]}, ST 2 = {x ∈ [x1,x2]},

ST 3 = {ST \ (ST 1 ∪ ST 2)}, and x′ = ΔeW (
2TAJ

eΔ )+1. It can be
easily proved that x′ maximizes eq. (18b) and, since χ(x′) > 0,
it follows that x′ ∈ ST 2. Therefore, the utility function of the
target node as defined in eq. (18b) increases for x < x′ and
decreases for x > x′. The latter is fundamental to prove the
theorem; in fact, as shown in Fig. 6, for x ∈ ST 1 the utility of
the target node is defined by eq. (18b) and strictly increases as x
increases; therefore, we have that in ST 1 the maximum utility is
achieved in x1. On the contrary, in ST 2 the utility is defined by
eq. (18a), which is a strictly increasing function that achieves
its maximum value for x = x2. Finally, for x ∈ ST 3 we have
that the utility of the transmitter defined by eq. (18b) strictly
decreases as x > x′; hence, the maximum value is achieved for
x = x2.

Since UT (x,bJ(x)) < UT (x2,bJ(x2)) with x = x2, it follows
that, to maximize its own utility, the target node must play the
unique strategy x = x2. Note that χ(x2) = 0 by definition, thus
from eq. (8) we have that the strategy of the jammer at the
equilibrium is ySE = 0. Therefore, xSE = x2 is the strategy of

UT (x,bJ(x))=

{√
cT P log2

(
x
Δ
)
− cT ∗ ·TP ·PT if χ(x)> 0

log2

(
x
Δ
)
/
(
TAJ +

x
2

)
− cT ∗ ·TP ·PT if χ(x)� 0

(18a)

(18b)
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the target node at the SE, and we can identify the unique SE as
(xSE,ySE) = (x2,0), which concludes the proof. �

Let us remark that the above Theorem also highlights an
insightful side-effect: at the Stackelberg equilibrium, pursuing
the goal of inhibiting the jammer makes the target node prefer
to increase transmission delay rather than reduce its achievable
capacity.

Let us also note that, although an analytical closed form for
xSE cannot be easily derived, its value can be determined by
means of numerical search algorithms such as the bisection
search algorithm. Obviously, such algorithms will not give the
exact value of xSE; in fact, they will return an interval [xm,xM]
small as desired, containing the solution, i.e., xSE ∈ [xm,xM],
and eventually the target node will select the minimum or the
maximum value of the interval which gives the highest utility
function. Let ε(xm,xM) denote the loss in the utility of the target
node due to the fact that it cannot determine the exact value
of xSE. Given that the utility function is continuous and that
its derivative is upperbounded by umax =

√
cT ·P/(4Δ log2) in

[x1,xSE], it is possible to show that selecting the interval size in
such a way that

xM − xm ≤ ε∗/umax (19)

the loss in the utility of the target node, ε(xm,xM), is lower than
ε∗. In other terms, by using numerical search algorithms such
as the bisection search algorithm, the target node can make the
loss in its utility as small as desired.

In the following we provide an approximation x′SE that can
be helpful from a practical point of view. Let us assume that
(TAJ +

x
2 )≈

x
2 , therefore, (9) can be rewritten as follows

log
(

x
Δ
)

log(2)cT P
=

( x
2

)2
. (20)

By means of simple manipulations it can be easily shown that
eq. (20) admits the following solution:

x′SE = Δe
− 1

2W

(
− log(2)cT PΔ2

2

)
. (21)

In Section VI we will provide numerical results that show how
much the approximation in eq. (21) affects the outcome of the
Stackelberg game.

Theorem 5: In the Stackelberg game the target node
improves its utility as compared to the NE if and only if
0<cT < c̃T .

Proof: Let us start with the proof of the sufficient con-
dition implied by the Theorem 5. According to eqs. (11) and
(18a), proving that UT (xSE,bJ(xSE))> UT (xNE,yNE) is equiv-
alent to showing that√

cT P log2

(xSE

Δ

)
>

1
log2

2
Δ

e
− 1

2W

(
8

ηΔ2

)

that is

1
2

W

(
8

ηΔ2

)
< log

(xSE

Δ

)
.

This only holds if xSE > Δe
1
2W ( 8

ηΔ2 ) = xNE. Recall that if
0 < cT < c̃T , the NE is an interior NE, that is, χ(xNE) > 0.
Therefore, as χ(xSE) = 0, it must hold that xNE < xSE, which
proves the sufficiency condition. As for the necessary condition,
we have to show that, if cT � c̃T , no improvement can be
achieved by the target node. In fact, if cT � c̃T it is straight-
forward to prove that the NE and the SE coincide, and thus, the
utilities of the target node at the SE and NE are equal. �

B. Imperfect Knowledge

We now investigate the implications of imperfect knowledge
on the weight parameter cT in eq. (1). In Theorem 4 we
proved that the optimal strategy in the Stackelberg game is xSE

such that χ(xSE) = 0. According to eq. (9) the value of cT is
needed to evaluate xSE. However, it is reasonable to assume
that in realistic scenarios the value of cT is not available at the
target node, while instead, only statistical information on the
distribution of cT is likely known. Let us denote as fcT (ξ)
the probability density function (pdf) of the random variable
representing the weight parameter cT . We also denote as g(ξ)
the function returning the strategy of the target node at the SE,
xSE, when the weight parameter for the jammer is cT = ξ.

The resulting utility function of the target node Uξ
T =

UT (g(ξ),bJ(g(ξ)) can be calculated as

Uξ
T =

⎧⎪⎨
⎪⎩

√
cT P log2

(
g(ξ)

Δ

)
if ξ > cT

log2

(
g(ξ)

Δ

)
/
(

TAJ +
g(ξ)

2

)
if ξ ≤ cT .

(22a)

(22b)

Let us refer to E{Uξ
T} as the expected value of the utility func-

tion of the target node. Assuming that fcT (ξ) is a continuous
function, it follows that

E
{

Uξ
T

}
=

∫ +∞

−∞
UT (ξ|cT = α) fcT (α)dα

=
∫ ξ

−∞
UT (ξ|cT =α) fcT (α)dα+

∫ +∞

ξ
UT (ξ|cT =α) fcT (α)dα.

From eqs. (22a) and (22b) we have

E
{

Uξ
T

}
=

∫ ξ

−∞

√
αP log2

(
g(ξ)

Δ

)
fcT (α)dα

+
∫ +∞

ξ

log2

(
g(ξ)

Δ

)
(

TAJ +
g(ξ)

2

) fcT (α)dα

=

√
P log2

(
g(ξ)

Δ

)∫ ξ

−∞

√
α fcT (α)dα

+
log2

(
g(ξ)

Δ

)
(

TAJ +
g(ξ)

2

) ∫ +∞

ξ
fcT (α)dα. (23)
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By exploiting the relationship in eq. (9), eq. (23) can be
rewritten as

E
{

Uξ
T

}
= P

(
TAJ +

g(ξ)
2

)√
ξ

×
[ ∫ ξ

−∞

√
α fcT (α)dα+

√
ξ
∫ +∞

ξ
fcT (α)dα

]
. (24)

Note that the target node has first to find ξ∗ =

argmaxξ E{Uξ
T}, and then, the optimal strategy is evaluated as

xSE(ξ∗) such that χ(xSE(ξ∗)) = 0.
In the following we analyze the especially relevant case

when the random variable ξ is uniformly distributed in a closed
interval,8 that is, the pdf of ξ is defined as

fcT (ξ) =
{

1
ξmax−ξmin

if ξ ∈ [ξmin,ξmax]

0 otherwise.
(25)

By substituting eq. (25) in eq. (24), we obtain the following
expression

E
{

Uξ
T

}
= P

(
TAJ +

g(ξ)
2

)
ξmax −ξmin

[
ξξmax −

1
3

ξ2 − 2
3

ξ
1
2 ξ

3
2
min

]
. (26)

In order to maximize the expected utility we study the first
derivative of eq. (26), which leads to:

W
(
−P log(2)Δ2

2 ξ
)

1+W
(
−P log(2)Δ2

2 ξ
)

⎛
⎝ξmax −

1
3

ξ− 2
3

ξ
3
2
min√

ξ

⎞
⎠ = 2ξmax

−4
3

ξ− 2
3

ξ
3
2
min√

ξ
. (27)

The solution of eq. (27), say ξopt , is the value of ξ that
maximizes the expected utility of the target node. Regrettably,
ξopt can be evaluated only numerically. Thus, in the aim of
providing practical methods to choose ξ, in the next section we
will discuss some analytical results that show how ξ= ξmax well

approximates ξopt . In fact, if we assume W (−P log(2)Δ2

2 ξ)/[1+
W (−P log(2)Δ2

2 ξ)]≈ 1, then, eq. (27) can be reformulated as

ξmax −
1
3

ξ = 2ξmax −
4
3

ξ

whose solution is ξ = ξmax. Furthermore, we will show that the
above approximation guarantees high efficiency at the SE even
if the uncertainty on the actual value of cT is high, as in the case
of a uniform distribution.

VI. NUMERICAL RESULTS

In this section we apply the theoretical framework developed
in the previous sections to numerically analyze the equilibrium
properties for both the ordinary and Stackelberg games. As
introduced in Section III, the settings of the relevant parameters
are those in Table I.

8Note that the uniform distribution represents the worst case, as it is the
distribution that maximizes the uncertainty on the actual value of cT , given
that a minimum and a maximum values are given.

Fig. 7. Best response functions for both the target node and the jammer.

Fig. 8. Strategy of the target node at the NE as a function of the weight
parameter cT for different values of the transmitting power P.

A. Ordinary Game

In Fig. 7 we show the best response functions of both the
target node and the jammer for different values of the weight
parameter cT . As already said, the NE is the intersection point
between the best response functions. As expected, the best
response of the target node does not depend on the value of
cT , while this is not true for the best response of the jammer.
Note that for high cT values the jammer reduces its jamming
signal duration y, and the strategy of the target node consists in
reducing the maximum silence duration x.

Figs. 8 and 9 illustrate the strategy of the players at the
NE as a function of cT for different values of the transmitting
power P. Note that, as cT increases, the target node decreases
the maximum silence duration and the jammer reduces the
jamming signal duration as well. In fact, upon increasing cT the
jammer acts in an energy preserving fashion and this causes a
decrease in y. Such a behavior allows the target node to behave
more aggressively by reducing the maximum silence duration x.
Furthermore, upon increasing P, the strategies x and y decrease
as higher P values force the jammer to reduce the jamming
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Fig. 9. Strategy of the jammer at the NE as a function of the weight parameter
cT for different values of the transmitting power P.

Fig. 10. Strategy of the target node at each iteration.

signal duration and, thus, the energy consumption. Also, the
target node can reduce x, thus increasing its achieved capacity.

Figs. 10 and 11 illustrate how the BRD evolves at each
iteration for different values of the weight cT . Since we proved
that the game converges to the NE, Figs. 10 and 11 show how,
as expected, the players’ strategies converge to the strategy set
S ′ in 2 iterations (as discussed in Lemma 3) and to the NE in at
most 7 iterations.9 It is also shown that an increase in the value
of cT causes a decrease in the strategies of both players due to
the aggressive behavior of the jammer.

B. Stackelberg Game

We now turn to the analysis of the Stackelberg game, where
the target node anticipates the jammer’s reaction. In this regard,
Fig. 12 compares the utilities achieved by each player at the
NE and SE. Note that, as proven in Theorem 5, the utility

9Note that, although we proved that the convergence to the NE is guaranteed
only if cT < c̃T , in our simulations the game always converges to the NE in a
few iterations, independently of the value of cT .

Fig. 11. Strategy of the jammer at each iteration.

Fig. 12. Comparison between the utilities achieved by each player at the NE
and SE as a function of the weight parameter cT (cT ∗ ·P = 2 ·106).

achieved by the target node at the SE is higher than, or at
least equal to, the utility achieved at the NE. Moreover, at
the SE the utility is higher than at the NE for the jammer as
well. In fact, the target node increases the maximum silence
duration x, that is, it increases transmission delay, and inhibits
the jammer. Accordingly, the jammer stops its disrupting attack,
and thus, it saves energy; as a result, its utility increases when
compared to that at the Nash Equilibrium. We further observe
that, as expected, for high values of cT , the improvement in
the achieved utility becomes negligible, as already proven in
Theorem 5.

Figs. 13 and 14 illustrate the strategy at the equilibrium
points of the target node and the jammer as a function of the
parameter cT , and show how the strategies of both players
decrease as cT increases. In fact, high values of the weight
parameter cT suggest a conservative behavior of the jammer at
the NE (e.g. the jammer is more energy constrained), so that the
jammer prefers to decrease the duration of the jamming signal
y in order to reduce its energy consumption. Instead, as proven
in Theorem 4, at the SE the target node forces the jammer in
stopping its jamming attack, thus, ySE = 0. Furthermore, for
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Fig. 13. Strategy of the target node T at NE and SE as a function of the weight
parameter cT .

Fig. 14. Strategy of the jammer J at NE and SE as a function of the weight
parameter cT .

high values of the parameter cT , the strategy x of the target
node consists in choosing low silence duration at both the NE
and SE. This is because by increasing cT the strategy of the
jammer consists in reducing the duration of the jamming signal.
Hence, the target node decreases the maximum duration of the
silence intervals x, that is, T reduces the transmission delays
while achieving a higher transmission capacity. Note that when
the value of cT approaches c̃T , the NE and SE become equal.

Under the perfect knowledge assumption, at the SE the
strategy of the target node, xSE, coincides with the solution
of χ(x) = 0, which can also be approximated to x′SE as given
in (21). Accordingly, in Fig. 15(a) we compare the utilities
of the target node at the SE, in its exact and approximated
strategies xSE and x′SE, respectively. Fig. 15(b) shows that the
approximation accuracy of x′SE, defined as the ratio between
UT (x′SE,bJ(x′SE)) and UT (xSE,bJ(xSE)), strongly depends on
the value of cT . As shown in Fig. 15(c), the error introduced by

the approximation (TAJ +
xSE
2 )≈ x′SE

2 is low when low values of
cT are considered, because, in this case, the strategy of T at the

SE, xSE, consists in choosing larger silence durations, and thus
xSE
2 � TAJ . On the contrary, when cT is high, there is no need

for the target node to choose high xSE values, thus the above
approximation introduces a non-negligible error on the estimate
of x′SE. Note that, although the approximation is affected by
errors, Fig. 15(b) shows that the approximation accuracy is still
high (i.e., larger than 82%).

To evaluate the impact of imperfect knowledge on the utility
of the target node, let us now define the equilibrium efficiency
e(ξ) as follows:

e(ξ) =
Uξ

T

UcT
T
. (28)

Fig. 16 illustrates the equilibrium efficiency of the target node
as a function of cT for different choices of ξ. More in de-
tail, we considered ξ ∈ {ξopt ,ξmean,ξmax,ξmin}, where ξmean =
(ξmax + ξmin)/2, ξmin = 105 and ξmax = 109. Note that in our
simulations ξmin = 105 and ξmax = 109 are realistic setting
assumptions. In fact, lower values of ξmin or higher values of
ξmax lead to unbalanced settings as one of the terms in (1) will
always dominate the other. The most important result is that the
equilibrium efficiency when ξ ∈ {ξopt ,ξmean,ξmax} is always
higher than 75%, while the case ξ = ξmin achieves a very low
equilibrium efficiency (and thus, it is not reported in Fig. 16).
As demonstrated in Section V-B, Fig. 16 shows that ξmax well
approximates ξopt , i.e., e(ξopt) � e(ξmax). Therefore, from a
practical point of view, if the computation of ξopt is not feasible
(e.g., high computational cost and low hardware capabilities)
it is still possible to achieve a high equilibrium efficiency by
choosing ξ = ξmax.

Finally, in Fig. 17 we compare the utility functions of the
target node and the jammer obtained at the NE and SE with
what is obtained in the cases the two players select their
strategies without considering the strategies of each other. More
specifically we will consider the two following cases:

• Case A: The target node selects its strategy x in such a way
that its capacity is maximized without considering that the
jammer will try to disrupt the communication in the timing
channel as well. In other terms, the target node will assume
that y ≈ 0.

• Case B: The jammer selects its strategy y assuming that
the target node is not aware that it (the jammer itself) is
trying to disrupt the communication in the timing channel.
In other terms, the jammer will assume that x ≈ bT (0).

When compared to the NE and SE cases the utility function
of the target node will decrease in Case A and increase in
Case B. The vice versa holds for the utility function of the
jammer. We observe that the gap between the utility functions
obtained in Cases A and B compared to the NE and SE decrease
when the cost cT increases. This is because when the cost cT

increases the jammer becomes more concerned about the en-
ergy consumption and therefore the value yNE becomes smaller.
Accordingly, the assumptions considered in Cases A and B
become accurate and consequently the behavior approaches
what is obtained when each player takes the strategy of the
opponent into account.
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Fig. 15. Impact of the approximation x′SE in eq. (21) on the Stackelberg game outcome as a function of the weight parameter cT (cT ·P = 2 ·106).

Fig. 16. Equilibrium efficiency e(ξ) as a function of the weight parameter cT

(cT ·P = 2 ·106).

Fig. 17. Comparison between the utility of the target node and the jammer
when they work at the NE, at the SE and what is obtained in Case A and B.

C. Simulation Results

To assess the accuracy of the theoretical results derived in
the previous sections, we implemented a simulator that shows
how players’ behavior dynamically evolves and how players

TABLE II
PARAMETER SETTINGS USED IN OUR SIMULATIONS

Fig. 18. Strategies chosen by the players vs. time.

choose their strategies. In the simulations we assume that
each player chooses its own initial strategy randomly. Then,
players update their strategies each 10 cycles during which
each player estimates the opponent’s strategy. Players update
their strategies according to the BRD discussed in Section IV-C.
The simulation parameter setup is summarized in Table II. Note
that we chose cT > cmax

T so that NE is on the border, i.e., the
strategy of the jammer at the NE is y∗ = 0. In Fig. 18 we
show an example of the simulation results that illustrates how
players dynamically change their strategies depending on the
opponent’s one. The figure shows that after three iterations,
players reach the NE, that is, due to the high energy cost,
the jammer stops its attack while the target node chooses its
strategy according to its best response function, i.e., x∗ = bT (0).
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VII. CONCLUSION

In this paper we have proposed a game-theoretic model of
the interactions between a jammer and a communication node
that exploits a timing channel to improve resilience to jamming
attacks. Structural properties of the utility functions of the two
players have been analyzed and exploited to prove the existence
and uniqueness of the Nash Equilibrium. The convergence of
the game to the Nash Equilibrium has been studied and proved
by analyzing the best response dynamics. Furthermore, as the
reactive jammer is assumed to start transmitting its interference
signal only after detecting activity of the node under attack, a
Stackelberg game has been properly investigated, and proofs
on the existence and uniqueness of the Stackelberg Equilibrium
has been provided. Finally, the case of imperfect knowledge
about the parameter cT has been also discussed. Numerical
results, derived in several real network settings, show that our
proposed models well capture the main factors behind the
utilization of timing channels, thus representing a promising
framework for the design and understanding of such systems.

APPENDIX A
PROOF OF THEOREM 2

Proof: In order to prove the theorem we have to solve
(10), that is, find a pair (x,y) which solves the following system
of equations: ⎧⎨

⎩
y =χ

(
Δeψ(y)+1

)
x =Δeψ(y)+1.

(29)

By exploiting the Lambert W-function definition and the rela-
tionship z/W (z) = eW (z), where z = [ 2(TAJ+y)

eΔ ], it can be proven
that the above system leads to

(y+TAJ)
2 =

1
η
· ψ2(y)

ψ(y)+1
. (30)

Given that the first derivative of the Lambert W-function is
defined as

W ′(z) =
W (z)

z(W (z)+1)
. (31)

eq. (30) can also be rewritten as

e
W

(
2(TAJ+y)

eΔ

)
=

1
η
· 2

Δe
·W ′

(
2(TAJ + y)

eΔ

)
. (32)

Note that the function on the left-hand side is strictly increasing,
while the one on the right-hand side is strictly decreasing.
These structural properties imply that the two functions have no
more than one intersection point. Therefore, the game admits a
unique NE.

Now we focus on finding a closed form for the unique NE.
To this purpose, eq. (32) can be reformulated as

e
2W

(
2(TAJ+y)

eΔ

) (
W

(
2(TAJ + y)

eΔ

)
+1

)
=

1
η

(
2

eΔ

)2

which, by exploiting the relation z =W (z)eW (z), can be rewrit-
ten as follows:

W

(
2(TAJ + y)

eΔ

)
=

1
2

W

(
8

ηΔ2

)
−1. (33)

It is easy to prove that eq. (33) has the following solution

y∗ =
Δ
2

(
1
2

W

(
8

ηΔ2

)
−1

)
e

1
2W

(
8

ηΔ2

)
−TAJ . (34)

By substituting eq. (34) in eq. (7) we obtain x∗ = Δe
1
2W ( 8

ηΔ2 ). As
the point (x∗,y∗) has been obtained as the intersection between
the best response functions in eqs. (7) and (8), it follows that
(xNE,yNE) = (x∗,y∗) is the unique NE.

Finally, we prove that the NE (xNE,yNE) is an interior NE. An
interior NE happens when it is not on the border of the strategy
set; therefore, we aim at proving that xNE > 2Δ and yNE > 0. As

xNE =Δe
1
2W ( 8

ηΔ2 ), proving that xNE is not on the border is trivial;
from eq. (34) it can also be easily proven that the condition
yNE > 0 implies 0 < cT < c̃T , where c̃T is given in eq. (12);
therefore, an interior NE exists only if 0 < cT < c̃T . Theorem 1
states that an NE must exist for any given weight parameter
cT . Since we already proved that an interior NE exists only if
0 < cT < c̃T , we can deduce that the NE is on the border if
cT � c̃T .

From eq. (8) we know that for cT � c̃T the best response
function of the jammer, bJ(x), is continuous, and it is upper-

bounded by bJ(x̂) where x̂ = Δe
1
2W ( 2

ηΔ2 ), and lower-bounded
by 0; thus, as the NE has to be at the border, it follows that
the only feasible solution is yNE = 0. Hence, from eqs. (7) and
(8), it is easy to derive closed form solutions on the border NE,

(xNE,yNE) = (ΔeW (
2TAJ

eΔ )+1,0), which concludes the proof. �

APPENDIX B
PROOF OF LEMMA 2

Proof: To prove the Lemma, it will be shown that the
condition in eq. (15) implies that the Jacobian matrix norm
‖Jb‖∞ in eq. (13) is lower than 1. In fact, the condition ‖Jb‖∞ <
1 leads to:

max

(∣∣∣∣ ∂
∂y

bT (y)

∣∣∣∣ ,
∣∣∣∣ ∂
∂x

bJ(x)

∣∣∣∣
)
< 1.

Note that | ∂
∂y bT (y)| can be calculated as∣∣∣∣ ∂

∂y
bT (y)

∣∣∣∣ = 2

W
(

2(TAJ+y)
eΔ

)
+1

.

The above function is non-negative and strictly decreasing,
thus it achieves its maximum value when y = 0. Accordingly, it
is sufficient to show that

max
y∈SJ

⎛
⎝ 2

W
(

2(TAJ+y)
eΔ

)
+1

⎞
⎠ < 1, ∀y ≥ 0
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or, equivalently, that

max
y∈SJ

⎛
⎝ 2

W
(

2(TAJ+y)
eΔ

)
+1

⎞
⎠=

2

W
(

2TAJ
eΔ

)
+1

< 1, ∀y≥0

which is indeed satisfied for all values of y in the strategy set;
therefore, | ∂

∂y bT (y)|< 1,∀y ∈ SJ .

Concerning the condition | ∂
∂x bJ(x)|< 1, by deriving bJ(x), it

follows that ∣∣∣∣∣1
2

[
1

x
√

η log x
Δ
−1

]∣∣∣∣∣ < 1. (35)

The expression on the right-hand side of eq. (35) is a
non-negative strictly decreasing function, so again eq. (35)
results in

max
x∈ST

⎛
⎝

∣∣∣∣∣∣
1
2

⎡
⎣ 1

x
√

η log
(

x
Δ
) −1

⎤
⎦
∣∣∣∣∣∣
⎞
⎠ < 1. (36)

Note that eq. (36) can be rewritten in the form given in eq. (15)
and ‖Jb‖∞ = ‖Jb‖ as Jb is diagonal. Let si = (xi,yi), it then
follows that

‖si+1 − si‖ ≤ ‖Jmax
b ‖ · ‖si − si−1‖ ≤ · · · ≤ ‖Jmax

b ‖i ‖s1 − s0‖

where ‖Jmax
b ‖ = maxJb. The above equation indicates that

given any ε> 0, after at most logJmax
b

ε
‖s1−s0‖ iterations, the game

converges to the NE as ‖si+1−si‖≤ ε which thus concludes the
proof. �
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