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Abstract—In this paper, we consider the probing order and
stopping problem arising from the identification of spectrum
holes in multi-channel cognitive radio networks, in which a
secondary user (SU) seeks to maximize the probability of finding
an available channel while minimizing the related probing cost
within a long time horizon. This problem can be casted into a
restless multi-armed bandit (RMAB) problem, which is proved
to be PSPACE-hard. The key point of this problem is the trade-
off between exploitation, in which the SU stops probing once
an available channel is identified, and exploration, in which
the SU continues to probe new channels even after identifying
an available channel in order to learn the system state to
reduce probing cost in the future. To strike a desirable balance
between the two conflicting objectives, we develop a heuristic
channel probing policy, termed as ν-step lookahead policy, in
which the SU makes its decision based on the prediction of
system state within the future ν steps, with ν being a tunable
parameter. We conduct an analytical study on the structure of
the proposed ν-step lookahead policy, and demonstrate how the
policy can be implemented with linear complexity with respect
to the number of channels in the system via a detailed analysis
on the 1-step lookahead policy. Numerical experiments between
ν-step lookahead policy and myopic probing policy on two
representative network scenarios demonstrate the effectiveness
of the proposed ν-step lookahead policy.

Index Terms—Opportunistic spectrum access (OSA), cogni-
tive radio, restless multi-armed bandit (RMAB), myopic policy,
heuristic policy, complexity

I. INTRODUCTION

A. Background

With the rapid growth of wireless communications in recent
years, so far almost all the exploitable spectra have been
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allocated for various wireless applications in different regions.
Meanwhile, severe underutilization of the licensed spectrums
at certain time or location has been observed by measurements
of wireless spectrum usage [1], [2]. This observation has
motivated the idea of opportunistic spectrum access (OSA),
under which the unlicensed secondary users (SUs) can utilize
the spectrum which is not occupied by the licensed primary
users (PUs). As an enabling technique in implementing OSA
paradigm, cognitive radio (CR) [3]–[6], allowing SUs to
probe spectrum, analyze spectrum statistics, and adjust their
transmissions according to the time-varying environment, has
been claimed to be a hopeful solution to the conflicts between
spectrum demand growth and spectrum underutilization [7]–
[10].

To utilize channel opportunities of the PUs, the SU should
probe the channels before transmission in order to determine
whether the PUs are transmitting over them. In fact, the
SU cannot probe all the channels each time due to resource
constraint, i.e., hardware capability, energy consumption, and
probing cost. Hence, the SU should decide which channels
to probe in each time slot in order to utilize the spectrum
opportunities as fully as possible. This decision process can
be enhanced if relevant statistical information about these
channels is taken into account. For example, with capability
of probing multiple channels in a slot, the SU can probe
the channels sequentially according to certain probing order
(e.g., the descending order of availability probabilities of
the channels) to gather information, and stops at a channel
based on certain criterion (e.g., when successfully obtaining
an available channel) to enter data transmission phase which
takes the remainder of the slot duration. Therefore, the probing
order and the stopping criterion should be jointly tuned to
maximize the long-term objective of the SU (e.g., maximizing
the average long-term throughput).

There are a body of related works in the literature addressing
the probing order and optimal stopping problem where an
SU continuously probes a set of selected channels until one
channel is identified to be unoccupied. In this aspect, most of
works focuses on the model of memoryless channel. In [11],
the authors derived the optimal channel-sensing strategy for a
single-user case with an assumption of recall and guess where
the former allows the SU to access a previously sensed channel
while the latter permits the SU to access a channel that has not
yet been sensed. In [12], the authors showed that obtaining the
optimal sensing strategy is computationally prohibitive, and
then proposed polynomial complexity algorithms to ensure the
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obtained reward at most ε less than that of the optimal strategy.
In [13], the authors studied the optimal sensing order problem
for a single-user case where neither recall nor guess is al-
lowed with a simple sensing order for some special scenarios.
In [14], the authors considered opportunistic channel sensing
and access in cognitive radio networks when the sensing is
imperfect and an SU can access up to a limited number of
channels at a time, and derived asymptotically logarithmic
regret performance for different scenarios. In [15], the optimal
channel sensing order was derived for channels with homo-
geneous capacities, and the optimal sensing order problem
for channels with heterogeneous capacities was shown to be
NP-hard. In [16], a novel sequential sensing scheme was
proposed based on suprathreshold stochastic resonance (SSR)
to reduce the average sample number in a single sensing
node. In [17], the authors focused on finding the appropriate
sensing frequency during an SU’s active data transmission on a
licensed channel, and proposed detection schemes addressing
channel state change and anomalous data to facilitate short-
term sensing adaptation to the variations in sensed data.
In [18], the authors studied sequential channel sensing and
probing to resolve spectrum uncertainty and to search for good
transmission opportunities for realtime traffic in CR networks
by optimal stopping theory. In [19], a novel channel sensing
and accessing strategy was proposed carefully to balance
the channel statistics exploration and multichannel diversity
exploitation such that the regret is in optimal logarithmic rate
in time and polynomial in the number of channels.

B. Restless Multi-armed Bandit and Myopic Policy

The channel probing problem addressed in this paper
is theoretically grounded in the restless multi-armed bandit
(RMAB) problem, one of the most well-known generaliza-
tions of the classic multiarmed bandit (MAB) problem. The
RMAB problem is of fundamental importance in stochastic
decision theory due to its generic nature and its application
in numerous engineering problems such as wireless channel
access, communication jamming and object tracking. Despite
the significant research efforts in the field starting from almost
half a century ago, the RMAB problem in its generic form still
remains open and is notoriously reputed as a hard problem
in the field of decision and control. Until today, few results
are reported on the structure of the optimal policy. Obtaining
the optimal policy for a general RMAB problem is often
intractable due to the exponential computation complexity.

However, a number of research works have recently ap-
peared on a single-user case [21]–[26] under the restless multi-
armed bandit (RMAB) framework, and have shown that the
myopic policy, by sensing channels with the highest available
probabilities, is optimal under some mild conditions when
the SU senses k out of N channels each time. Ahmad and
Liu et al. [22] derived the optimality of the myopic sensing
policy for the positively correlated i.i.d. channels when the
user is limited to access one channel (i.e., k = 1) each time,
and further extended the optimality to the case of sensing
multiple i.i.d. channels (k > 1) [23] for the scenario where
the user gets one unit of reward for each channel sensed

good. In [25], we extended i.i.d. channels [22] to non i.i.d.
ones, and focused on a family of generic and important utility
functions, termed as regular function, and derived closed-
form conditions under which the myopic sensing policy is
ensured to be optimal. For the imperfect sensing case, Liu and
Zhao et al. [24] proved the optimality of the myopic policy
for the case of two channels with a particular utility function
and conjectured it for arbitrary N . Further, the optimality of
the myopic policy was extended to access a fixed number
k of channels in N homogeneous channels [26] and N
heterogeneous channels [27], respectively.

In the above literature [21]–[27], a fixed number of channels
are assumed to be sensed (or probed), and thus, the sensing
(or probing) cost is constant at each slot and is omitted in
those problems without losing performance. In practice, the
number of channels an SU can sense varies according to
its requirement and capability, and is upper-bounded by its
resource constraint or probing limit. Under this context, the
probing cost does not keep constant in each slot and cannot be
omitted in the probing process. Thus, a natural question arises:
how many channels should the SU probe each time taking into
account the probing cost, in other words, when should the SU
stop probing in each probing process? It is insightful to note
that the key point to answer the question is the well-known
trade-off between exploitation and exploration. Specifically,
exploitation refers to starting immediate transmission over the
channel which is probed to be available, without probing other
channels, in order to leave more time for data transmission.
On the other hand, exploration requires learning the system
state by probing additional channels even after identifying an
available channel, and obviously, exploration brings benefit in
future slots because of the obtained channel information.

C. Our Contributions

In this paper, we develop a decision-making framework to
analyze the probing channel problem with a variable number
of channels when the system state can only be partially and
imperfectly observable. Specifically, the SU can only probe k
out of N (k < N ) channels at each slot and, as a consequence,
obtain partial system information. In practice, the probing
error is unavoidable for the complicatedly varying conditions
of channels from noise, fading, occupation etc, and thus, the
SU can only obtain imperfect system information taking into
account false alarm and missing detection.

Due to the hardness of the RMAB problem, each small step
towards characterizing the optimal or near-optimal strategies
is important and has its theoretic and engineering merits.
Concerning the Markovian formulation of the RMAB problem
addressed in the paper that captures the time dependence and
evolution of channels, the state-of-the-art research strand is to
seek simple myopic policies and study their optimality. We
have also done some work [25]–[27] on establishing closed-
form conditions under which the myopic policy is optimal.
In this paper, we propose a heuristic channel probing policy,
termed as ν-step lookahead policy, in which the SU makes
its decision based on the prediction of the system states in
the future ν slots, and then conduct an analytical study on
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the structure of the proposed ν-step lookahead policy, and
finally demonstrate how the policy can be implemented with
linear complexity in terms of the number of channels in the
system. Compared with the existing work on myopic probing
policies, the novelty of the proposed heuristic algorithm and
the correspondent analysis can be summarized as follows:
• In existing literature, the myopic policy requires that the

number of probed channels to be fixed at each slot to
establish the optimality result. In this work, we relax this
constraint by investigating the case where the user can
probe up to k channels each time. We note that such a
small relaxation makes the problem much more difficult.

• Existing myopic policy maximizes only the immediate
reward. In the heuristic algorithm we propose, the user
has the choice anticipating ν slots by maximizing the ag-
gregated ν-step rewards, where ν is a tunable parameter,
by tuning which the user can achieve a desirable trade-
off between optimality and complexity. We theoretically
show how such ν-step lookahead policy can be imple-
mented.

• We also incorporate the imperfect probing with non-
identical probing error rate at each channel to make the
analysis and results more generic.

The rest of this paper is organized as follows: Our prob-
lem is formulated Section II. In Section III, we propose an
easily heuristic policy and derive the corresponding heuristic
algorithm. Section IV presents the numerical experiment to
support our claims. Finally, our conclusions are summarized
in Section V.

II. PROBLEM FORMULATION

In this section, we first introduce the system model, and
then formulate the jointly optimal problem of channel probing
order and stopping optimization into a RMAB one.

A. System Model

We consider a cognitive communication system in which
an SU tries to access a set N of N primary channels, each
channel k ∈ N given by a two state (0/occupied, 1/unoccu-
pied) Markov chain with transition probabilities

{
p

(k)
ij

}
i,j=0,1

.
The communication system is assumed to operate in a slotted
fashion, and the time slots are indexed by t (1 ≤ t ≤ T ),
where T is the time horizon of interest (until the SU gives up
accessing the system). Specifically, we assume that channels
go through state transition at the beginning of a slot. The
length of each time slot is denoted as ∆, which is further
divided into two parts: the probing phase and the transmission
phase. Let δ = α∆ denote the time needed to probe one
channel, the probing phase lasts na∆ if the user probes n
channels, and the transmission phase consists of the rest of
the time (1− αn)∆.

The SU’s objective is to maximize its throughput by choos-
ing the appropriate set of channels and then probing them
according to certain probing sequence. Let A(t) and OA(t)
denote the set of channels probed and the corresponding set
of probed results, i.e., OA(t) ,

{
Oi(t) ∈ {1, 0}, i ∈ A(t)

}
,

by the SU at slot t. The SU is assumed to probe at most M

(1 ≤ M < N ) channels for the hardware limit and probing
constraint, where α ≤ 1

M is required to ensure the existence
of transmission phase. If at least one of the probed channel
is probed to be unoccupied, the SU can successfully transmit
one packet.1

Let Si(t) be the state of channel i at slot t. In our study,
we take into consideration the imperfect probing which is
characterized by the miss detection rate denoted as ζi and the
false alarm rate denoted as εi, formally defined as follows:

εi(t) , Pr{Oi(t) = 0|Si(t) = 1},
ζi(t) , Pr{Oi(t) = 1|Si(t) = 0}.

Obviously, by imperfectly probing |A(t)| out of N channels
at each slot t, the SU cannot observe the complete state
information of the whole system. Hence, the SU has to infer
the channel states from its past decision and observation
history so as to make its future decision. Moreover, the
current probing outcome further serves as statistics for future
decision. To this end, we define the channel state belief
vector (hereinafter referred to as belief vector for briefness)
Ω(t) , {ωi(t), i ∈ N}, where 0 ≤ ωi(t) ≤ 1 is the
conditional probability that channel i is not occupied.

Given the probing set A(t) and the detection outcomes
OA(t), the belief vector in t+1 slot can be updated recursively
using Bayes Rule as shown in (1):

ωi(t+ 1) =


p

(i)
11 , i ∈ A(t), Oi(t) = 1

Ti(ϕi(ωi(t))), i ∈ A(t), Oi(t) = 0

Ti(ωi(t)), i 6∈ A(t),

(1)

where,

Ti(ωi(t)) , ωi(t)p
(i)
11 + (1− ωi(t))p(i)

01 , (2)

ϕi(ωi(t)) ,
εiωi(t)

1− (1− εi)ωi(t)
. (3)

Note that the belief update under Oi(t) = 0 results from the
fact that the receiver cannot distinguish a failed transmission,
i.e., collides with the primary traffic with probability ζi(1 −
ωi(t)) from no transmission with probability εiωi(t) + (1 −
ζi)(1− ωi(t)) [24].

B. Optimal Probing Order and Stopping Problem

We are interested in the SU’s optimization problem to find
a channel probing policy π , [π1, · · · , πT ] that maximizes the
expected accumulated discounted reward over a finite horizon,
where, a probing policy πt is defined as a mapping from the
belief vector Ω(t) to A(t) at slot t:

πt : Ω(t)→ A(t), 1 ≤ |A(t)| ≤M, t = 1, 2, · · · , T.

Thus, the formal definition of the optimal probing problem
P can be formulated as follows:

P : π∗ = argmax
π

Eπ

[
T∑
t=1

βt−1R
(
πt(Ω(t)),OA(t)

)∣∣∣∣∣Ω(1)

]
,

(4)

1Our work can be extended to the case where the SU is equipped with
more than one radio and can access multiple channels at a time.
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where R
(
πt(Ω(t)),OA(t)

)
is the SU’s utility in slot t under

the probing policy πt with the observation set OA(t) and the
initial belief vector Ω(1)2, and 0 ≤ β ≤ 1 is the discount
factor characterizing the feature that the future rewards are
less valuable than the immediate reward.

Generally, the RMAB problem with a fixed number of
activated arms is proved to be PSPACE-hard [30] while the
proposed problem P is a special RMAB problem with a
variable number of arms to be activated. Hence, P is more
complex than those RMAB problems with a fixed number
of activated arms since the number of the probed channels
at each slot is a random variable depending on the probing
policy and the corresponding observation set. Meanwhile, the
variable number of the probed channels, in return, has some
impact on the channel probing.

C. When to Stop Probing?

Considering the exponential complexity of solving P, a
natural alternative to tackle P is to seek a myopic probing
policy that maximizes the immediate reward [21]–[25], which
corresponds to only focusing on exploitation while ignoring
exploration from the probing order perspective. That is, the
focus is how many channels to probe in each slot given the
myopic probing order, i.e., probing channels according to the
decreasing order of channel availability. In fact, the variable
number of channels probed at each slot still reflects the
intrinsic tradeoff between exploitation and exploration to some
extent. The motivation of considering the myopic probing
order is two-fold: 1) The myopic probing policy is ensured
to be optimal under certain mild conditions in the literature
[21]–[27]; 2) The myopic probing policy has a simple and
robust structure which is easy to implement.

However, plenty of existing works on myopic policy of
RMAB explicitly assume that the number of activated arms
(corresponding to the number of channels to probe) is fixed.
Actually, it is highly impossible for the SU to exactly probe
a fixed number of channels in each slot due to the probing
cost, i.e. energy or delay considered in this paper. Thus, the
objective of the SU is to probe how many channels in each
slot so as to maximize the expected aggregated reward.

For ease of presentation, assume that Ω(t) is sorted to
ω1(t) ≥ ω2(t) ≥ · · · ≥ ωN (t) in each slot t and then a
channel list l0(t) , (1, 2, · · · , N) which records channel index
according to belief value3. Then the optimization problem on
the number of channels to probe in each slot can be formulated
as follows:

P1 : φ∗ = argmax
φ

Eφ

[
T∑
t=1

βt−1R(nt,On(t))

∣∣∣∣∣Ω(1)

]
, (5)

where, φ = [n1, n2, · · · , nT ] and the first nt channels are
probed in slot t, i.e., A(t) = {1, · · · , nt}.

2If no information on the initial system state is available, each entry of Ω(1)

can be set to the stationary distribution ω(i)
0 =

p
(i)
01

1+p
(i)
01 −p

(i)
11

, 1 ≤ i ≤ N .

3The initial order of list is determined by the initial availability probability
of each channel: ω1(1) ≥ ω2(1) ≥ · · · ≥ ωN (1) ⇒ l0(1) =
(1, 2, · · · , N).

It is insightful to note that P1 on the number of channels
to probe hinges on the following tradeoff between exploitation
and exploration: probing more channels can help SU learn and
predict the future channel states, thus increasing the long-term
reward, but at the price of sacrificing the reward at current slot
since probing more channels reduces data transmission time,
thus decreasing the throughput in the current slot.

Without loss of generality, we consider the following slot
reward function R(nt,On(t)) in the normalized form:

R(nt,On(t)) =

{
1− C(nt), if

∏nt

i=1(1−Oi(t)) = 0

0, otherwise.
(6)

where C(·) is the monotonously increasing cost function,
reflecting the time cost on channel probing and frequency
switching. Specially, the first line of the RHS of (6) indicates
that the SU can obtain a payoff 1− C(nt) as long as one of
the first nt channels are probed to be unoccupied, while the
second line indicates the user obtains no payoff if none of the
first nt channels is probed to be unoccupied. By normalizing
∆ = 1, we have C(nt) = αnt.

To better streamline our presentation, we introduce the
pseudo cost function defined as follows:

q(nt,On(t)) , 1−R(nt,On(t))

=

{
C(nt) = αnt, if

∏nt

i=1(1−Oi(t)) = 0

C0 = 1, otherwise.
(7)

Then the optimization problem P1 can be written as the
following optimization problem P2:

P2 : φ∗ = argmin
φ

Eφ

[
T∑
t=1

βt−1q(nt,On(t))

∣∣∣∣∣Ω(1)

]
. (8)

Remark. We would like to emphasize that the imperfect
probing brings about the nonlinear propagation (i.e. (1)) of
belief vector such that the LP relaxation in [28], [29] for
perfect sensing cannot be adopted to provide guaranteed
approximation ratio algorithms for the imperfect probing.
Meanwhile, the proof concerning the PSPACE-Hardness of
RMAB [30] shows that it is also PSPACE-Hard to justify
whether the expected accumulated reward (or cost) of RMAB
equals zero in the simplest scenario with two states. Hence, a
practical and feasible alternative is to seek a simple and stable
policy.

III. ν-STEP LOOKAHEAD POLICY

In the previous section, it was shown to be PSPACE-hard to
obtain the optimal number of channels in the probing process
for the proposed problem. As an alternative, we first analyze a
feasible lower bound and upper one for the proposed problem,
and then propose, based on the myopic policy, a heuristic
policy (termed as ν-step lookahead policy) as well as the
corresponding algorithm. Next, we take the case of ν = 1
as an example to demonstrate how to calculate the relevant
quantities in the proposed algorithm.
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A. Upper and Lower Bounds

Before giving the upper and lower bounds, we first state
the following lemma which describes the structure of probing
policy.

Lemma 1. The SU should continue to probe new channel if
all the probed channels are occupied.

Proof: It is trivial to prove the lemma with noticing that
by probing a new channel
• the cost for the current slot t will remain 1 according

to (7) if the new channel is probed to be occupied, and
will be smaller than 1 if the new channel is probed to be
unoccupied;

• the SU can attain better reward in the future by exploring
system state, i.e. probing a new channel.

Therefore, by Lemma 1, the SU would probe at least one
channel at each slot. To show the upper bound, we construct a
genie-aided system, where the SU, with the help of the genie,
knows the actual state of all channels and then probes only
one unoccupied channel to maximize its reward (or does not
probe any channel if none of these channels is unoccupied).
We denote the expected accumulated reward of the genie-aided
system in the finite horizon time of T as Ug , and obviously,
Ug ≤ (1 − α)T . Hence, the expected accumulated reward of
P is upper bounded by Ug .

For the problem P, if the number of channels probed at
each slot is constant, i.e. |A(t)| = κ (κ ∈ [1,M ]), then the
myopic policy is optimal under some mild conditions [26],
[27], which are stated as follows:

Lemma 2. Given that the SU probes a fixed number of
channels each time, the myopic probing policy is optimal if

1) εmax , maxi∈N {εi} ≤ p01(1−p11)
p11(1−p01) for the case of

homogeneous channels [26].
2) βmaxi∈N {p(i)

11 −p
(i)
01 } ≤ 1

2 for the case of heterogeneous
channels [27].

Given the mild conditions according to Lemma 2, a feasible
lower bound Ud of P can be set to the performance of the case
in which the SU probes a fixed number of channels each time,
denoted as Ud = max

{
Uκ : κ ∈ [1,M ]

}
, where |A(t)| = κ

and

Uκ = max
π

Eπ

[
T∑
t=1

βt−1R
(
πt(Ω(t)),OA(t)

)∣∣∣∣∣Ω(1)

]
. (9)

Thus, we say that a policy χ is called a good one if the
performance Uχ achieved by the policy χ satisfies Ud ≤ Uχ ≤
Ug ≤ (1 − α)T . That is, the policy χ provides a guaranteed
bound for the problem P.

Remark. We would like to point out that the deterministic
lower bound Ud is achieved under the myopic probing pol-
icy. Therefore, to obtain guaranteed performance, we should
consider one of the variants of the myopic probing policy;
otherwise, the proposed policy cannot provide guaranteed
bound. Hence, in the next subsection, we will propose a
heuristic policy which is based on the myopic probing policy.

B. Structure of ν-Step Lookahead Policy

Taking into account the exponential complexity of solving
P2, we turn to the following heuristic strategy referred to as
ν-step lookahead policy:

1) (Probing) at slot t, the SU probes the channels according
to the decreasing order of the elements in Ω(t), and
estimates the expected accumulated reward from the next
ν slots (from t+ 1 to t+ ν, t+ ν ≤ T ), assuming that in
the next ν slots, the SU stops probing new channels once
an available one is found or the maximal number M of
channels is reached.

2) (Stoping) at slot t, the SU stops probing new channels
when the total reward in the current slot t plus that from
slot t+ 1 to t+ ν decreases.

Let lk(t) and Ωk(t) (k ≤M ) denote the channel index list
and belief vector, respectively, according to the descending
order of ωi(t) (1 ≤ i ≤ N ) after probing the first k best
channels in slot t, and lkj (t) denote the jth channel in lk(t).
Given the initial belief vector Ω0(t+1), then the correspondent
channel list l0(t+ 1)) is determined.

If the SU stops probing once a channel is probed to be
unoccupied or M is reached, the expected accumulated pseudo
cost Qt+νt+1

(
Ω0(t + 1)

)
accrued from the next ν slots can be

written as follows

Qt+νt+1

(
Ω0(t+ 1)

)
,

M∏
j=1

(
1− ωl0j (t+1)(t+ 1)

)[
C0 + β ·Qt+νt+2

(
T
(
ΩM0 (t+ 1)

))]
︸ ︷︷ ︸

term B

+

M∑
i=1

[[
ωl0i (t+1)(t+ 1)

i−1∏
j=1

(1− ωl0j (t+1)(t+ 1))
]
·

[
C(i) + β ·Qt+νt+2

(
T
(
Ωi1(t+ 1)

))]
︸ ︷︷ ︸

term A

]
,

where (a) term A denotes the pseudo cost when channel
l0i (t + 1) is probed to be unoccupied while channels l01(t +
1), · · · , l0i−1(t + 1) are probed to be occupied; (b) term B
denotes the pseudo cost when the first M channels of l0(t+1)
are probed to be occupied; (c) Ωi1(t+1) and Ωi0(t+1) denote
the belief vectors where the channel l0i (t + 1) is probed to
be occupied and unoccupied, respectively; (d) T denotes the
mapping from Ωk(t) to Ω0(t + 1) according to (1) at the
beginning of slot t+ 1, i.e., T : Ωk(t)→ Ω0(t+ 1).

At each slot t, the ν-step lookahead policy can be imple-
mented in a heuristic approach by transforming it into an
optimal stopping problem, i.e., the user stops probing new
channels when the total reward in the current slot plus that
from slot t+1 to t+ν decreases. Mathematically, the number
of channels to probe in the ν-step lookahead policy, denoted
as nt, can be approximately written as follows:

nt = inf
{
nt :C(nt) + βQt+νt+1

(
T
(
Ωnt(t)

))
< C(nt + 1) + βQ̂t+νt+1

(
Ωnt(t)

)
, 1 ≤ nt ≤M

}
,

(10)
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where (a) ς , l0nt+1(t) denoting the (nt + 1)-th channel
of l0(t); (b) Qt+νt+1

(
T
(
Ωnt(t)

))
is the expected accumulated

pseudo cost from slot t+1 to t+ν when the first nt channels
of l0(t) are probed; (c) Q̂t+νt+1(Ωnt(t)) denotes the expected
accumulated pseudo cost from slot t+1 to t+ν when channel
ς is probed to be unoccupied with probability (1 − ες)ως(t)
and occupied with probability 1− (1− ες)ως(t), i.e.,

Q̂t+νt+1

(
Ωnt(t)

)
,(1− ες)ως(t)Qt+νt+1

(
T
(
Ωnt+1

1 (t)
))

+ (1− (1− ες)ως(t))Qt+νt+1

(
T
(
Ωnt+1

0 (t)
))
.

(11)

C. Implementation of ν-Step Lookahead Policy

The following lemma further studies the structure of the
ν-step lookahead policy by developing an optimal stopping
algorithm, which decomposes the coupling of exploitation
and exploration into two stages—exploitation and exploration,
based on the structure of the cost function.

Algorithm 1 ν-step lookahead policy: executed for each slot
t

Input: Ω0(t), l0(t)
Output: nt
Initialization: nt = 0
while nt < M do

Probe the (nt + 1)th channel in l0(t)
Increase the number of the probed channels, i.e., nt =
nt + 1
if one of the first nt channels is probed to be unoccupied
and the following inequality holds:

C(nt)+βQ
t+ν
t+1

(
T
(
Ωnt(t)

))
< C(nt+1)+βQ̂t+νt+1

(
Ωnt(t)

)
(12)

then
Terminate the algorithm by outputting nt

end if
end while

Lemma 3. The ν-step lookahead policy can be implemented
by Algorithm 1 with the computation complexity O(Mν+1).

Proof: To solve nt in (10), it suffices to show that the SU
should (a) continue to probe new channels if all the probed
channels are occupied or (b) stop probing new channels if at
least one channel is probed to be unoccupied and the expected
pseudo cost increases by probing a new channel.

The first action (a) is trivial to prove by Lemma 2. We
now show the second action (b). If the SU stops at the
current channel, the total cost can be written as C(nt) +

βQt+νt+1

(
T
(
Ωnt(t)

))
. Otherwise, the expected pseudo cost by

assuming the SU probes a new channel l0nt+1(t) is C(nt +

1) + βQ̂t+νt+1

(
Ωnt(t)

)
. It can be noted that (10) is equivalent

to the condition

C(nt) +βQt+νt+1

(
T
(
Ωnt(t)

))
< C(nt+ 1) +βQ̂t+νt+1

(
Ωnt(t)

)
in Algorithm 1.

Noticing that the complexity of Algorithm 1 lies in the
computation of (12), and thus it increases exponentially with
ν, i.e. O(Mν+1).

Remark. It is insightful to note that the proposed ν-step
lookahead policy can be decomposed into two steps: first
exploitation and then exploration, which is different from the
case where exploitation and exploration are tightly coupled.
• Exploitation: the SU exploits the current available in-

formation Ω(t) in a greedy way in order to find an
unoccupied channel as soon as possible;

• Exploration: the SU continues to explore the system for
long term gain once an unoccupied channel is probed. The
exploration can be omitted if all the M best channels are
probed to be occupied or if exploration does not increase
gain in the long term (i.e., the condition in Algorithm 1
does not hold even once).

Before concluding this subsection, we reemphasize that the
complexity of Algorithm 1 lies in the computation of (12) and
thus increases exponentially with ν. On the other hand, a larger
ν leads to better performance of the lookahead policy. Hence,
the parameter ν can be tuned to achieve a desired tradeoff
between efficiency and complexity.

D. Low-Complexity Implementation: One-Step Lookahead
Policy

In the previous part, we have derived Algorithm 1 to imple-
ment the ν-step lookahead policy with exponential complexity.
Thus, we focus on the system with i.i.d. channels and provide
a mathematical analysis on the simplest case of ν = 1, i.e.,
the one-step lookahead policy, to demonstrate how to calculate
relevant quantities in (10) (11). The study on the one-step
lookahead policy can provide structural insights on calculating
expected pseudo cost, which is the foundation of the ν-step
lookahead policy.

Before delving into the detailed analysis, the following
lemma studies how the channel list should be updated when
a new channel is probed.

Lemma 4. For a system with positively correlated homoge-
neous i.i.d. channels, if 0 ≤ ε ≤ p01(1−p11)

p11(1−p01) , the channel
probed to be unoccupied (occupied) should be moved to the
head (tail) of the old channel list to form a new one.

Proof: Assume the old channel list is lk(t) =
(σ1, · · · , σN , ) at slot t. We thus have p11 ≥ ωσ1

(t) ≥
· · · ≥ ωσN

(t) ≥ p01. If channel σk+1 is probed to be
unoccupied, then ωσk+1

(t) = 1, and further lk+1(t) =
(σk+1, σ1, · · · , σk, σk+2, · · · , σN ) according to the descend-
ing order of ω. If channel σk+1 is probed to be occupied,
then ωσk+1

(t) = ϕ(ωσk+1
(t)) ≤ p01, and further lk+1(t) =

(σ1, · · · , σk, σk+2, · · · , σN , σk+1).
Given the system model presented in Subsection II-A,

assume that the SU has probed k channels with at least one of
them is unoccupied, the condition, by Algorithm 1, to decide
whether to probe channel k + 1 in the channel list can be
written as:

α > β
[
Qt+1
t+1

(
T
(
Ωk(t)

))
− Q̂t+1

t+1

(
Ωk(t)

)]
. (13)
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Without introducing ambiguity, we abuse Qt+1
t+1(·) (Q̂t+1

t+1(·))
and Q(·) (Q̂(·)), and show how to compute Q

(
T
(
Ωk(t)

))
and

Q̂
(

Ωk(t)
)

in an efficient way for homogeneous channels.
Assume that the channel list at the beginning of slot t is

l0(t) = (1, 2, · · · , N), sorted in the descending order of the
belief values, and that m (m ≥ 1) channels are probed to be
unoccupied while k − m are probed to be occupied among
the k probed channels {1, · · · , k}. It follows from Lemma 4
that m channels are moved to the head of the channel list and
others to the tail, thus forming the new channel list lk(t).

The key point of the proposed policy is to decide whether
to probe channel k + 1. For tractable analysis, we introduce
an auxiliary vector X

(
T
(
Ωk(t)

)
,m
)

, defined as

X
(
T
(
Ωk(t)

)
,m
)

,



1

X1

(
T(Ωk(t)),m

)
X2

(
T(Ωk(t)),m

)
X3

(
T(Ωk(t)),m+ 2

)
X4

(
T(Ωk(t)),m+ 2

)



,



1∏m
j=1

(
1− ωlkj (t)(t+ 1)

)
1 +

∑m
i=1

∏i
j=1

(
1− ωlkj (t)(t+ 1)

)
∏M
j=m+2

(
1− ωlkj (t)(t+ 1)

)
∑M
i=m+2

∏i
j=m+2

(
1− ωlkj (t)(t+ 1)

)


.

The following lemma establishes an important
structural property of X

(
T(Ωk(t)),m

)
based on which

X
(
T(Ωk+1(t)),m+ 1

)
can be recursively derived no matter

whether the channel k + 1 is probed to be unoccupied or
occupied.

Lemma 5. The following recursive update on the auxiliary
vector holds:
• If k + 1 channel is probed to be unoccupied,
X
(
T(Ωk+1

1 (t)),m+ 1
)

= H1 ·X
(
T(Ωk(t)),m

)
;

• If k + 1 channel is probed to be occupied,
X
(
T(Ωk+1

0 (t)),m+ 1
)

= H2 ·X
(
T(Ωk(t)),m

)
,

where ς = lkm+2(t), % = lkM+1(t), η = 1− (1− ε)p11,

H1 =


1 0 0 0 0
0 η 0 0 0
1 0 η 0 0
0 0 0 1

1−ως(t+1) 0

−1 0 0 0 1
1−ως(t+1)

 ,

H2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
1−ω%(t+1)
1−ως(t+1) 0

−1 0 0
1−ω%(t+1)
1−ως(t+1)

1
1−ως(t+1)

 .

Proof:
Case 1. When channel lkm+1(t) is probed to be unoccupied,

we have ωlkm+1(t)(t + 1) = (1 − ε)p11 according to (1) and
false alarm rate. Recalling the definition of Xi (i = 1, 2, 3, 4),
we have

X1(T(Ωk+1
1 (t)),m+ 1) = [1− ωlkm+1(t)(t+ 1)]X1(T(Ωk(t)),m),

X2(T(Ωk+1
1 (t)),m+ 1) = 1 + [1− ωlkm+1(t)(t+ 1)]X2(T(Ωk(t)),m),

X3(T(Ωk+1
1 (t)),m+ 3) = X3(T(Ωk(t)),m+2)

1−ω
lk
m+2

(t)
(t+1) ,

X4(T(Ωk+1
1 (t)),m+ 3) = X4(T(Ωk(t)),m+2)

1−ω
lk
m+2

(t)
(t+1) − 1.

It is straightforward to verify that X(T(Ωk+1
1 (t)),m+1) =

H1 ·X(T(Ωk(t)),m).
Case 2. When channel lkm+1(t) is probed to occupied, we

have ωlkm+1(t)(t + 1) = (1 − ε)T (ϕ(ωlkm+1(t)(t))) according
to (1) and false alarm rate. Note, if M = N , we have
ωlkM+1(t)(t + 1) = ωlkm+1(t)(t + 1) according to Lemma 4.
Recalling the definition of Xi (i = 1, 2, 3, 4), we have

X1(T(Ωk+1
0 (t)),m) = X1(T(Ωk(t)),m),

X2(T(Ωk+1
0 (t)),m) = X2(T(Ωk(t)),m),

X3(T(Ωk+1
0 (t)),m+ 2) = X3(T(Ωk(t)),m+ 2)

1−ω
lk
M+1

(t)
(t+1)

1−ω
lk
m+2

(t)
(t+1) ,

X4(T(Ωk+1
0 (t)),m+ 2) = X4(T(Ωk(t)),m+2)

1−ω
lk
m+2

(t)
(t+1) − 1

+X3(T(Ωk(t)),m+ 2)
1−ω

lk
M+1

(t)
(t+1)

1−ω
lk
m+2

(t)
(t+1) .

It is straightforward to verify that X(T(Ωk+1
0 (t)),m+1) =

H2 ·X(T(Ωk(t)),m).

After obtaining step-update of the auxiliary vector,
three critical quantities Q

(
T
(
Ωk(t)

))
, Q
(
T
(
Ωk+1

1 (t)
))

, and

Q
(
T
(
Ωk+1

0 (t)
))

can be easily computed in an efficient fash-
ion by using the auxiliary vector, as stated in the following
lemma.

Lemma 6. Q
(
T
(
Ωk(t)

))
, Q

(
T
(
Ωk+1

1 (t)
))

and

Q
(
T
(
Ωk+1

0 (t)
))

are updated by

Q
(
T(Ωk(t))

)
= α

[
A2X(T(Ωk(t)),m)A3X(T(Ωk(t)),m)+

A1X(T(Ωk(t)),m)
]

(14)

Q
(
T(Ωk+1

1 (t))
)

= α
[
A5X(T(Ωk(t)),m)A6X(T(Ωk(t)),m)+

A4X(T(Ωk(t)),m)
]

(15)

Q
(
T(Ωk+1

0 (t))
)

= α
[
A7X(T(Ωk(t)),m)A8X(T(Ωk(t)),m)+

A1X(T(Ωk(t)),m)
]
, (16)

where,

A1 = [0, 0, 1, 0, 0],

A2 = [0, 1− ωlkm+1(t)(t+ 1), 0, 0, 0]

A3 = [1, 0, 0,
1

α
−M − 1, 1],
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A4 = [1, 0, 1− (1− ε)p11, 0, 0]

A5 = [0, 1− (1− ε)p11, 0, 0, 0],

A6 = [0, 0, 0,
1

α
−M − 1, 1]

A7 = [0, 1, 0, 0, 0],

A8 = [0, 0, 0, (
1

α
−M)(1− (1− ε)T (ϕ(ωlkm+1(t)(t)))), 0].

Proof: Assume that m of k channels are probed to be
unoccupied while the remaining k − m channels are probed
to be occupied. Then lk(t) is obtained.

Case 1. If the SU does not probe channel lkm+1(t), we have,
by letting f t+1

n = 1−ωn(t+1) and separating channel lkm+1(t)
from others

Q
(
T(Ωk(t))

)
=

M∑
i=1

C(i)ωlki (t)(t+ 1)

i−1∏
j=1

f t+1
lkj (t)

+

M∏
j=1

f t+1
lkj (t)

=α

m∑
i=1

iωlki (t)(t+ 1)

i−1∏
j=1

f t+1
lkj (t)

+

M∏
j=1

f t+1
lkj (t)

+

+ αf t+1
lkm+1(t)

m∏
j=1

f t+1
lkj (t)

M∑
i=m+2

iωlki (t)(t+ 1)

i−1∏
j=m+2

f t+1
lkj (t)

+ α(m+ 1)ωlkm+1(t)(t+ 1)

m∏
j=1

f t+1
lkj (t)

=α
[
1 + f t+1

lk1 (t)
+ · · ·+ f t+1

lk1 (t)
· · · f t+1

lkm−1(t)
−mf t+1

lk1 (t)
· · · f t+1

lkm(t)

]
+ α(m+ 1)ωlkm+1(t)(t+ 1)

m∏
j=1

f t+1
lkj (t)

+

M∏
j=1

f t+1
lkj (t)

+ αf t+1
lkm+1(t)

m∏
j=1

f t+1
lkj (t)
×
[
(m+ 2) + f t+1

lkm+2(t)
+

f t+1
lkm+2(t)

· · · f t+1
lkM−1(t)

−Mf t+1
lkm+2(t)

· · · f t+1
lkM (t)

]
=αX2(T(Ωk(t)),m) + α(m+ 1)(ωlkm+1(t)(t+ 1)− 1)

m∏
j=1

f t+1
lkj (t)

+ αf t+1
lkm+1(t)

m∏
j=1

f t+1
lkj (t)
×
[
(m+ 2) +X4(T(Ωk(t)),m+ 2)

+ (α−M − 1)X3(T(Ωk(t)),m+ 2)
]

=αX2(T(Ωk(t)),m)− α(m+ 1)f t+1
lkm+1(t)

X1(T(Ωk(t)),m)

+ αf t+1
lkm+1(t)

X1(T(Ωk(t)),m)
[
(m+ 2) +X4(T(Ωk(t)),m+ 2)

+ (α−M − 1)X3(T(Ωk(t)),m+ 2)
]

=αX2(T(Ωk(t)),m) + αf t+1
lkm+1(t)

X1(T(Ωk(t)),m)
[
1

+X4(T(Ωk(t)),m+ 2) + (a−M − 1)X3(T(Ωk(t)),m+ 2)
]

=α
{
A1 ·X(T(Ωk(t)),m)

+ A2 ·X(T(Ωk(t)),m) ·A3 ·X(T(Ωk(t)),m)
}
.

Case 2. If channel lkm+1(t) (corresponding to channel

l0k+1(t)) is probed to be unoccupied, then we have by sep-
arating channel lkm+1(t) from others

Q
(
T(Ωk+1

1 (t))
)

= α
{
A4 ·X(T(Ωk(t)),m)

+ A5 ·X(T(Ωk(t)),m) ·A6 ·X(T(Ωk(t)),m)
}
.

Case 3. If channel lkm+1(t) is probed to be occupied,

Q
(
T(Ωk+1

0 (t))
)

= α
{
A1 ·X(T(Ωk(t)),m)

+ A7 ·X(T(Ωk(t)),m) ·A8 ·X(T(Ωk(t)),m)
}
.

Remark. Recall Algorithm 1 and (14)–(16), it can be verified
that the one-step lookahead policy has a linear computational
complexity O(M2).

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the obtained results and
gain further insight on the developed ν-step lookahead policy
as well as the performance tradeoff hinging behind via a
set of numerical experiments. Specifically, we present two
typical scenarios, the homogeneous channels and the hetero-
geneous channels. In both scenarios, we are interested in the
performance of average reward (throughput) of the following
policies:
• ν-step lookahead policy;
• Genie-aided policy: it gives the upper bound of average

reward;
• Myopic policies with k = 1, 2, 3: they form the lower

bound of average reward;
• Greedy policy: the SU probes channels greedily and

stops on the first available channel (or none of available
channels is probed);

• Random policy: the SU probes channels randomly and
stops on the first available channel (or none of available
channels is probed).

Meanwhile, the results in this section provide a comple-
mentary quantitative study on the performance of the ν-step
lookahead policy, which is not explicitly addressed in the
analytical part.

A. Homogeneous Case

We first consider a homogeneous system with N = 8 i.i.d.
channels and an SU is allowed to probe at most M = 3
channels each slot with ε = 0.02 and α = 0.02, respectively.
The following two representative scenarios, corresponding to
a strongly and weakly correlated channel model respectively,
are studied:
• Case 1: p11 = 0.8, p01 = 0.2;
• Case 2: p11 = 0.5, p01 = 0.4.
Figure 1 compares average throughput performance between

one-step lookahead policy, random policy, greedy policy and
lower/upper bounds. It can be observed from the figure that
after the stabilization, the one-step lookahead policy can
further increase the throughput by approximately 5% with
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respect to the lower bound (corresponding to the myopic
policy with k = 3). Hence, one-step lookahead policy is
a good one since it provides the guaranteed lower bound.
Another observation is that the one-step lookahead policy is
better that the greedy policy. As analyzed in the previous
sections, this gain is due to the fact that the one-step lookahead
policy can achieve a desired tradeoff between exploration and
exploitation. Moreover, this benefit in throughput is especially
attractive given the low complexity of one-step lookahead
policy. As for the random policy, the performance is lower
than the feasible lower bound, and thus it is not a good policy.
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(a) β = 1, p11 = 0.8, p01 = 0.2
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(b) β = 0.95, p11 = 0.8, p01 = 0.2

Fig. 1. Throughput comparison of 1-step lookahead policy, greedy policy,
random policy, genie-aided policy, and myopic policy for homogeneous
channels (N = 8,M = 3, α = 0.02, ε = 0.02)

Figure 2 illustrates the same comparison for Case 2. It
can be noticed from the results that the performance gain in
Case 2 is less significant compared to Case 1. This can be
explained by the fact that the channel correlation in Case 2
is less significant in time than Case 1, and consequently, the
effect of prediction is less important.

We then proceed to study the performance of the ν-step
lookahead policy in the case of ν > 1. Figure 3 shows the
average throughput with ν = 1, 2, 3 for Case 1 and Case 2,
respectively. It can be observed that statistically, the increase
of ν does not enhance the performance gain obviously, which
justifies our focus on the one-step lookahead policy. More
generically, by taking the complexity into account, we rec-
ommend to set ν = 1 in a large variate of parameter settings.

B. Heterogeneous Case with non i.i.d. Channels

We now proceed to evaluate the performance of the ν-step
lookahead policy in heterogeneous systems with non i.i.d.
channels. To this end, we randomly generate 100 heteroge-
neous systems with the following parameter setting: N = 8,
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Fig. 2. Throughput comparison of 1-step lookahead policy, greedy policy,
random policy, genie-aided policy, and myopic policy for homogeneous
channels (N = 8,M = 3, α = 0.02, ε = 0.02)
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Fig. 3. Throughput comparison of 1-,2-,3-step lookahead policy for homo-
geneous channels (N = 8,M = 3, α = 0.02, ε = 0.02)

M = 3, α = 0.02, εi ∈ [0.01, 0.02], and p
(i)
11 > p

(i)
01

(1 ≤ i ≤ N ). We plot the average throughput in Figure 4,
and observe similar results as that of homogenous systems.
That is, the ν-step lookahead policy statistically outperforms
the greedy policy and the myopic policies with k = 1, 2, 3.
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Fig. 4. Throughput comparison of 1-step lookahead policy, greedy poli-
cy, random policy, genie-aided policy, and myopic policyfor heterogeneous
channels (N = 8,M = 3, β = 1, α = 0.02, εi ∈ [0.01, 0.02])

V. CONCLUSION AND PERSPECTIVE

In CR networks, one of objectives is to minimize the prob-
ing time of each time slot and then to achieve more spectrum
efficiency. In this paper, we investigate the decision-making
optimization problem concerning the number of channels to
probe, and demonstrate our research efforts to minimize the
probing time in finding the first available channel in each time
slot through probing other channels even after obtaining an
available channel. Specially, the ν-step lookahead policy is
proposed to shorten the probing time and improve the probing
efficiency as well. In the proposed policy, the parameter ν
allows to achieve a desired tradeoff between efficiency and
computation complexity. Numerical experiments on several
typical settings demonstrate the benefits of the proposed
strategy.
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