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Abstract—Mobile data offloading is an emerging technology to
avoid congestion in cellular networks and improve the level of
user satisfaction. In this paper, we develop a distributed market
framework to price the offloading service, and conduct a detailed
analysis of the incentives for offloading service providers and
conflicts arising from the interactions of different participators.
Specifically, we formulate a multi-leader multi-follower Stackel-
berg game (MLMF-SG) to model the interactions between the
offloading service providers and the offloading service consumers
in the considered market framework, and investigate the cases
where the offloading capacity of APs is unlimited and limited,
respectively. For the case without capacity limit, we decompose
the followers’ game of the MLMF-SG (FG-MLMF-SG) into a
number of simple follower games (FGs), and prove the existence
and uniqueness of the equilibrium of the FGs from which the
existence and uniqueness of the FG-MLMF-SG also follows. For
the leaders’ game of the MLMF-SG, we also prove the existence
and uniqueness of the equilibrium. For the case with capacity
limit, by considering a symmetric strategy profile, we establish the
existence and uniqueness of the equilibrium of the corresponding
MLMF-SG, and present a distributed algorithm that allows the
leaders to achieve the equilibrium. Finally, extensive numerical
experiments demonstrate that the Stackelberg equilibrium is very
close to the corresponding social optimum for both considered
cases.

Index Terms—Mobile Traffic Offloading, Stackelberg Game,
WiFi Offloading, Nash Equilibrium

I. INTRODUCTION

A. Background

The data traffic in cellular networks has seen a tremendous
growth over the past few years due to the explosion of
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mobile devices, e.g. smart phones, tablets, laptops etc. The
increasing data traffic in cellular networks suggests that traffic
from cellular networks should be offloaded so as to alleviate
traffic congestion and improve user satisfaction. Thus, mobile
data offloading emerged as a promising approach to utilize
certain complementary transmission technologies to deliver
data traffic originally transmitted over cellular networks to the
users. Recently, a large number of studies have investigated
the potential benefits of mobile data offloading and various
innovative schemes have been proposed to better manage
data traffic including WiFi [1]–[5], femtocells [6]–[10], and
opportunistic offloading [11], [12]. In fact, these studies have
shown that data offloading is a cost-effective and energy-
prudent approach to resolve network congestion and improve
network capacity.

B. Motivation

However, mobile data offloading is not always adopted by
the offloading service providers (OSPs) and offloading service
consumers (OSCs), i.e., mobile data flows, in practice. One
of the most important reasons for not adopting mobile data
offloading is the lack of economic incentives, i.e., OSPs may
be reluctant to make their resources available for offloading
data traffic without permission or appropriate economic re-
imbursement since offloading data traffic will consume their
limited wireless resources and reduce broadband connection
capacity. Thus, it is of significant importance to analyze the
economic implications of mobile data offloading from the
perspective of both OSPs and OSCs. For ease of presentation,
in this paper, we focus on WiFi offloading in which OSPs and
OSCs represent Access Points (APs) and cellular data flows,
respectively.

From an economics point of view, there are many works
considering the interaction between APs and cellular data
flows. For example, [13] studied delayed WiFi offloading
by modeling the interactions between APs and cellular data
flows as a two-stage sequential Stackelberg game with one
leader and multiple followers. In [14], the authors investigated
the economics of mobile data offloading through WiFi or
femtocells, and utilized a multi-leader multi-follower Stack-
elberg game (MLMF-SG) to achieve the subgame perfect
equilibrium (SPE), and further compared the SPE with the
corresponding outcomes in a perfect competition market and
in a monopoly market without price participation, respectively.
In [15], the authors considered the scenario where each of the
mobile network operators (MNOs) can employ multiple APs
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to offload its data traffic and each AP can concurrently serve
traffic from different MNOs. The proposed market scheme
incurred minimum communication overhead and created non-
negative revenue for the market broker without requiring a
priori information about MNOs and APs.

Motivated by [13]–[15], we consider a typical offloading
scenario where a number of cellular data flows offload their
data traffic to a number of APs in their vicinity, e.g., hotspots
near base stations. In particular, we propose a pricing frame-
work based on the concept of ‘paying for offloading’ to ensure
efficient use of the offloading APs. Under this framework each
cellular data flow corresponding to a mobile source-destination
pair offers a payment to incentivize APs to participate in
offloading, and then the payment is shared in proportion to the
amount of data offloaded to each AP. Hence, the utility of an
AP is its share of received payment minus its own offloading
cost. For a cellular data flow, its utility is defined as a generic
concave function of the sum of the utilities from offloading
on the APs minus the cost paid to these offloading APs. We
model the interaction of the APs and the cellular data flows as
an MLMF-SG, where the APs are the followers who respond
to the payment offered by the cellular data flows (i.e., each AP
offloads a part of the data of some flows such that its utility
is maximized, given the payment offered by the flows and the
actions of its competing peers); and the cellular data flows
are the leaders who set the payment to maximize their own
utility in anticipation of the Nash equilibrium (NE) response of
the followers. Notwithstanding our interest in the mobile data
offloading context, the considered model is generic enough to
be applied any other scenario where a set of ‘jobs’ compete
for the services of a pool of ‘workers’, such that the jobs set
their payment rates, workers are free to choose the job they
will attempt, and payment from each job is eventually shared
according to certain allocation rules among all the workers
that serve the job.

Unlike most pricing methods in the existing literature that
involve only one type of selfish players [13] or two types of
selfish players without competition between them [14], [15],
our framework features two types of players, each of which
competes not only with its peers but also with the players of
the other type. This property distinguishes our work from the
scenario considered in [14], [15], where only players of the
same type can compete with each other although there exist
two types of selfish players. This difference cause the utility
functions of players in this paper to be completely different
from those in [14], [15] as far as concavity is concerned.
Concretely, with the strategy profile in [14], [15], the utility
functions of both followers and leaders are concave, which
ensures that there exists an equilibrium in the followers’ game
and the leaders’ game, respectively. However, in our case, the
payment from a flow is shared proportionally among all APs
according to the amount of data offloaded to each AP. As
a consequence, an AP’s utility depends not only on its own
strategy but also on the strategies of its peers, which leads to
complex interactions among the APs. Accordingly, the sharing
of payment causes the utility functions to be non-concave,
which necessitates a completely new and original study of the
game’s equilibrium. In [16], the authors considered a bi-level

hierarchical network where macrocells coexists with femto-
cells. The stackelberg game was introduced to characterize the
interaction between them and proved to exist an equilibrium if
the best response of the leaders’ game is continuous. In [17],
the authors formulated the interaction as a Stackelburg game
between network service providers and users in heterogeneous
small-cell networks, and proved the existence of a Wardrop
equilibrium in the users’ game and a Nash equilibrium for the
leaders’ game, and provided a set of sufficient conditions to
guarantee the uniqueness of Wardrop equilibrium.

C. Contributions

The main contributions of this paper can be summarized as
follows:
• We develop a distributed market pricing framework for

mobile data flows to price the offloading service.
• We formulate a Stackelberg game to model the interac-

tions between offloading service providers and offloading
service consumers under the market framework, and
investigate the cases where the offloading capacity of APs
is limited and unlimited, respectively. For both cases, we
establish the existence and uniqueness of the equilibrium
of the proposed Stackelberg game, obtain the Stackelberg
equilibrium in closed form when the offloading capacity
of the APs is not limited, and further propose a distributed
pricing algorithm to ensure that the game converges to an
equilibrium when the offloading capacity of the APs is
limited.

• We conduct a large number of simulations to verify our
theoretical analysis on the proposed Stackelberg game for
the two considered cases. As a noteworthy property of
the developed framework, simulation results demonstrate
that the Stackelberg equilibrium is very close to the social
optimum.

D. Related Work

To provide better service in cellular networks, a body of
literature has proposed to exploit various kinds of technologies
to offload data traffic. These works adopt three different
approaches for offloading.

The first approach is opportunistic offloading which utilizes
opportunistic communication to offload cellular traffic. For
example, the authors of [11] considered the heterogeneities of
mobile data and mobile users in realistic disruption tolerant
networks, and established a mathematical framework to study
the problem of multiple-type mobile data offloading. In [12],
opportunistic communication was exploited to facilitate infor-
mation dissemination in the emerging mobile social networks
and to reduce the amount of mobile data traffic.

The second approach is femtocell offloading which has
emerged as another primary option for macrocellular data
offloading. In [6], the potential benefits and costs of deploying
femtocells were surveyed. In [7], the authors investigated the
network operator’s profit gain from offering dual services
through both macrocells and femtocells. The authors of [8]
considered the tradeoff between reducing the paging cost in
mobility management and registration signaling overhead, and
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proposed a delay registration algorithm that postpones the
registration and reduces signaling overhead while sustaining
the traffic offloading capability of the femtocell. In [9], optimal
sleep/wake up schemes were studied for the base stations of
network-operated femtocells to offload part of its traffic to
minimize the energy consumption of the overall heterogeneous
network while preserving quality of service (QoS). In [10], the
authors studied the economic aspects of femtocell services for
the case of a monopoly market. The authors of [18] proposed a
dynamic pricing scheme based on market equilibrium and non-
cooperative game such that the mobile service providers can
gain more revenue than with a fixed pricing scheme. In [19],
the authors focused on the inter-femtocell interference in three-
dimension scenarios, and classified multiple femtocells into
a number of groups according to the amount of interference
caused to others.

In this paper, we focus on another approach for mobile data
offloading which exploits the freely available WiFi networks,
and is referred to as WiFi offloading. In [2], the authors
first presented a quantitative study for the performance of
3G mobile data offloading through WiFi networks, and then
proposed a distribution model-based simulator to investigate
the average performance of offloading for a given WiFi
deployment condition. In [3], the authors studied the tradeoff
between the amount of traffic being offloaded and the user
satisfaction, and provided an incentive framework based on
reverse auction to motivate users to leverage their delay toler-
ance for cellular traffic offloading. This performance gain can
be improved by delaying transmission [3] and predicting WiFi
availability [3], [4]. A cost-effective scheme integrating both
WiFi and cellular radio access technologies was proposed to
efficiently address peak wireless data traffic and heterogeneous
QoS requirements [5]. A subscribe-and-send architecture and
an opportunistic forwarding protocol were presented in [20]
such that the users having subscribed contents from the
Content Service Provider (CSP) can obtain these contents
from other users who can access these contents through WiFi
opportunistic peer-to-peer communications rather than directly
downloading the subscribed contents from the CSP. In [21],
the authors proposed an enhanced WiFi offloading model to
bring mobile IP integration into the core network with Policy
and Charging Control (PCC), and developed a comprehensive
analytical model to quantify the performance of data offloading
in terms of the amount of 3G resources saved by offloading
and the deadline assurance for measuring the quality of user
experience with PCC support. In [22], the authors focused on
the effect of inter-radio access technology (RAT) offloading
on the overall system performance, and developed a general
and tractable model that consisted of M different RATs,
each deploying up to K different tiers of access points with
different parameters. In contrast to these existing works, this
paper is the first to investigate the economic behavior of WiFi
offloading for two types of selfish players, which compete not
only with the players of the same type but also with players
of the other type. This sets our work apart from the existing
literature in this field.

E. Organization of Paper

The remainder of this paper is organized as follows: The
considered problem is formulated in Section II. In Section III,
we analyzes the Stackelberg equilibrium without offloading
capacity limit, while in Section IV we analyze the Stackelberg
equilibrium with offloading capacity limit. Simulation results
are provided in Section V. Finally, the paper is concluded in
Section VI.

II. PROBLEM FORMULATION

In this section, we first provide the system model of WiFi
offloading, and then introduce the pricing market framework.
Subsequently, we formulate the problem to a Stackelberg
game.

A. System Model

We consider a set F of mobile data flows (or data traffics)
in a cellular network where each flow f transmits a number of
data packets from the source Sf to the destination Df . A setR
of potential offloading APs (with |R| = R ≥ 2) in the vicinity
of the flows, may help flow f to offload its data packets to
the destination via another transmission network, e.g. WiFi. In
return, the APs may obtain a certain reimbursement from flow
f . The APs are assumed to be WiFis operating on different
carriers, and accordingly the APs’ signals do not mutually
interfere with each other. Assume that time is slotted, and there
is a network-wide slot synchronization. We focus on how the
packets of flow f should be priced such that the APs have an
incentive to offload data packets of flow f .

B. Pricing Framework

For a selfish AP i (i ∈ R), to incentivize offloading, it must
receive some reimbursement that is greater than its offloading
cost. For this purpose, each flow f offers a payment of Cf to
incentivize APs to offload data traffic, where Cf is determined
by the flow itself, i.e., Cf is the strategy of flow f . We denote
by rfi the amount of data offloaded by AP i for flow f . Hence,
the utility of flow f ∈ F is defined as the net payoff that f
gets per slot:

Uf , uf

(∑
i∈R

log(1 + rfi )
)
− Cf , (1)

where the log(1 + rfi ) term1 reflects the diminishing utility of
flow f from rfi . Function uf (·) represents the total utility from
the assistance of all APs. We assume uf (w) is continuously
differentiable, strictly increasing, and weakly concave in w,
i.e., u

′

f (w) > 0 and u
′′

f (w) ≤ 0, with uf (0) = 0.
Next, we consider the utility of the APs. For flow f (f ∈
F), the payment of Cf is shared in accordance with the level
of cooperation, i.e., the amount of data offloaded by the APs
that offload packets of flow f . The vector ri = {rfi , f ∈ F} is
the strategy of AP i where

∑
f∈F r

f
i ≤ B reflects the limited

1We adopt log(1 + rfi ) only for presentation purpose. This term can
be replaced by other types of utility functions as long as they reflect the
diminishing utility of flow f in terms of rfi
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offloading capacity B of AP i. We denote the cost (e.g. in
terms of energy) for AP i to offload a packet of flow f by efi .
Thus, the expected payoff per slot for AP i is

Vi ,
∑
f∈F

V fi =
∑
f∈F

[
Cf

rfi∑
j∈R r

f
j

− efi r
f
i

]
, (2)

where V fi , Cf
rfi∑
j∈R r

f
j

− efi r
f
i .

The payoff function of AP i has the following property.

Lemma 1. Vi is not a concave function in rfj (j ∈ R, j 6= i).

Proof. It is easy to show ∂2Vi
∂2rfj

≥ 0, which means that Vi is

not a concave function in rfj (j ∈ R, j 6= i).

C. Stackelberg Game

We model the offloading problem with pricing as a S-
tackelberg game which includes two roles (leader and fol-
lower) and two stages. In the first stage, each flow f (as
a leader) announces its reimbursement Cf , and the reim-
bursement from all flows are collected in a reimbursement
vector C = (C1, C2, · · · , C|F|). In the second stage, each
offloading AP i (as a follower) in R choose its offloading
size ri = (r1i , r

2
i , · · · , r

|F|
i ) for different flows to maximize

its own utility. Hence, the flows are the leaders and the APs
are the followers in this Stackelberg game. For convenience,
let r = (r1, r2, · · · , r|R|) denote the strategy profile of all APs
where ri is the strategy profile of AP i. Let r−i denote the
strategy profile excluding ri and rf−i be the profile excluding
AP i given f . Then, r = (ri, r−i) and ri = (rfi , r

f
−i).

1) Followers’ Game: Given r−i, each follower (AP i)
chooses its strategy ri to maximize its utility in response to
the leaders’ strategies C , (Cf ,C−f ) = (C1, C2, · · · , C|F|).
Thus, the objective of AP i is to solve the following optimiza-
tion problem:

r̃i(C) = argmax
ri

Vi(ri, r−i,C) (3)

s.t.
∑
f∈F

rfi ≤ B, ∀i ∈ R (4)

rfi ≥ 0, ∀i ∈ R, ∀f ∈ F . (5)

Then, we have r̃(C) =
(
r̃1(C), · · · , r̃|R|(C)

)
. Note that the

followers’ game itself can be considered as a non-cooperative
game [24].

2) Leaders’ game: Given C−f , each leader (flow f ) choos-
es its strategy Cf to maximize its utility function Uf (·)
anticipating that the followers will eventually respond with a
collection of strategies that constitute an NE according to (3).
Thus, the leaders’ problem is

C̃f = argmax
Cf

Uf (Cf ,C−f , r̃(Cf ,C−f )). (6)

The solution of the Stackelberg game is characterized by a
Stackelberg Nash Equilibrium (SNE), that is a strategy profile
from which no player has incentive to deviate unilaterally.

In the following sections, we will analyze the SNE for two
different cases. In the first case, the capacity of the APs is

not limited, which corresponds to omitting constraint (4). In
the second case, the capacity of the APs is limited, which
corresponds to keeping constraint (4).

III. STACKELBERG GAME EQUILIBRIUM ANALYSIS
WITHOUT CAPACITY BOUND

In this section, we investigate the existence and uniqueness
of an SNE for the considered Stackelberg game if the capacity
of the APs is not limited (corresponding to omitting the
constraint (4)). Specifically, we first show that the followers’
game of the multi-leader multi-follower Stackelberg game
(FG-MLMF-SG) can be decomposed into a series of followers’
games. Then, we show the existence and uniqueness of an NE
for the followers’ game by analyzing its best response strategy,
and prove the existence of a unique NE of the leaders’ game
by utilizing the structural properties of its objective function.

A. Followers’ Game

Since the capacity of the APs is much larger than that of
mobile devices, it is reasonable to assume that there is no of-
floading capacity limit for the APs. Under this assumption, the
following proposition decomposes the complicated followers’
game defined in Section II into a number of simpler games.

Preposition 1. If the capacity of the APs is not limited,
FG-MLMF-SG can be decomposed into |F| followers’ games(
FG(1), · · · , FG(|F|)

)
.

Proof. If the capacity of the APs is not limited, accord-
ing to (2) and (3), FG-MLMF-SG, denoted by r̃i(C) =
argmaxri Vi(ri, r−i,C), can be decomposed into |F| fol-
lowers games

(
FG(1), · · · , FG(|F|)

)
, where FG(f), f ∈

F corresponds to the optimization problem r̃fi (Cf ) =
argmaxrfi

V fi (rfi , r
f
−i, C

f ).

Definition 1. Given Cf and rf−i, a strategy is the best
response strategy of AP i for FG(f), denoted by Γfi (rf−i),
if it maximizes V fi (rfi , r

f
−i) over rfi ≥ 0.

From ∂V fi
∂rfi

= 0, we obtain r̃fi =

√
Cf

∑
j∈R\{i} r̃

f
j

efi
−∑

j∈R\{i} r̃
f
j . Therefore, the best response Γfi (rf−i) of fol-

lower i for flow f is

Γfi (rf−i) =


√

Cf
∑
j∈R\{i} r̃

f
j

efi
−
∑
j∈R\{i} r̃

f
j , if efi

∑
j∈R\{i} r̃

f
j ≤ Cf

0, otherwise.
(7)

The best responses of follower i for
(
FG(1), · · · , FG(|F|)

)
are collected in the best response vector Γi(r−i) =(

Γ1
i (r

1
−i), · · · ,Γ

|F|
i (r

|F|
−i )
)

.
The following theorem states that the best response strategy

leads to an NE of the FG-MLMF-SG.

Theorem 1. The strategy profile r̃ = (r̃1, r̃2, · · · , r̃|F|) is an
NE of the FG-MLMF-SG, where r̃f = (r̃f1 , r̃

f
2 , · · · , r̃

f
|R|) is

an NE of FG(f), where
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1) the optimal sets of offloading APs, denoted by S =
(S1,S2, · · · ,SF ), are computed by Algorithm 1 [23];

2) r̃fi =
(|Sf |−1)Cf∑

j∈Sf
efj

(
1 − (|Sf |−1)efi∑

j∈Sf
efj

)
if i ∈ Sf ; r̃fi = 0

otherwise.

Algorithm 1 Computation of the optimal sets of offloading
APs

1: for f ∈ F do
2: Sort APs according to their offloading costs: efσ1

≤
efσ2
≤ · · · ≤ efσR ;

3: Sf = {σ1, σ2}, i = 3;

4: while i ≤ R and efσi <
∑
j∈Sf

efj

|Sf |−1 do
5: Sf = Sf ∪ {σi}, i = i+ 1;
6: end while
7: end for
8: return S = (S1,S2, · · · ,SF ).

Proof. Please refer to Appendix A.

After proving the existence of an NE of the FG-MLMF-SG,
we next prove the uniqueness of the NE.

Theorem 2. Given Cf , denote the strategy profile of an NE
by r̂ = (r̂1, r̂2, · · · , r̂|F|), where r̂f = (r̂f1 , r̂

f
2 , · · · , r̂

f
|R|), and

define Ŝf = {i ∈ R : r̂fi > 0}. Then, we have

1) r̂fi =
(|Ŝf |−1)Cf∑

j∈Ŝf
efj

(
1 − (|Ŝf |−1)efi∑

j∈Ŝf
efj

)
if i ∈ Ŝf ; r̂fi = 0

otherwise;
2) We sort {efj : j ∈ R} to efσ1

≤ efσ2
≤ · · · ≤ efσR , then

Ŝf = {σ1, · · · , σi}, where σ1, · · · , σR is a permutation

of R given f , efσi+1
≥

∑i
j=1 e

f
σj

i−1 , and i ≥ 2.
These statements imply that the FG-MLMF-SG has a unique
NE.

Proof. Please refer to Appendix B.

Theorem 1 and Theorem 2 imply that there exists a unique
NE in the FG-MLMF-SG.

B. Leaders’ Game

According to the above analysis, the flows, which are the
leaders in the MLMF-SG, know that there exists a unique NE
for the APs for any given pricing vector C. Hence, each flow
f can maximize its benefit by setting Cf .

Given a specific flow f , feeding back into (1), we have

Uf = uf

(∑
i∈R

log(1+rfi )
)
−Cf = uf

( ∑
i∈Sf

log
(
1+Cfki

))
−Cf ,

where ki =
|Sf |−1∑
j∈Sf

efj

(
1− (|Sf |−1)efi∑

j∈Sf
efj

)
.

Theorem 3. There exists a unique NE of the leaders’ game
in the MLMF-SG.

Proof. Given a specific flow f , the second derivative of Uf
with respect to Cf is

∂2Uf
∂2Cf

=u′′f

(∑
i∈S

log(1 + Cfki)
)(∑

i∈S

ki
1 + Cfki

)2

− u′f
(∑
i∈S

log(1 + Cfki)
)∑
i∈S

k2i
[1 + Cfki]2

< 0.

Thus, Uf = uf

(∑
i∈R log(1 + rfi )

)
− Cf is concave in Cf

for Cf ∈ [0,∞). Since Uf |Cf=0 = 0 and Uf |Cf=∞ = −∞,
Uf has a unique maximizer, denoted by C̃f = argmaxCf U

f .
The C̃f , f ∈ F , compose the price vector C̃ which achieves
the unique NE of the leaders’ game in the MLMF-SG.

Thus far, we have established the existence and uniqueness
of the NE for the MLMF-SG when the offloading capacity of
the APs is not limited. However, due to hardware limitation
and energy consumption limits, in practice, constraints on the
APs’ offloading capability are inevitable, which makes the
interaction between APs and flows more complex. In the next
section, we will further study the properties of the NE of
the MLMF-SG if a constraint on APs’ offloading capacity is
present.

IV. STACKELBERG GAME EQUILIBRIUM ANALYSIS WITH
CAPACITY BOUND

In the previous section, we have analyzed the NE of
the considered MLMF-SG for the case when the offloading
capacity of the APs is not limited. Now, we consider the game
if a capacity constraint on the APs is present, and characterize
the properties of the NE. First, we establish some structural
properties of some relevant quantities in the leaders’ game,
and then we prove the existence and uniqueness of the NE
for the leaders’ game in the MLMF-SG. Finally, we present
a distributed pricing algorithm for the leaders’ game that
converges to the unique equilibrium.

A. Followers’ Game

To make the analysis of the game tractable, we assume that
the offloading cost of a specific flow does not depend on the
APs, that is, efi = ef for any AP i ∈ R given f . Note that
this assumption is reasonable as all APs are assumed to be
located in the vicinity of flow f .

We commence our discussion of the properties of the
equilibrium by considering the best response of AP i using the
strategy ri = (r1i , · · · , r

|F|
i ). The corresponding optimization

problem from the perspective of AP i can be stated as:

max
ri

Vi(ri, r−i) s.t.
∑
f∈F

rfi ≤ B, rfi ≥ 0, ∀f ∈ F . (8)

Thus, the corresponding Lagrangian function is given by:

L(ri, λi, ν) = Vi(ri, r−i)− λi ·
(∑
f∈F

rfi −B
)

+
∑
f∈F

νfi r
f
i .

(9)

Since Vi is continuously differentiable in rfi , it follows that
the Karush-Kuhn-Tucker (KKT) conditions corresponding to
problem (9) are necessary for optimality. On the other hand,
we note from (2) that, for a fixed r−i, function Vi(ri, r−i)
is concave in ri although it is not concave in r according to
Lemma 1. This implies that the KKT conditions are sufficient
for optimality as well. Thus, we conclude that a strategy profile
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is an equilibrium if and only if (i.i.f) there exist λi ≥ 0
and {νfi ≥ 0, f ∈ F} such that the following conditions are
satisfied:

(A1) :
∂Vi

∂rfi
= λi − νfi , ∀f ∈ F

(A2) : λi ·
(∑

f

rfi −B
)

= 0

(A3) : νfi r
f
i = 0, ∀f ∈ F .

For ease of further discussion, we introduce the concept
of strictly interior equilibrium which is formally defined as
follows:

Definition 2. We say that an equilibrium is a strictly interior
equilibrium if the offloading size of any AP i ∈ R for any flow
f ∈ F is strictly positive, i.e., rfi > 0.

Now, we are ready to provide the following theorem, which
guarantees the symmetry of a strictly interior equilibrium.

Theorem 4. If a strictly interior equilibrium exists in the
followers’ game, then it is symmetrical, i.e., rfi = rf for any
i ∈ R.

Proof. Please refer to Appendix C.

Thus, in the following, we focus on symmetric strategy
profiles, that is, all nodes use a symmetric strategy, i.e.,
rfi = rf for any i ∈ R. To this end, we define the function

gf (rf ) ,
∂Vi

∂rfi

∣∣∣
rfj=r

f , ∀j∈R
= Cf

R− 1

R2rf
−ef = Cfhf (rf )−ef ,

where hf (rf ) , R−1
R2rf

.
Given a symmetric strategy profile, by Theorem 4, the KKT

conditions for (9) can be refined to the existence of λi ≥ 0
and {νfi = 0, f ∈ F} such that (A1)-(A3) are satisfied.

Now, we are ready to state the main result of this subsection.

Theorem 5. For any vector of flow price C, there exists a
unique set of {ρf , f ∈ F} such that the symmetric strategy
profile {rfj = ρf , j ∈ R} is a Nash equilibrium. Furthermore,
there exist λ ≥ 0 and {νf = 0, f ∈ F}, such that

(B1) : gf (ρf ) = λ− νf , ∀f ∈ F

(B2) : λ
(∑
f∈F

ρf −B
)

= 0

(B3) : νfρf = 0, ∀f ∈ F .

Proof. Please refer to Appendix D.

Based on Theorem 5, we obtain that the solution of the
following convex optimization problem is the NE of the
followers’ game in the MLMF-SG.

max
ρ1···ρ|F|

∑
f∈F

(
Cf

R− 1

R2
log(ρf )− efρf

)
s.t.

∑
f∈F

ρf ≤ B, ρf > 0 ∀f ∈ F , (10)

which can be easily solved by software packages, such as
Matlab.

B. Leaders’ Game

In this subsection, we study the effect of the payment rate
Cf of a specific flow f ∈ F on the followers’ symmetric equi-
librium when all other rates C−f remain fixed. To streamline
the discussion, we express the value of ρf of the equilibrium
corresponding to a given Cf as a function ρf = Ψ(Cf ) (since
we focus only on ρf and are not interested in the strategy
values for other flows). Also, we define the value of λ that
satisfies condition (B1)-(B3) in the equilibrium as a function
λ = Λ(Cf ).

We begin by exploring these functions for extreme values
of Cf . Clearly, for Cf = 0, the utility of any AP cooperating
with flow f is non-positive, implying ρf = Ψ(Cf = 0) = 0.
However, from the KKT conditions (B1)-(B3), we know ρf >
0, which implies Cf > 0. Thus, we assume that ρf must be
larger than a infinitesimal positive value, i.e., ρf = 0+. Define
Cf = Ψ−1(ρf = 0+) , Cf and λ = Λ(Cf = Cf ). Λ(Cf )
and Ψ(Cf ) have the following properties.

Lemma 2. Λ(Cf ) and Ψ(Cf ) have the following properties:

1) λ = Λ(Cf ) is continuous and non-decreasing in Cf ;
2) ρf = Ψ(Cf ) is continuous, and strictly increasing in

Cf ∈ (0,∞);
3) ρf = Ψ(Cf ) is concave in Cf ∈ (0,∞);

Proof. Please refer to Appendix E.

Lemma 3. For a fixed C−f , the function Uf (Cf ,C−f ) is
concave in Cf .

Proof. Assuming the followers respond with a symmetric
equilibrium, the first order derivative of utility function Uf
with respect to Cf is given by

∂Uf
∂Cf

= u′f

(
R log(1 + ρf )

) R

1 + ρf
∂ρf
∂Cf

− 1, (11)

where ρf = Ψ(Cf ). Since uf (·) is concave by assumption,
R log(1 + ρf ) is increasing and concave in ρf , and ρf is
concave in Cf by Lemma 2, it follows that ∂Uf

∂Cf
is non-

decreasing in Cf , i.e., Uf is indeed concave in Cf .

Lemma 4. The best-response function Υf (C−f ) of flow f is
bounded by 0 ≤ Υf (C−f ) ≤ uf

(
R log(1 +B)

)
.

Proof. Notice that Uf = uf

(
R log(1+ρf )

)
−Cf . Obviously,

for the best response, the utility is nonnegative (utility 0 can
always be obtained by Cf = 0). Hence, 0 ≤ Υf (C−f ) ≤
maxρf uf

(
R log(1 + ρf )

)
= uf

(
R log(1 +B)

)
.

Due to the concavity of Uf in Cf (Lemma 3), a unique
solution is guaranteed; furthermore, we observe that if uf
is continuously differentiable, the best response function is
continuous as well.

Theorem 6. If the followers always respond with their sym-
metrical NE, then an equilibrium of the leaders’ game, i.e.,
an SNE of the overall system, exists and is unique.

Proof. Please refer to Appendix F.
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Thus far, we have obtained the static characteristics of the
leaders’ game, i.e., the existence and uniqueness of the equi-
librium. Next, we analyze the dynamic behavior of the leaders’
game, i.e., how the game converges to the equilibrium from
any initial strategy profile by best-response strategy updates.
Before delving into the convergence analysis, we discuss the
monotonicity of the best response function Υ(C−f ) of flow
f .

Lemma 5. The best response Υ(C−f ) of flow f is monotonic
and non-decreasing in Cf

′
for any f ′ ∈ F \ {f}.

Proof. Please refer to Appendix G.

Now, we are ready to state the following theorem which
characterizes the dynamic behavior of the leaders’ game.

Theorem 7. Given some initial price vector C(0), if
each flow f responds according to Algorithm 2, where(
ρ1(n), · · · , ρ|F|(n)

)
can be obtained by solving (10), that is,

flow f ∈ F updates its strategy as Cf (n+ 1) = Υ(C−f (n)),
then limn→∞C(n) = C∗, where C∗ is the equilibrium of the
leaders’ game.

Proof. Please refer to Appendix H.

Distributed Algorithm 2 computes the price Cf (n + 1) of
flow f (f ∈ F) at n+ 1, where the price Cf (n+ 1) of flow
f depends on

(
ρ1(n), · · · , ρ|F|(n)

)
rather than the price of

other flows, i.e., Cf
′
(n) (f ′ 6= f ).

Algorithm 2 Computing price for flow f

1: input: ρ1(n), · · · , ρ|F|(n);
2: if flow f ∈ F updates its strategy then
3: if ρf (n) +

∑
f ′ 6=f ρ

f ′(n) < B then
4: Cf (n+ 1) = u′f (R log(1 + ρf (n))) Rρ

f (n)
1+ρf (n)

;
5: else
6: λ =

[
u′f (R log(1+ρf (n)))

ρf (n)(1+ρf (n))
R−1
R −∑

f ′∈F
ef
′

ρf′ (n)

]
1∑

f′∈F
1

ρf
′
(n)

;

7: Cf (n+ 1) = ρf (n)(λ+ ef ) R2

R−1 for flow f ;
8: end if
9: end if

10: output: Cf (n+ 1).

In this section, when the capacity of APs is limited, by
considering a symmetric strategy profile, we have established
the existence and uniqueness of the equilibrium of the corre-
sponding MLMF-SG, and further, based on the best response
strategy, presented a distributed price algorithm that allows the
flows to computer their price independently.

V. NUMERICAL SIMULATION

In this section, we demonstrate some of the theoretical
results derived in this paper, and gain further insight into the
behavior of the game for different scenarios via a numerical
study. Our goal is to present several scenarios indicative of
the typical interactions among the players in the game. First,
we consider the case when the offloading capacity of the

APs is not limited. Specifically, we evaluate the effect of the
offloading cost, heterogeneity of traffics, the number of APs
etc, on the performance of the equilibrium. In the second part
of this section, we evaluate the performance of the game when
the offloading capacity of APs is limited.

A. Multiple Cellular Flows and Multiple APs with Offloading
Capacity Limit

First, we introduce the price of anarchy (PoA). Denote the
unique equilibrium of the proposed MLMF-SG as (r∗ne,C

∗
ne),

we know that (r∗ne,C
∗
ne) can be obtained by solving prob-

lem (10) and running Algorithm 2, and the optimum system
utility UNE at equilibrium is a function of (r∗ne,C

∗
ne), i.e.,

UNE =
[∑

f∈F Uf +
∑
i∈R Vi

]
(r,C)=(r∗ne,C

∗
ne)

. On the other

hand, the social utility UOpt can be obtained by solving the
following optimization problem,

max
ρ1···ρ|F|

{
Us ,

∑
f∈F

uf

(
R log(1 + ρf )

)
−
∑
f∈F

Refρf
}

s.t.
∑
f∈F

ρf ≤ B, ρf > 0, f ∈ F .

Denote ρ∗ = argmaxρ1···ρ|F|{Us}, and then, UOpt = Us
∣∣
ρ∗

.

Therefore, PoA=
UOpt
UNE

.
1) Convergence: We first consider the simplest scenario

with two cellular traffic flows |F| = 2 and two APs |R| = 2,
which allows us to illustrate the interactions between flows
and APs. Specifically, for the cellular traffic flow f ∈ F , we
adopt a linear utility function Uf = ωf

∑
i∈R log(1+rfi )−Cf .

The parameters are set as follows: offloading costs e1 = 0.1
and e2 = 0.3, weight coefficients w1 = 1 and w2 = 2,
and capacity limit B = 7 in Fig. 1(a) and B = 1 in
Figs. 1(b)–(d), respectively. By solving problem (10), we
obtain ρ1 = 4 and ρ2 = 2.33, and further, C1 = 1.6 and
C2 = 2.8 from Cf = efρf R2

R−1 according to Algorithm 2.
Note that ρ1 + ρ2 = 6.33 < 7 implying that the condition
ρ1 + ρ2 < B holds, which is shown in Fig. 1(a). On the
other hand, for B = 1, ρ1 + ρ2 = 1 must be satisfied
at the NE, which is illustrated in Figs. 1(b)–(d). Moreover,
we observe from Figs. 1(b)–(d) that the price vector and the
strategy profile converge from different initial price vectors
C(0) = (0.01, 0.01), C(0) = (5, 0.01), and C(0) = (10, 10),
respectively, which validates the proposed Algorithm 2.

2) Offloading Cost: Considering two cellular traffics |F| =
2, two APs |R| = 2 and two linear utility functions with w1 =
2 and w2 = 1, respectively, we fix the offloading capacity to
B = 2 and the offloading cost of AP 1 to e1 = 0.5, and
then show how the price vector and strategy profile change as
function of the offloading cost e2 of AP 2. From Fig. 2, we
make the following observations.

(a) e2 ∈ (0.1, 0.25]. Assume ρ1 + ρ2 < B, then according
to (23), we have ρf =

wf
ef

R−1
R − 1 (which is decreasing in

ef ), and furthermore, ρ1|e1=0.5 = 1 and ρ2|e2=0.1 = 4, which
implies that ρ1|e1=0.5 + ρ2|e2=0.1 = 5 > B = 2 contradicts
the assumption ρ1 + ρ2 < B. Thus, ρ1 + ρ2 = B = 2 must
be satisfied for e2 ∈ (0.1, 0.25], which is shown in Fig. 2;
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Fig. 1. Convergence of price vector and policy vector to NE: e1 = 0.1,
e2 = 0.3, w1 = 1, w2 = 2, and B = 7 in (a), and B = 1 in (b)–
(d). For Figs. 1 (b)–(d), different initial price vectors C(0) = (0.01, 0.01),
C(0) = (5, 0.01), and C(0) = (10, 10), are used, respectively.
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Fig. 2. The impact of offloading cost on the price vector and strategy profile.
w1 = 2, w2 = 1, B = 2, and e1 = 0.5.

(b) e2 ∈ (0.25, 0.5]. The condition ρ1 + ρ2 ≤ B = 2 is
met with equality until e2 = 0.25. That is, when e2 = 0.25,
ρ2|e2=0.25 = 1 and ρ1|e1=0.5 + ρ2|e2=0.25 = 2 = B. Hence, if
e2 > 0.25, then the condition ρ1 + ρ2 ≤ B = 2 is no longer
met with equality and ρ1+ρ2 < B, which leads to ρ1 = 1 and
C1 = w1R

ρ1

1+ρ1 = 2 from Algorithm 2. Also, as e2 increases,
ρ2 = w2

e2
R−1
R − 1 decreases, which can be observed in Fig. 2;

(c) e2 ∈ (0.5, 1]. When e2 ≥ 0.5, ρ2 = w2

e2
R−1
R − 1 =

1
2e2 − 1 ≤ 0, which implies that AP 2 does not offload any
data and accordingly, ρ2 = 0 and C2 = 0.

3) Heterogeneity of Data Traffic Flows: For |F| = 2, |R| =
2, w1 = 1, e1 = 0.1, e2 = 0.3, and B = 1, Fig. 3 illustrates the
relation between w2 and the price of anarchy (PoA), defined
as the ratio between the optimal social utility UOpt and the
system utility UNE achieved at NE. In particular, the peak
at w2 = 1 can be explained as follows. When w1 = w2,
the two traffic flows are homogeneous. In this case, the APs
prefer to offload the traffic flow f = 1 because of its lower
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Fig. 3. The impact of the heterogeneity of traffic flows on PoA. |F| = 2,
|R| = 2, w1 = 1, e1 = 0.1, e2 = 0.3, and B = 1.
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Fig. 4. The impact of the number of APs on PoA. w1 = 2, w2 = 3,
e1i = 0.1. and e2i = 0.2 for any i ∈ R.

offloading cost (i.e., e1 = 0.1 < 0.3 = e2), and flow f = 2
cannot be treated equally, which leads to the peak of PoA at
w1 = w2. On the other hand, as the difference between w1 and
w2 increases, corresponding to a larger heterogeneity of traffic
flows, the NE strategy requires that the APs participate in
pricing fully and offload each traffic flow as much as possible,
and thus, PoA → 1.

4) Number of APs: We consider two data traffic flows and
multiple APs with a linear utility function for each traffic
flow, i.e., uf (

∑
i∈R log(1 + rfi )) = wf

∑
i∈R log(1 + rfi )

where w1 = 2 and w2 = 3. Fig. 4 reveals that the PoA
decreases with the number of APs. Since the APs have the
same offloading cost for each traffic flow, they equally and
fully participate in the pricing process of each traffic flow,
and thus the equilibrium utility UNE becomes much closer to
the social utility UOpt as the increasing number of APs.

5) Large System: To demonstrate the asymptotic properties
of the game in a large-scale symmetric scenario, we consider
30 APs and 3 cellular traffic flows with e1 = 0.1, e2 = 0.3,
e3 = 0.2, and wf = 1, f ∈ F , for more complex utility
functions, namely, power-law functions uf (x) = wfx

b, 0 <
b < 1, and the logarithmic function uf (x) = wf log(1 + x).
Fig. 5 shows the PoA for the considered utility functions when
the number of APs increases from 2 to 30. Specifically, for the
logarithmic utility function as well as the linear function, the
PoA decreases with increasing number of APs, while the PoA
increases for the power-law utility functions. Moreover, the
PoA increases as the value of b decreases (actually the linear
function can be seen as a power-law function with b = 1).
Fig. 5 suggests that the proposed framework can achieve an
efficient equilibrium with at most 15% loss of system utility
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compared to the optimum system utility when 3 ≤ R ≤ 30.

B. Multiple Cellular Flows and Multiple APs without Offload-
ing Capacity Limit

In this subsection, for the case where the offloading capacity
of the APs is not limited, we analyze how the PoA is affected
by different parameters, i.e., the offloading cost, heterogeneity
of traffic, the number of APs, and the number of traffic flows.
First, we note that the optimum system utility, UNE , at equi-
librium is a function of C∗ which is determined by the leaders’
utility functions. Specifically, from ∂Uf

∂Cf
= u′f

(∑
i∈R log(1+

kfi C
f )
)∑

i∈R
kfi

1+kfi C
f
− 1 = 0, f ∈ F , we can ob-

tain C∗, and further, UNE =
[∑

f∈F uf

(∑
i∈R log(1 +

kfi C
f )
)
−
∑
f∈F

∑
i∈R e

f
i k

f
i C

f
]
C=C∗

which shows that
UNE is determined by the leaders’ price vector. On the
other hand, the social utility UOpt is the maximum of Us =∑
f∈F uf

(∑
i∈R log(1 + rfi )

)
−
∑
f∈F

∑
i∈R e

f
i r
f
i . Hence,

from ∂Us
∂rfi

= u′f

(∑
i∈R log(1 + rfi )

)∑
i∈R

1

1+rfi
− efi =

0, i ∈ R, f ∈ F , we have the optimum r∗ and further
UOpt = Us

∣∣
r∗

which shows that UOpt is determined by the
offloading size of the followers.

1) Offloading Cost and Heterogeneity of Data Traffic
Flows: In this scenario, we consider two symmetric APs
and two traffic flows. In particular, the offloading cost of the
APs for flow f is homogeneous, i.e., e11 = e12 = 0.2 and
e21 = e22 = e2. Meanwhile, the utility function of each flow is
assumed to be a linear function, i.e, uf (

∑
i∈R log(1 + rfi )) =

wf
∑
i∈R log(1 + rfi ) where w1 = 1. Fig. 6 show how the

PoA is affected by the offloading cost and the heterogeneity
of flows. We observe that as w2 increases, corresponding to an
increasing heterogeneity of flows, the PoA tends to decrease
and approaches 1; on the other hand, as e2 increases from 0.2
to 0.8, PoA tends to increase. For example, when w2 = 2, the
APs are more reluctant to offload flow f = 2 for its larger
offloading cost, and accordingly, the two traffic flows are not
treated equally. In this case, flow f = 2 cannot participate in
the market pricing to the same extent as its counterpart f = 1,
which leads to an increase of the PoA.

2) Number of APs: We consider two data traffic flows and
multiple APs with a linear utility function for each traffic
flow, i.e., uf (

∑
i∈R log(1 + rfi )) = wf

∑
i∈R log(1 + rfi )
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Fig. 6. The impact of the offloading cost and heterogeneity of traffic flows
on PoA. w1 = 1, e11 = e12 = 0.2, and e21 = e22 = e2.
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where w1 = 2 and w2 = 3. We consider two kinds of APs:
homogeneous APs (with the same offloading cost for each
traffic flow) and heterogeneous APs (with different offloading
costs for different traffic flows).

(a) Homogenous APs: Assume e1i = 0.1 and e2i = 0.2 for
any i ∈ R. From Fig. 7, we observe that the PoA decreases as
the number of the APs increases, and approaches 1 for R ≥ 5.
This can be explained as follows. As each traffic flow has the
same offloading cost, the APs equally and fully participate
in the pricing process, and as a consequence, the equilibrium
utility UNE approaches the social utility UOpt as the number
of APs increases.

(b) Heterogenous APs: In this case, we assume e11 =
0.1, e21 = 0.2, and efj+1 = efj + 0.1 to generate the offloading
cost for each AP j ∈ R, which reflects the different QoS re-
quirements of the APs. From Fig. 7, we observe that PoA tends
to increase as the number of APs increases, and ultimately
converges to a stable value. Because of the adopted generating
rule for offloading cost, the offloading cost increases as the
number of the APs. Hence, when the number of APs exceeds
a certain threshold, the APs with larger offloading cost cannot
obtain positive utility by offloading data traffic flow, and thus,
do not offload data because of their selfishness. This is the
reason for the stability of the PoA when the number of APs
exceeds a certain threshold.

3) Number of Data Traffic Flows: We consider two APs
and multiple data traffic flows with a linear utility func-
tion for each traffic flow, i.e., uf (

∑
i∈R log(1 + rfi )) =

wf
∑
i∈R log(1+rfi ). Specifically, we consider homogeneous

and heterogeneous data traffic flows, respectively.
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Fig. 8. The impact of the number of traffics on PoA. (Homogeneous) w1 = 2,
w2 = 3, and wf+1 = wf , 2 ≤ f ≤ F . (Heterogeneous) w1 = 2, e11 = 0.1,
and e12 = 0.2, wf+1 = wf + 1, and ef+1

j = efj + 0.1.

(a) Homogeneous Data Traffic Flows: We use the rule, w1 =
2, w2 = 3, and wf+1 = wf , 2 ≤ f ≤ F , to generate a
linear utility for each flow, and set the offloading cost to e11 =
0.1, e12 = 0.2 and ef1 = 0.3, ef2 = 0.4 for 2 ≤ f ≤ F . From
Fig. 8, we observe that the PoA decreases with the number
of flows. This can be explained as follows. As the number of
homogenous flows increases, a larger number of flows compete
in the market, which makes the UNE more efficient and close
to the optimum social utility.

(b) Heterogeneous Data Traffic Flows: We use the rule,
w1 = 2, e11 = 0.1, and e12 = 0.2, wf+1 = wf + 1, and
ef+1
j = efj + 0.1 to generate a linear utility for each flow and

a offloading cost for each AP, respectively. Fig. 8 shows that
the PoA first decreases steeply and then increases slowly as
the number of flows increases. In the steep region (F ≤ 5),
the effect of the heterogeneous utility functions dominates the
effect of the heterogenous offloading costs, which incentivizes
the APs to offload data traffic flows, and as a consequence,
UNE comes closer to UOpt. In the flat region (F > 5), as the
number of flows increases, the advantage of the heterogeneous
utility functions decreases while the negative effect of the
offloading cost becomes much stronger, i.e., the APs have less
incentive to offload data traffic flows, and consequently, the
PoA begins to increase slowly.

VI. CONCLUSIONS

In this paper, we have proposed a pricing framework for
cellular networks to offload mobile data traffic with the assis-
tance of WiFi network. Specifically, the proposed framework
can be utilized to motivate offloading service providers to
participate in mobile data offloading, which is a new paradigm
to alleviate cellular network congestion and to improve the
level of user satisfaction as well. We have modeled the pricing
mechanism as a multi-leader multi-follower Stackelberg game
in which the offloading service providers are the followers and
the offloading service consumers are the leaders. Technically
speaking, we have analyzed the proposed Stackelberg game
by distinguishing two different cases based on the offloading
capacity of the APs. For the case where the APs do not have an
offloading capacity limit, we have decomposed the followers’
game of the multi-leader multi-follower Stackelberg game into
a fixed number of followers’ games, and proved the existence
and uniqueness of the equilibrium, and obtained an efficient

algorithm to compute the equilibrium. For the case with of-
floading capacity limit, by considering the symmetric strategy
profile, we have established some structural results for the
equilibrium, and further proved the existence and uniqueness
of the equilibrium of the Stackelberg game. Consequently, we
presented a distributed algorithm to compute the offloading
price for each flow, and proved its convergence to the unique
equilibrium. Finally, extensive numerical experiments were
provided to demonstrate that the Stackelberg equilibrium is
very close to the corresponding social optimum for both
considered cases.

There are some future research directions. One direction is
the investigation of the case of asymmetric strategy profiles,
where each AP may have different offloading cost and of-
floading capacity. One of the possible approaches is to analyze
the followers’ game as a non-cooperative game [24], and we
expect that a unique equilibrium exists. Another promising
direction for research is the investigation of other allocation
rules for reimbursement (rather than the proportional allocation
rule considered in this paper) such that the offloading service
providers can be motivated to participate in mobile data
offloading more actively.
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APPENDIX A
PROOF OF THEOREM 1

Based on Proposition 1, to prove r̃ = (r̃1, r̃2, · · · , r̃|F|) is
an NE of the FG-MLMF-SG, we only need to show that for
a given flow f the strategy profile r̃f is an NE of the FG(f).

First, we prove that for FG(f) and any i /∈ Sf , r̃fi = 0 is the
best response strategy given r̃f−i. From Algorithm 1, we have

efi ≥
∑
j∈Sf

efj

|Sf |−1 for any i /∈ Sf at the NE point. Since i /∈ Sf ,

we have efi
∑
j∈Sf\{i} r̃

f
j = efi

∑
j∈Sf r̃

f
j =

efi (|Sf |−1)∑
j∈Sf

efj
Cf ≥

Cf , which implies that Γfi (rf−i) = 0 according to (7).
Next, we prove that for FG(f) and any σi ∈ Sf , r̃fσi is the

best response strategy given r̃f−σi . Since efσi <
∑i
j=1 e

f
σj

i−1 (line
4 of Algorithm 1), we have

(|Sf | − 1)efσi = (i− 1)efσi + (|Sf | − i)efσi

<

i∑
j=1

efσj +

|Sf |∑
j=i+1

efσj =
∑
j∈Sf

efj ,

where efσi ≤ e
f
σj for i+ 1 ≤ j ≤ |Sf |.

Furthermore,

efσi

∑
j∈R\{σi}

r̃fj = efσi

∑
j∈Sf\{σi}

r̃fj =
(|Sf | − 1)2(efσi)

2

[
∑
j∈Sf e

f
j ]2

Cf < Cf .

According to (7), we have

Γfi (rf−σi) =

√√√√Cf
∑
j∈R\{σi} r̃

f
j

efσi
−

∑
j∈R\{σi}

r̃fj

=
(|Sf | − 1)Cf∑

j∈Sf e
f
j

−
(|Sf | − 1)2Cfefσi

[
∑
j∈Sf e

f
j ]2

= r̃fσi .

Therefore, given f , r̃f is an NE of FG(f), and con-
sequently, r̃ is an NE of the FG-MLMF-SG according to
Proposition 1.

APPENDIX B
PROOF OF THEOREM 2

Based on Proposition 1, to prove the uniqueness of the NE
of FG-MLMF-SG, it is sufficient to show the uniqueness of
the NE of FG(f) for any f ∈ F . Let Ŝf = {i ∈ R : r̂fi > 0}.

1) r̂fi =
(|Ŝf |−1)Cf∑

j∈Ŝf
efj

(
1 − (|Ŝf |−1)efi∑

j∈Ŝf
efj

)
if i ∈ Ŝf ; otherwise

r̂fi = 0. Considering that
∑
j∈R r̂

f
j =

∑
j∈Ŝf r̂

f
j , we obtain

from ∂V fi
∂rfi

= 0,

−Cf r̂fi
[
∑
j∈Ŝf r̂

f
j ]2

+
Cf∑
j∈Ŝf r̂

f
j

− efi = 0, i ∈ Ŝf . (12)

Furthermore, we have |Ŝf |Cf − Cf =(∑
j∈Ŝf r̂

f
j

)(∑
j∈Ŝf e

f
j

)
by summing up the left hand side

(LHS) of (12) over all nodes in Ŝf . Therefore, we have∑
j∈Ŝf

r̂fj =
(|Ŝf | − 1)Cf∑

j∈Ŝf e
f
j

. (13)

Feeding (13) back into (12) and letting r̂fj = 0 for any j ∈
R \ Ŝ, we obtain

r̂fi =
(|Ŝf | − 1)Cf∑

j∈Ŝf e
f
j

(
1− (|Ŝf | − 1)efi∑

j∈Ŝf e
f
j

)
(14)

for every i ∈ Ŝ. This proves 1).
2) i ≥ 2. Assume i = 0, then any AP, e.g., AP j, can

increase its utility from 0 to Cf

2 by unilaterally changing
its offloading data size from 0 to Cf

2efj
, contradicting the NE

assumption and demonstrating i ≥ 1. Now, assume that i = 1.
This means r̂fσ1

> 0 and r̂fσk = 0 for all k ∈ R \ {1}.
According to (2), the current utility of AP σ1 for flow f is
Cf − r̂fσ1

efσ1
. Hence, AP σ1 can increase its utility by unilat-

erally changing the amount of data it offloads, contradicting
the NE assumption. Therefore i ≥ 2.

On the other hand, considering the definition of Ŝf , we
know that r̂fi > 0 for every i ∈ Ŝf . From (14), r̂fi > 0 implies

that (|Ŝf |−1)efi∑
j∈Ŝf

efj
< 1. Therefore, we have efi <

∑
j∈Ŝf

efj

|Ŝf |−1
for

any i ∈ Ŝf , which implies that maxi∈Ŝf {e
f
i } <

∑
j∈Ŝf

efj

|Ŝf |−1
for any i ∈ Ŝf . That is, when APs are ordered such that
efσ1
≤ efσ2

≤ · · · ≤ efσR , Ŝf is always composed of the APs
with the least offloading cost. Assume Ŝf = {σ1, · · · , σk}
where efσk+1

<

∑k
j=1 e

f
σj

k−1 , we have σk+1 /∈ Ŝf , and further
r̂fσk+1

= 0. Thus,

V fσk+1

∂rfσk+1

∣∣∣
rfσk+1

=r̂fσk+1

=
Cf∑
j∈Ŝf r̂

f
j

− efσk+1
=

∑
j∈Ŝf e

f
j

k − 1
− efσk+1

> 0,
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which implies that AP σk+1 can increase its utility by unilat-
erally increasing its offloading data size, contradicting the NE

assumption. Hence, Ŝf = {σ1, · · · , σi} and efσi+1
≥

∑i
j=1 e

f
σj

i−1 .
Statement 1), which gives the optimal amount of offloaded

data, and Statement 2), which implies that Ŝf has a threshold
structure concerning the offloading cost, show the uniqueness
of the NE of FG(f), and furthermore, the uniqueness of the
NE of FG-MLMF-SG is obtained based on Proposition 1.

APPENDIX C
PROOF OF THEOREM 4

We prove this theorem by contradiction. Suppose that in a
strictly interior equilibrium r, there exists a flow f0 and APs
i, j such that rf0i < rf0j . Consider the first order derivative

∂Vi

∂rfi
=

∑
k∈R r

f
k − r

f
i

[
∑
k∈R r

f
k ]2

Cf − ef . (15)

It follows that, for flow f0, we have

rf0i < rf0j =⇒
∑
k∈R r

f0
k − r

f0
i

[
∑
k∈R r

f0
k ]2

Cf0 − ef0

=
∂Vi

∂rf0i
>

∂Vj

∂rf0j

=

∑
k∈R r

f0
k − r

f0
j

[
∑
k∈R r

f0
k ]2

Cf0 − ef0 . (16)

On the other hand, since r is strictly interior, it follows
from KKT condition (A3) that νfi = 0,∀i ∈ R, f ∈ F . Thus,
combing (A1) and (16), we have

λi =
∂Vi

∂rf0i
>

∂Vj

∂rf0j
= λj ,

which therefore leads to rfi < rfj for any f ∈ F (not just f0),
and, therefore,

∑
f r

f
i <

∑
f r

f
j ≤ B which implies λi = 0

according to (A2). Obviously, this contradicts λi > λj ≥ 0.
This completes the proof of the theorem.

APPENDIX D
PROOF OF THEOREM 5

Note that gf (ρf ) = ∂Vi
∂rfi

∣∣∣
rfj=ρ

f
for the symmetric strategy

profile {ρf , f ∈ F}. Thus, conditions (B1)-(B3) coincide with
the KKT conditions (A1)-(A3) in this case. Accordingly, the
set {ρf , f ∈ F} corresponds to a symmetrical NE i.i.f it
satisfies conditions (B1)-(B3).

It remains to be shown that there exists a unique com-
bination of {ρf}, λ, and {νf} satisfying conditions (B1)-
(B3). To that end, we define the function W (x), where
x =

(
x1, x2, · · · , x|F|

)
, as: W (x) ,

∑
f∈F

∫ xf
0

gf (ξ)dξ.
Consider the following optimization problem:

max
x

W (x) s.t.
∑
f∈F

xf ≤ B and xf ≥ 0, ∀f ∈ F .

Since W (x) is a sum of integrals of decreasing functions,
it is continuously differential and concave, and therefore, the
above constrained optimization problem over a compact region

must have a unique solution, which is denoted by {ρf , f ∈ F}.
This solution must satisfy the KKT conditions for problem (8),
which are precisely the conditions listed in (B1)-(B3).

APPENDIX E
PROOF OF LEMMA 2

(1) The continuity of λ with respect to Cf is imme-
diate from conditions (B1)-(B3) and the continuity of gf .
To establish the monotonicity, suppose to the contrary that
λa = Λ(Cf0a ) > Λ(Cf0b ) = λb for some Cf0a < Cf0b . Suppose
that {ρfa , f ∈ F} and {ρfb , f ∈ F} correspond to the equilibria
at Cfa and Cfb , respectively. Then, λa > λb ≥ 0 implies
that λa = Cfhf (ρfa) − ef > Cfhf (ρfb ) − ef = λb for
all f ∈ F \ {f0}. Since hf (ρ) is monotonically decreasing
in ρ, we have ρfa < ρfb for all f ∈ F \ {f0}. Thus,
ρf0a = B −

∑
f∈F\{f0} ρ

f
a > B −

∑
f∈F\{f0} ρ

f
b ≥ ρf0b ,

which implies, according to the decreasing monotonicity of
hf (ρ) and Cf0a < Cf0b , that Cf0a h

f0(ρf0a )− ef0 = λa < λb =

Cf0b h
f0(ρf0b ) − ef0 , which obviously contradicts λa > λb.

Thus, we conclude that λ = Λ(Cf ) is continuous and non-
decreasing in Cf .

(2) The continuity of Ψ(Cf ) can be proved in a similar
manner as that of λ = Λ(Cf ). We now prove the monotonicity
of Ψ(Cf ). Assume 0 < Cf0a < Cf0b , we consider the following
two cases.

Case I. Λ(Cf0b ) = 0. Because of the monotonicity of Λ(Cf ),
we have Λ(Cfa ) = 0 as well. In the equilibria corresponding
to Cfa and Cfb , respectively, we have Cfah

f (Ψ(Cfa )) − ef =

Cfb h
f (Ψ(Cfb )) − ef = 0, which implies Ψ(Cfa ) < Ψ(Cfb )

because of the monotonicity of hf (·).
Case II. Λ(Cf0b ) > 0. We prove the property by con-

tradiction. Suppose to the contrary that ρf0a = Ψ(Cf0a ) <
Ψ(Cf0b ) = ρf0b for some Cf0a > Cf0b . Suppose that {ρfa , f ∈
F} and {ρfb , f ∈ F} correspond to the equilibriums at
Cfa and Cfb , respectively. According to the monotonicity of
λ = Λ(Cf ), we have λa > λb ≥ 0, which implies that
λa = Cfhf (ρfa) − ef > Cfhf (ρfb ) − ef = λb for all
f ∈ F \ {f0}. Since hf (ρ) is monotonically decreasing
in ρ, we have ρfa < ρfb for all f ∈ F \ {f0}. Thus,
ρf0a = B−

∑
f∈F\{f0} ρ

f
a > B−

∑
f∈F\{f0} ρ

f
b ≥ ρ

f0
b , which

contradicts ρf0a < ρf0b . Thus, we conclude that ρf = Ψ(Cf )
is continuous, and strictly increasing in Cf ∈ (0,∞).

(3) From the continuity of Ψ(Cf ), it follows that, for
any 0 < ρf < B, there exist unique Cf = Ψ−1(ρf ), λ,
and {ρf ′ , f ′ 6= f} that construct a symmetric equilibrium
together with ρf . Therefore, these quantities can be regarded as
functions of ρf , and we consider their derivatives with respect
to ρf .

We rewrite condition (B1) for flow f as:

Cfhf (ρf )− ef = λ (17)

and, for any flow f ′ ∈ F \ {f},

Cf
′
hf
′
(ρf

′
)− ef

′
= λ. (18)
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Taking the derivative of both sides in (17) and (18) with
respect to ρf , respectively, we obtain

dCf

dρf
hf (ρf )− Cf R− 1

R2

1

(ρf )2
=

dλ

dρf
(19)

− Cf
′R− 1

R2

1

(ρf ′)2
dρf

′

dρf
=

dλ

dρf
(20)

Now, we distinguish two subregions of λ. If ρf +∑
f ′ 6=f ρ

f ′ < B, according to (B2), λ = 0 in the vicinity
of ρf . Thus, dλ

dρf
= 0 and gf (ρf ) = Cfhf (ρf ) − ef = 0.

Substituting these results into (19), we thus obtain

dCf

dρf
=
Cf

ρf
=

efR2

R− 1
, (21)

which is non-decreasing in ρf with ef ≥ 0.
Otherwise, for ρf +

∑
f ′ 6=f ρ

f ′ = B, taking the derivative

of both sides with respect to ρf , then
∑
f ′

dρf
′

dρf
= −1 in the

vicinity of ρf , combined with (20), which implies

dλ

dρf
=
R− 1

R2

1∑
f ′ 6=f

(ρf′ )2

Cf′

,

which can be fed back into (19) to yield

dCf

dρf
=Cf

R− 1

hf (ρf )R2

1

(ρf )2
+

1

hf (ρf )

R− 1

R2

1∑
f ′ 6=f

(ρf′ )2

Cf′

=
(λ+ ef )

[hf (ρf )]2
R− 1

R2

1

(ρf )2
+

1

hf (ρf )

R− 1

R2

1∑
f ′ 6=f

(ρf′ )2

Cf′

=(λ+ ef )
R2

R− 1
+

ρf∑
f ′ 6=f

(ρf′ )2

Cf′

, (22)

which is increasing in ρf , since λ is increasing in ρf (Lem-
ma 2) and ρf

′
is decreasing in ρf according to (20).

Combing our findings that both (21) and (22) are non-
decreasing in ρf , and noticing that the jump in dCf

dρf
at the

boundary between the two subregions (namely, the difference
between (22) at λ = 0 and (21)) is positive, we conclude that
Cf = Ψ−1(ρf ) is convex, and, therefore, Ψ(Cf ) is concave
in the entire range Cf > 0.

APPENDIX F
PROOF OF THEOREM 6

Existence: Define the mapping Φ(C) = {Υf (C−f ), f ∈
F} as the collection of best-response functions to the respec-
tive strategy vectors of other flows. Since each component
of Φ(C) is continuous and bounded (Lemma 4), the entire
mapping is continuous and bounded. Therefore, it has a fixed
point, which is an equilibrium of the leaders’ game. This
establishes the existence of the SNE.

Uniqueness: The uniqueness of the fixed point requires that,
in an equilibrium, ∂Uf

∂Cf
= 0 must be satisfied for any f ∈ F .

We distinguish two cases in the following.
If ρf +

∑
f ′ 6=f ρ

f ′ < B, we have dCf

dρf
= Cf

ρf
= efR2

R−1 . Thus,

∂Uf
∂Cf

=u′f

(
R log(1 + ρf )

) R

1 + ρf
∂ρf
∂Cf

− 1

=u′f

(
R log(1 + ρf )

)R− 1

R

1

ef (1 + ρf )
− 1 = 0,

that is to say,

ef (1 + ρf ) = u′f

(
R log(1 + ρf )

)R− 1

R
. (23)

Since the LHS of (23) is increasing in ρf while the RHS
of (23) is decreasing in ρf , we can conclude that (23) has one
solution at most.

On the other hand, if ρf +
∑
f ′ 6=f ρ

f ′ = B, we have dCf

dρf
=

(λ+ ef ) R2

R−1 + ρf∑
f′ 6=f

(ρf
′
)2

Cf
′

. Thus,

∂Uf
∂Cf

=u′f

(
R log(1 + ρf )

) R

1 + ρf
∂ρf
∂Cf

− 1 = 0,

that is to say,

(λ+ ef )
R2

R− 1
+

ρf∑
f ′ 6=f

(ρf′ )2

Cf′

= u′f

(
R log(1 + ρf )

) R

1 + ρf
.

(24)

Similarly, it is easily to see that the LHS of (24) is increasing
in ρf while the RHS of (24) is decreasing in ρf . Thus, we
can conclude that (24) has one solution at most.

APPENDIX G
PROOF OF LEMMA 5

Given flow f , we consider two price vectors (Cfa ,C
−f
a )

and (Cfb ,C
−f
b ) such that Cfa = Υ(C−fa ) and Cfb = Υ(C−fb ),

and the only difference between C−fa and C−fb is that one
component Cf

′
, f ′ 6= f , is changed between Cf

′

a and Cf
′

b ,
where Cf

′

a < Cf
′

b . The lemma then states that Cfa ≤ C
f
b .

We prove the lemma by contradiction. Suppose that Cfa >
Cfb when Cf

′

a < Cf
′

b . If Cfb = uf

(
R log(1 + B)

)
, then the

lemma holds trivially since Cfb is already an upper bound
for possible values of Cf . Therefore, we assume Cfb <

uf

(
R log(1 + B)

)
, i.e., Cfb is the solution of the equation

∂Uf
∂Cf

= 0 at (Cfb ,C
−f
b ), and further define λb and ρfb as the

respective values of the corresponding followers’ equilibrium.
Similarly, we assume that Cfa is the solution of ∂Uf

∂Cf
= 0 at

(Cfa ,C
−f
a ), and define λa and ρfa as the respective values of

the corresponding followers’ equilibrium.
Next, consider the followers’ equilibrium for the price

vector (Cfb ,C
−f
a ), and denote the respective values by λba

and ρfba. For flow f ′, because of the increasing monotonicity
of Λ(Cf

′
) from Lemma 2, we conclude λba < λb since

Cf
′

a < Cf
′

b . Consequently, for flow f , according to condition
(B1), we have Cfb h

f (ρfba)−ef = λba < λb = Cfb h
f (ρfb )−ef ,

which implies ρfba > ρfb as hf (ρ) is monotonically decreasing.
Considering the two equilibria for the price vectors

(Cfa ,C
−f
a ) and (Cfb ,C

−f
a ), respectively, we have ρfa > ρfba

since Cfa > Cfb because of the monotonicity of Ψ(Cf ).
Since each of the terms on the RHS of (11) is decreasing

in ρf and Uf is concave in Cf , ∂Uf
∂Cf

is decreasing in ρf and
Cf , respectively. Then, for ρfb < ρfba < ρfa and Cfb < Cfa , we
have

0 =
∂Uf
∂Cf

∣∣∣
ρfb ,C

f
b

>
∂Uf
∂Cf

∣∣∣
ρfab,C

f
b

>
∂Uf
∂Cf

∣∣∣
ρfa,C

f
b ,
>
∂Uf
∂Cf

∣∣∣
ρfa,C

f
a

= 0,
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which implies a contradiction. This completes the proof of the
lemma.

APPENDIX H
PROOF OF THEOREM 7

First, consider an arbitrary sequence of update steps com-
mencing from an initial vector C(0) = (δ, δ, · · · , δ) where
δ → 0+, and denote by C(n) the resulting sequence of flow
price vector after n updates. Obviously, for any flow f , the
first time the flow updates its strategy will be a non-decreasing
update. In light of Lemma 5, it follows by induction that all
updates must be non-decreasing, i.e., C(n) is a non-decreasing
sequence. Since C(n) is bounded as well (Lemma 4), it
follows that it must converge to a limit. Due to the continuity
of the best response function Φ(Cf ), this limit must be its
(unique) fixed point C∗.

In a similar manner, consider a sequence of best-response
updates C(n) from an initial vector C(0) = {η1, · · · , ηF }
where ηf = uf

(
R log(1 +B)

)
(i.e., the upper bounds of the

respective flows’ best responses). By the same token, Lemma 5
implies that all the updates in the sequence must be non-
increasing, and the sequence must therefore converge to C∗.

Finally, consider an arbitrary initial vector of flow prices
commencing from an arbitrary initial vector of flow prices
C(0). Without loss of generality, assume that all the prices
are within the bounds set by Lemma 4 (otherwise, consider
instead the sequence only after every flow has had at least
one opportunity to update its strategy). Then, it follows that
C(n) ≤ C(n) ≤ C(n) provided that for every n the update
step is performed by the same flow in all three sequences.
Since, as established above, C(n) and C(n) converge to C∗,
it follows that the same is true for C(n) as well.
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