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Abstract— We revisit the opportunistic scheduling problem in
which a server opportunistically serves multiple classes of users
under time-varying multi-state Markovian channels. The aim of
the server is to find an optimal policy minimizing the average
waiting cost of those users. Mathematically, the problem can be
recast to a restless multiarmed bandit one, and a pivot to solve
restless bandit by the Whittle index approach is to establish
indexability. Despite the theoretical and practical importance
of the Whittle index policy, the indexability is still open for
opportunistic scheduling in the heterogeneous multi-state channel
case. To fill this gap, we mathematically identify a set of sufficient
conditions on a channel state transition matrix under which the
indexability is guaranteed and consequently, the Whittle index
policy is feasible. Furthermore, we obtain the closed-form Whittle
index by exploiting the structural property of the channel state
transition matrix. For a generic channel state transition matrix,
we propose an eigenvalue-arithmetic-mean scheme to obtain the
corresponding approximate matrix which satisfies the sufficient
conditions, and consequently can get an approximate Whittle
index. This paper constitutes a small step toward solving the
opportunistic scheduling problem in its generic form involving
multi-state Markovian channels and multi-class users.

Index Terms— Restless bandit, indexability, stochastic schedul-
ing, performance evaluation.

I. INTRODUCTION

WE revisit the following opportunistic scheduling system
involving a base station, also referred to as a server,

different classes of users with heterogeneous demands, and
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time-varying multi-state Markovian channels. Each channel
with different states and classes has a different transmission
rate, i.e., the evolution of channels is Markovian and class-
dependent. For those users connected to (or entering) the
system but not served immediately, their waiting costs increase
with time. In such an opportunistic scheduling scenario, a
central problem is how to exploit the server’s capacity to serve
the users. This problem can be formalized to the problem
of designing an optimum opportunistic scheduling policy to
minimize the average waiting cost.

The above opportunistic scheduling problem is fundamental
in many classical and emerging wireless communication sys-
tems such as mobile cellular systems including 4G LTE and
the emerging 5G, heterogeneous networks (HetNet).

A. State of the Art
Due to its fundamental importance, the opportunistic

scheduling problem has attracted a large body of research
on channel-aware schedulers addressing one or more system
performance metrics in terms of throughput, fairness, and
stability [1]–[14], [17]–[26].

The seminal work in [2] showed that the system capac-
ity can be improved by opportunistically serving users with
maximal transmission rate. Such a scheduler is called cμ-rule
or MaxRate scheduler. In fact, the MaxRate scheduler was
myopically throughput-optimal, i.e., maximizing the current
slot transmission rate but ignoring the impact of the current
scheduling on the future throughput, and consequently, was
shown to perform badly in system stability from the long-term
viewpoint. For instance, the number of waiting users in the
system explodes with the increase of system load. Meanwhile,
the MaxRate scheduler does not fairly schedule those users
with lower transmission rates.

To balance system throughput and fairness, the Proportion-
ally Fair (PF) scheduler was proposed and implemented in
CDMA 1xEV-DO system of 3G cellular networks [3]. Techni-
cally, the PF scheduler maximizes the logarithmic throughput
of the system rather than traditional throughput, and as a result,
provides better fairness [4]. In [5], the authors approximated
the PF by the relatively best (RB) scheduler, and analyzed
the flow-level stability of the PF scheduler. Actually, the RB
scheduler gives priority to users according to their ratio of
the current transmission rate to the mean transmission rate.
Accordingly, it is fair to users by taking future evolution into
account. Consequently, it can provide a minimal throughput to
the users with low accessible transmission rates, at the price
of being not maximally stable at flow-level [6].
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Other schedulers, e.g., score based (SB) [7], proportionally
best (PB), and potential improvement (PI), belong to the
family of the best-condition schedulers. These schedulers give
priority to users according to their respective evaluated channel
condition and, accordingly, do not have a direct association
with transmission rate. They are not myopically throughput-
optimal, but rather have a good performance in the long term.
They are maximally stable [8], [9], but they do not consider
fairness.

The above papers all assume independent and identically
distributed (i.i.d.) channels. For the more challenging scenar-
ios, there exist some work on homogeneous channels [10],
[11], [18], i.e., i.i.d. in slots, and heterogeneous channels
[12]–[16], i.e., discrete-time Markov process in slots. Under
the Markovian channel model, the opportunistic scheduling
problem can be mathematically recast to a restless multiarmed
bandit (RMAB) [17]. The RMAB is of fundamental impor-
tance in stochastic decision theory due to its generic nature,
and has application in numerous engineering problems. The
central problem in investigating and solving an instance of
RMAB is to establish its indexability. Once the indexability is
established, an index policy can be constructed by assigning
an index for each state of each arm to measure the reward
of activating the arm at that state. The policy thus consists of
simply activating those arms with the largest indices.

In the context of opportunistic scheduling, the authors [18]
considered a flow-level scheduling problem with time-
homogeneous channel state transition where the probability of
being in a state is fixed for any time slot, regardless of the evo-
lution of the system. For the same channel model, the authors
[10] considered the opportunistic scheduling problem under
the assumption of traffic size following the Pascal distribution.
In [10], [11], [18], the indexability was first proved and then
the similar closed-form Whittle index was obtained [17]. For
heterogeneous channels, the authors of [12]–[14] considered
a generic flow-level scheduling problem with heterogeneous
channel state transition, but carried out their work based on
a conjecture that the problem is indexable. As a result, they
can only verify the indexability of the proposed policy for
some specific scenarios by numerical test before computing the
policy index. The indexability of the opportunistic scheduling
for the heterogeneous multi-state Markovian channels, despite
its theoretical and practical importance, is still open today.

B. Main Results and Contributions

To bridge the above theoretical gap, we first carry out a
deep investigation into the indexability of the heterogeneous
channel case formulated in [12]–[14] and mathematically,
identify a set of sufficient conditions on the channel state
transition matrix under which the indexability is guaranteed
and consequently the Whittle index policy is feasible. Second,
by exploiting the structural property of the channel state
transition matrix, we obtain the closed-form Whittle index.
Third, for a generic channel state transition matrix not sat-
isfying the sufficient conditions, we propose an eigenvalue-
arithmetic-mean scheme to approximate this matrix such that
the approximate matrix satisfies the sufficient conditions and
further the approximate Whittle index is easily obtained.

Finally, we present a scheduling algorithm based on the
Whittle index, and conduct extensive numerical experiments
which demonstrate that the proposed scheduling algorithm can
efficiently balance waiting cost and stability.

Our work thus consitutes a small step towards solving the
opportunistic scheduling problem in its generic form involving
multi-state Markovian channels. As a desirable feature, the
indexability conditions established in this work only depend
on channel state transition matrix without imposing constraints
on those user-dependent parameters such as service rate and
waiting cost.

The rest of the paper is organized as follows: Section II
presents our system model. Section III formulates the pro-
posed model in Markov decision process language. Section IV
studies the index policy, proves its indexability, and gives the
closed-form Whittle index. Section V extends the indexability
and supplies a simple scheduler. Then a numerical evaluation
is presented in Section VI. Finally, Section VII presents the
paper’s conclusion.

Notation: ei denotes an N -dimensional column vector with
1 in the i-th element and 0 in others. I

N
denotes the N ×N

identity matrix. 1N denotes an N -dimensional column vector
with 1 in all elements. 0N denotes an N -dimensional column
vector with 0 in all elements. 1k

N denotes the N -dimensional
column vector with 1 in the first k elements and 0 in the
remaining N − k elements. diag (a1, . . . , aK) denotes a diag-
onal and a block-diagonal matrix with a1, . . . , aK . trace(·)
denotes the sum of all elements in a diagonal of a matrix.
(·)T represents the transpose of a matrix or a vector. (·)−1

represents the inverse of a matrix.

II. SYSTEM MODEL

As mentioned in the introduction, we consider a wireless
communication system where a server schedules jobs of
heterogeneous users. The system operates in a time-slotted
fashion where τ denotes the slot duration and t ∈ T :=
{0, 1, · · · } denotes the slot index.

A. Job, Channel, and User Models

Suppose that there are K classes of users, k ∈ K :=
{1, 2, · · · , K}. Each user of class k is uniquely associated
with a job of class k which is requested from the server and
with a dedicated wireless channel of class k through which
the job would be transmitted.

Job sizes: The job (or flow) size bk of users of class k in
bits is geometrically distributed with mean E{bk} < ∞ for
class k ∈ K.

Channel condition: For each user, the channel condition
varies from slot to slot, independently of all other users. For
each class k user, the set of discretized channel conditions is
denoted by the finite set N �

k := {1, 2, · · · , Nk}.
Channel condition evolution: We assume that at each slot,

the channel condition of each user in the system evolves
according to a class-dependent Markov chain. Thus, for each
user of class k ∈ K, we can define a Markov chain with
state space N �

k. We further define qk,n,m := P(Zk(t + 1) =
m|Zk(t) = n), where Zk(t) denotes the channel condition of a
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class k user at time t. The class k channel condition transition
probability matrix is thus defined as:

Q(k) :=

⎡
⎢⎢⎢⎣

qk,1,1 qk,1,2 · · · qk,1,Nk

qk,2,1 qk,2,2 · · · qk,2,Nk

...
...

. . .
...

qk,Nk,1 qk,Nk,2 · · · qk,Nk,Nk

⎤
⎥⎥⎥⎦ ,

where
�

m∈N �
k
qk,n,m = 1 for every n ∈ N �

k.
Transmission rates: When a usr of class k is in channel

condition n ∈ N �
k, he can receive data at transmission rate

sk,n, i.e., his job is served at rate sk,n. We assume that
the higher the label of the channel condition, the higher the
transmission rate, i.e., 0 ≤ sk,1 < sk,2 < · · · < sk,Nk

.
Waiting costs: For every user of class k, the system operator

accrues waiting cost ck (ck > 0) at the end of every slot if its
job is uncompleted.

B. Server Model

The server is assumed to have full knowledge of the
system parameters. We investigate the case where the server
can serve one user each slot. However, our analysis can be
straightforwardly generalized to the case where multiple users
can be served each slot. At the beginning of every slot, the
server observes the actual channel conditions of all users
in the system and decides which user to serve during the
slot. We assume that the server is preemptive, i.e, at any
time it can interrupt the service of a user whose job is not
yet completed. For those jobs not completed, they will be
saved and served in the future. The server is also allowed
to stay idle, and note that it is not work-conserving because
of the time-varying transmission rate. We denote by μk,n :≈
τsk,n/E0{bk} [12] the departure probability that the job is
completed within the current time slot when the server serves
a user of class k in channel condition n ∈ N �

k. Note that the
departure probabilities are increasing in the channel condition,
i.e., 0 ≤ μk,1 < · · · < μk,Nk

≤ 1, because the transmission
rates satisfy 0 ≤ sk,1 < sk,2 < · · · < sk,Nk

.

C. Opportunistic Scheduling Problem

In the above opportunistic scheduling model, a central
problem is how to maximally exploit the server’s capacity to
serve users. This problem can be formalized to the problem
of designing an optimum opportunistic scheduling policy to
minimize the average waiting cost.

III. RESTLESS BANDIT FORMULATION AND ANALYSIS

In this section we analyze the scheduling problem by the
approach of RMAB. For the ease of analysis, we investigate
the discounted waiting costs by introducing a discount factor
0 ≤ β < 1. Basically, the time-average case is a special case
where β → 1.

A. Job-Channel-User Bandit

We denote by Ak := {0, 1} the action space of user of class
k where action 1 means serving the user and 0 not serving him.

Every job-channel-user couple of class k is characterized
by the tuple

	
Nk, (wa

k)a∈Ak
, (ra

k)a∈Ak
, (P a

k )a∈Ak



, where

(1) Nk := {0} ∪ N �
k is the user state space, where state 0

indicates that the job is completed, and state n ∈ N �
k

indicates that the current channel condition is n and the
job is uncompleted;

(2) wa
k := (wa

k,n)n∈Nk
, where wa

k,n is the expected one-
slot capacity consumption, or work required by a user at
state n if action a is chosen. Specifically, for every state
n ∈ Nk, w1

k,n = 1 and w0
k,n = 0;

(3) ra
k := (ra

k,n)n∈Nk
, where ra

k,n is the expected one-slot
reward earned by a user at state n if action a is selected.
Specifically, for every state n ∈ N �

k, it is the negative
of the expected waiting cost, ra

k,0 = 0, r1
k,n = −μ̄k,nck

where μ̄k,n = 1− μk,n, and r0
k,n = −ck.

(4) P a
k := (pa

k,n,m)n,m∈Nk
, where pa

k,n,m is the probability
for a user evolving from state n to state m if action a is
selected. The one-slot transition probability matrices for
action 0 and 1 are as below:

P 0
k =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 qk,1,1 · · · qk,1,Nk

0 qk,2,1 · · · qk,2,Nk

...
...

. . .
...

0 qk,Nk,1 · · · qk,Nk,Nk

⎤
⎥⎥⎥⎥⎥⎦ ,

P 1
k =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0
μk,1 μ̄k,1qk,1,1 · · · μ̄k,1qk,1,Nk

μk,2 μ̄k,2qk,2,1 · · · μ̄k,2qk,2,Nk

...
...

. . .
...

μk,Nk
μ̄k,Nk

qk,Nk,1 · · · μ̄k,Nk
qk,Nk,Nk

⎤
⎥⎥⎥⎥⎥⎦ .

The dynamics of user j of class k is captured by the state
process xk(·) and the action process aj(·), which correspond
to state xj(t) ∈ Nk and action aj(t) ∈ Ak at any slot t.

B. Restless Bandit Formulation and Opportunistic Scheduling

Let Πt
x,a denote the set of all the policies composed

of actions a(0), a(1) · · · , a(t), where a(t) is determined by
the state history x(0), x(1), · · · , x(t) and the action history
a(0), a(1) · · · , a(t− 1), i.e.,

Πt
x,a : =

�
a(i)

���a(i) = φ
	
x0:i, a0:i−1



, i = 0, 1 · · · , t



(e)
=

�
a(i)

���a(i) = φ
	
x(i)



, i = 0, 1 · · · , t



,

where φ is a mapping φ : (x0:i, a0:i−1) �→ a(i), x0:i :=
(x(0), · · · , x(i)) and a0:i−1 := (a(0), · · · , a(i − 1)), and (e)
is due to the Markovian feature.

Let Πt
x,a denote the space of randomized and non-

anticipative policies depending on the joint state process x :=
(xk(·))k∈K and the joint action process a := (ak(·))k∈K, i.e.,
Πt

x,a =
�

k∈K Πt
xk,ak

is the joint policy space.
Let E

π
τ denote the expectation over the future states x(·)

and the action process a(·), conditioned on past states x(0),
x(1), · · · , x(τ) and the policy π ∈ Πτ

x,a.

Consider any expected one-slot quantity G
a(t)
x(t) that depends

on state x(t) and action a(t) at any time slot t. For any policy
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π ∈ Π∞
x,a and any discount factor 0 ≤ β < 1, we define the

infinite horizon β-average quantity as

B
π
0

�
G

a(·)
x(·), β,∞



:= lim

T→∞

�T−1
t=0 βt

E
π
t

�
G

a(t)
x(t)



�T−1

t=0 βt
. (1)

In the following we consider the discount factor β to be
fixed and the horizon to be infinite; therefore we omit them in
B

π
0

�
G

a(·)
x(·), β,∞



and write briefly B

π
0

�
G

a(·)
x(·)



. The reason

for introducing B
π
0 {·} is that this form can smoothly transit

to the average case β = 1. Henceforth, we always suppose
0 ≤ β < 1 except when explicitly emphasizing β = 1.

We are now ready to formulate the opportunistic scheduling
problem faced by the server as below.

Problem 1 (Optimum Opportunistic Scheduling): For any
discount factor β, the optimum opportunistic scheduling prob-
lem is to find a joint policy π = (π1, · · · , πK) ∈ Π∞

x,a

maximizing the total discounted reward (i.e., minimizing the
total discounted cost), mathematically defined as below.

(P): max
π∈Πx,a

B
π
0

��
k∈K

r
ak(·)
k,xk(·)

�
(2)

s.t.
�
k∈K

ak(t) = 1, t = 0, 1, · · · . (3)

The constraints (3) of problem (P) can be relaxed to the
following

E
π
t

��
k∈K

ak(t)

�
= 1, t = 0, 1, · · ·

⇒ lim
T→∞

�T−1
t=0 βt

E
π
t

��
k∈K w

ak(t)
k,x(t)



�T−1

t=0 βt
= 1

⇔ B
π
0

��
k∈K

w
ak(·)
k,xk(·)

�
= 1 (4)

Using Lagrangian method, we obtain the following by
combining (2) and (4),

max
π∈Πx,a

B
π
0

��
k∈K

r
ak(·)
k,xk(·)

�
− νB

π
0

��
k∈K

w
ak(·)
k,xk(·)

�

=
�
k∈K

�
max

πk∈Πxk,ak

B
πk
0

�
r
ak(·)
k,xk(·) − νw

ak(·)
k,xk(·)


�
. (5)

Thus, we have the subproblem for class k ∈ K:

(SP): max
πk∈Πxk,ak

B
πk
0

�
r
ak(·)
k,xk(·) − νw

ak(·)
k,xk(·)



. (6)

Hence, our goal is to find an optimal policy π∗
k for the sub-

problem k (k ∈ K) and then construct a feasible joint policy
π = (π∗

1 , · · · , π∗
K) for the problem (P). In the following, we

focus on the subproblem (SP) and drop the subscript k.

IV. INDEXABILITY ANALYSIS AND INDEX COMPUTATION

In this section, we first give a set of conditions on the
channel state transition matrix, and, based on which, we obtain
the threshold structure of the optimal scheduling strategy for
the subproblem. We then establish the indexability under the
proposed conditions.

A. Transition Matrices and Threshold Structure

Condition 1: Transition matrix Q can be written as

Q = O0 + �1O1 + �2O2 + · · ·+ �2N−2O2N−2,

where h := [h1, h2, · · · , hN ]T, Oj is defined in (8) (shown
at the top of the next page) and �j and λ are real numbers
satisfying

λj := λ− �N−j − �N−1+j ≤ 0, 1 ≤ j < N. (7)

Remark 1: Basically, Condition 1 implies that

• Any two adjacent rows (i.e., Qi, Qi+1) of matrix Q differ
in only two adjacent positions (i.e, i, i+1). For example,
if N = 3, Q is written as

Q =

⎡
⎣ h1 − �2 + λ h2 − �1 + �2 h3 + �1

h1 + �3 h2 − �1 − �3 + λ h3 + �1
h1 + �3 h2 − �3 + �4 h3 − �4 + λ

⎤
⎦.

• When λj = 0 for all j (1 ≤ j < N ), the Q degenerates
into the case of [18].

Now, we give the following lemma on the threshold struc-
ture of the optimum scheduling policy for the subproblem.

Lemma 1 (Threshold structure): Under Condition 1, for
every real-valued ν, there exists n ∈ N ∪ {−1} such that
the optimum scheduling policy only schedules transmission in
channel states δN−n := {m ∈ N : m > n}.

Proof: Please see Appendix I. �

B. Indexability Analysis

For πk ∈ Πxk,ak
, we introduce the concept of serving set,

δ (δ ⊆ Nk), such that the user is served if n ∈ δ and not
served if n /∈ δ. By slightly introducing ambiguity, δ can also
be regarded as a policy of serving the set δ.

Thus, the subproblem (6) can be transformed to

max
δ∈Nk

B
δ
0

�
r
ak(·)
k,xk(·) − νw

ak(·)
k,xk(·)



. (9)

For further analysis, we define

R
δ
n :=

B
δ
0

�
r

n,ak(·)
k,xk(·)



1− β

, (10)

W
δ
n :=

B
δ
0

�
w

n,ak(·)
k,xk(·)



1− β

, (11)

where n refers to the initial state of user of class k.
By Lemma 1, if there exists price νn for n ∈ N � such that

both transmitting and not transmitting are optimal for ν = νn,
then there exists a set, δ∗, such that both including state n in
δ∗ and not including state n lead to the same reward, i.e.,

R
δ∗∪{n}
n − νnW

δ∗∪{n}
n = R

δ∗\{n}
n − νnW

δ∗\{n}
n . (12)

A straightforward consequence is that changing the action
only in the initial period must also lead to the same reward,
i.e.,

R
�0,δ∗	
n − νnW

�0,δ∗	
n = R

�1,δ∗	
n − νnW

�1,δ∗	
n , (13)
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Oj :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1N

	
h

T + λIN , if j = 0,

[0N , · · · ,0N� �� �
N−j−1

,−1N−j
N ,1N−j

N ,0N , · · · ,0N� �� �
j−1

], if 1 ≤ j ≤ N − 1,

[0N , · · · ,0N� �� �
j−N

,1N − 1j−N+1
N ,1j−N+1

N − 1N ,0N , · · · ,0N� �� �
2N−2−j

], if N ≤ j ≤ 2N − 2.

(8)

where �a, δ∗
 is the policy that employs action a in the initial
period and then proceeds according to δ∗.

Then, if W
�1,δ∗	
n −W

�0,δ∗	
n �= 0, we have

νn =
R

�1,δ∗	
n − R

�0,δ∗	
n

W
�1,δ∗	
n −W

�0,δ∗	
n

. (14)

We further define

νδ
n :=

R
�1,δ	
n − R

�0,δ	
n

W
�1,δ	
n −W

�0,δ	
n

. (15)

To circumvent the long proof of Whittle indexability,
we establish the indexability result by checking the LP-
indexability condition [27]. If a problem is LP-indexable, then
it is Whittle-indexable. In the following analysis, we show that
our problem is LP-indexable; that is, the problem is Whittle-
indexable.

Definition 1 ( [27]): Problem (6) is LP-indexable with
price

νn = νδN−n
n =

R
�1,δN−n	
n − R

�0,δN−n	
n

W
�1,δN−n	
n −W

�0,δN−n	
n

, (16)

if the following conditions hold:

(1) ∀ n ∈ N , W
�1,∅	
n −W

�0,∅	
n > 0, W

�1,N	
n −W

�0,N	
n > 0;

(2) ∀ n ∈ N \ {N}, W
�1,δN−n	
n − W

�0,δN−n	
n > 0 and

W
�1,δN−n	
n+1 −W

�0,δN−n	
n+1 > 0;

(3) For each real value ν there exists n ∈ N ∪ {−1} such
that the serving set δN−n is optimal.

To check the LP-indexability, we first characterize the four
critical quantities in (16) under δN−n for any n.

Based on balance equations, when n is not chosen in the
initial slot, we have (17) in the matrix language (see the top
of the next page) and, further, the following simplified form

(IN − βM0) · r0 = c0, (19)

where,

M0 = [QT
1 , · · · , QT

n, QT
n+1μ̄n+1, · · · , QT

N μ̄N ]T,

c0 = [−c, · · · ,−c, − c, − cμ̄n+1, · · · ,−cμ̄N ]T,

r0 = [R�0,δN−n	
1 ,· · ·, R�0,δN−n	

n , R
�1,δN−n	
n+1 , · · · , R�1,δN−n	

N ]T.

Similarly, when n is chosen in the initial slot, we have (18)
(shown at the top of the next page) and, further, the following

(IN − βM1) · r1 = c1, (20)

where,

M1 = [QT
1 , · · · , QT

n−1, Q
T
nμ̄n, · · · , QT

N μ̄N ]T,

c1 = [−c, · · · ,−c, − cμ̄n,−cμ̄n+1, · · · ,−cμ̄N ]T,

r1 = [R�0,δN−n	
1 ,· · ·, R�0,δN−n	

n−1 , R�1,δN−n	
n , · · · , R�1,δN−n	

N ]T.

Thus, from (19) and (20), we can obtain

R
�0,δN−n	
n = eT

n(I
N
− βM0


−1
c0, (21)

R
�1,δN−n	
n = eT

n

	
IN − βM1


−1
c1. (22)

Similarly, replacing c0,Â c1 by 1N −1n
N , 1N −1n−1

N from
(19) and (20), respectively, we have

(I
N
− βM0) ·w0 = 1N − 1n

N , (23)

(IN − βM1) ·w1 = 1N − 1n−1
N , (24)

where,

w0

= [W�0,δN−n	
1 , · · · , W�0,δN−n	

n , W
�1,δN−n	
n+1 , · · · , W�1,δN−n	

N ]T,

w1

= [W�0,δN−n	
1 , · · · , W�0,δN−n	

n−1 , W�1,δN−n	
n , · · · , W�1,δN−n	

N ]T.

Further,

W
�0,δN−n	
n = eT

n(I
N
− βM0


−1(1N − 1n
N ), (25)

W
�1,δN−n	
n = eT

n

	
I

N
− βM1


−1(1N − 1n−1
N ). (26)

After obtaining the four critical quantities, we now check
the LP-indexability condition.

Lemma 2: Under Condition 1, for any n ∈ N \ {N}, we
have

(1) W
�1,δN−n	
n > W

�0,δN−n	
n ,

(2) W
�1,δN−n	
n+1 > W

�0,δN−n	
n+1 .

Proof: Please see Appendix II. �
Lemma 3: Under Condition 1, Problem (6) is LP-indexable

with price νn in (16).
Proof: According to Definition 1, we prove the indexa-

bility by checking three conditions.

(1) Obviously, W
�0,∅	
n = 0, W

�1,∅	
n ≥ 1, and W

�1,N	
n = 1

1−β .

For any δ, W
δ
n ≤ 1

1−β , and further W
�0,N	
n < 1

1−β .
(2) The second condition is proved in Lemma 2.
(3) The third condition is proved in Lemma 1.
Therefore, the LP-indexability is proved. �

Following Lemma 3, the following theorem states our main
result on the indexability of Problem (6).

Theorem 1 (indexability): Under Condition 1, we have

(1) if ν ≤ νn, it is optimal to serve the user in state n;
(2) if ν > νn, it is optimal not to serve the user in state n.

C. Computing Index

In this part, we exploit the structural property of the
transition matrix Q to simplify the index computation and
further, obtain the closed-form Whittle index.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
�0,δN−n	
1

...

R
�0,δN−n	
n

R
�1,δN−n	
n+1

...

R
�1,δN−n	
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1,1 · · · q1,n−1 · · · q1,N

...
. . .

...
. . .

...
qn,1 · · · qn,n · · · qn,N

μ̄n+1qn+1,1 · · · μ̄n+1qn+1,n · · · μ̄n+1qn+1,N

...
. . .

...
. . .

...
μ̄NqN,1 · · · μ̄NqN,n−1 · · · μ̄NqN,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
�0,δN−n	
1

...

R
�0,δN−n	
n

R
�1,δN−n	
n+1

...

R
�1,δN−n	
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c
...

−c
−cμ̄n+1

...
−cμ̄N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
�0,δN−n	
1

...

R
�0,δN−n	
n−1

R
�1,δN−n	
n

...

R
�1,δN−n	
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1,1 · · · q1,n−1 q1,n · · · q1,N

...
. . .

...
...

. . .
...

qn−1,1 · · · qn−1,n−1 qn−1,n · · · qn−1,N

μ̄nqn,1 · · · μ̄nqn,n−1 μ̄nqn,n · · · μ̄nqn,N

...
. . .

...
...

. . .
μ̄NqN,1 · · · μ̄NqN,n−1 μ̄NqN,n · · · μ̄NqN,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
�0,δN−n	
1

...

R
�0,δN−n	
n−1

R
�1,δN−n	
n

...

R
�1,δN−n	
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c
...
−c
−cμ̄n

...
−cμ̄N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Proposition 1: Under Condition 1, we have

1) W
�0,δN−n	
1 = · · · = W

�0,δN−n	
n−1 = W

�0,δN−n	
n .

2) R
�0,δN−n	
1 = · · · = R

�0,δN−n	
n−1 = R

�0,δN−n	
n .

3) The Whittle index is

νn =
−μnR

�1,δN−n	
n

1− μnW
�1,δN−n	
n

. (27)

Proof: Following the proof of Lemma 2, we have

W
�0,δN−n	
1 = · · · = W

�0,δN−n	
n−1 = W

�0,δN−n	
n

and

W
�1,δN−n	
n −W

�0,δN−n	
n

=
1− μnW

�1,δN−n	
n

1− μn

�
eT

n

	
I

N
− βM0


−1
en

�
. (28)

Similarly,

R
�0,δN−n	
1 = · · · = R

�0,δN−n	
n−1 = R

�0,δN−n	
n

and

R
�1,δN−n	
n − R

�0,δN−n	
n

=
−μnR

�1,δN−n	
n

1− μn

�
eT

n

	
I

N
− βM0


−1
en

�
. (29)

Therefore,

νn =
R

�1,δN−n	
n − R

�0,δN−n	
n

W
�1,δN−n	
n −W

�0,δN−n	
n

=
−μnR

�1,δN−n	
n

1− μnW
�1,δN−n	
n

.

�
Based on (27), in order to obtain νn, we only need to

compute W
�1,δN−n	
n and R

�1,δN−n	
n . Further, by some complex

operations, we can obtain the closed-form Whittle index as
follows

νn =
cμn

1− β + f(n)
, 1 ≤ n ≤ N (30)

where

f(n)

=
N�

i=n+1

⎛
⎝βqn,i

 
1−

i!
j=n+1

1
μ̄j−1
−βλj−1

1
μ̄j
−βλj−1

"
+μndn−1,iKi

⎞
⎠

dn−1,i

= −β

⎛
⎝qn,i+

N�
k=i+1

qn,k

k!
j=i+1

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

⎞
⎠

Ki =
1

1−μi
− 1

1−μi−1

1
1−μi

− βλi−1

for i (n + 1 ≤ i ≤ N ).

V. INDEXABILITY EXTENSION AND SCHEDULING POLICY

In this section, we first extend the proposed Condition 1 and
obtain the indexability as well as the Whittle index. Next, we
propose an eigenvalue-arithmetic-mean scheme to approximate
any transition matrix, and further, obtain the corresponding
approximate Whittle index. Finally, based on the closed-
form Whittle index, we construct an efficient scheduling
policy.

A. Indexability Extension

In Section IV-C, the computing process of νn shows that
the νn only depends on the structure of Q rather than the sign
of λj , i.e., (7). Thus, we release Condition 1 based on the
monotonicity of νn and obtain the following theorem on the
indexability.

Theorem 2: If Q can be written as

Q = O0 + �1O1 + �2O2 + · · ·+ �2N−2O2N−2, (31)

then Problem (6) is indexable and the Whittle index for state
n (n = 1, · · · , N ) is

νn =

�
∞, if β = 1, n = N,

cμn

1−β+f(n) , otherwise.
(32)
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Proof: Please see the Appendix III. �
Remark 2: The critical constraint (7) of Condition 1 is

deleted in this theorem compared with Lemma 3.
Corollary 1: If Q can be written as

Q = O0 + �1O1 + �2O2 + · · ·+ �2N−2O2N−2

and λ1 = · · · = λN−1 = λ, then Problem (6) is indexable and
the Whittle index for state n (n = 1, · · · , N ) is

νn =

⎧⎨
⎩
∞, if β = 1, n = N,

cμn

1− β + β
�N

i=n+1
qn,i(μi−μn)
1−βλ(1−μi)

, otherwise.

(33)

Remark 3: This corollary shows that the Whittle index
degenerates into that of [18] if λ1 = · · · = λN−1 = λ = 0.

B. Transition Matrix Approximation

Given a generic Q, where

Q �= O0 + �1O1 + �2O2 + · · ·+ �2N−2O2N−2,

thus the result of Theorem 2 cannot be used.
For this case, we approximate Q by the following

eigenvalue-arithmetic-mean scheme,

Q = V ΛV −1, (34)

Q̂ = V Λ̂V −1, (35)

Λ̂ = diag(1, λ̂, · · · , λ̂), (36)

λ̂ =
trace(Q)− 1

N − 1
, (37)

where λ̂ is the arithmetic mean of the N − 1 eigenvalues of
Q (excluding the trivial eigenvalue 1). Thus, the approximate
matrix Q̂ satisfies the condition of Corollary 1, and further-
more, the Whittle index can be approximated by

νn =

⎧⎪⎨
⎪⎩
∞, if β = 1, n = N,

cμn

1− β + β
�N

i=n+1
q̂n,i(μi−μn)

1−βλ̂(1−μi)

, otherwise.

(38)

C. Scheduling Policy

In the previous sections, we have obtained the closed-form
Whittle index for each subproblem. Now, we construct the
joint scheduling policy for the original problem.

In particular, the scheduling policy is to serve the user in
k∗(t) with the highest actual price, i.e.,

k∗(t) = argmaxk∈K
%
νk,xk(t)

&
, if νk,xk(t) <∞. (39)

Actually, νk,xk(t) < ∞ always holds if 0 ≤ β < 1. It
happens νk,xk(t) → ∞ only when β = 1 and xk(t) = Nk,
corresponding to the average case.

Therefore, the second item, ckμk,xk(t), of Laurent expansion
of νk,xk(t) would be taken as the secondary index in the case
of β = 1 and xk(t) = Nk since

lim
β→1

(1− β)νk,Nk
=

(1− β)ckμk,Nk

1− β
= ckμk,Nk

. (40)

Now, we give the marginal productivity index (MPI) sched-
uler in Algorithm 1. The MPI scheduler always serves the user
currently with the best condition, i.e., ν1 ≤ · · · ≤ νN and is
one of the best-condition schedulers, which has the stability
property in a Markovian setting [9].

Theorem 3 ( [9]): The MPI scheduler with one server is
maximally stable under arbitrary arrivals.

Algorithm 1 MPI Scheduler (β = 1)
1: for t ∈ T
2: C ← number of system users in Nk (k ∈ K)
3: if C ≥ 1 then
4: Serve one user in Nk with max{ckμk,Nk

} (k ∈ K)
5: (breaking ties randomly)
6: else
7: if condition (31) is satisfied
8: Serve the user k∗(t) with highest index value by (33)
9: else

10: Serve the user k∗(t) with highest index value by (38)
11: end if
12: (breaking ties randomly)
13: end if
14: end for

VI. NUMERICAL SIMULATION

In this section, we compare the proposed MPI scheduler
with the following policies

• the cμ rule, νcμ
k,n = ckμk,n,

• the RB rule, ν RB
k,n = ckμk,n

�Nk
m=1 qSS

k,mμk,m

,

• the PB rule, ν PB
k,n = ckμk,n

μk,Nk

,

• the SB rule, ν SB
k,n = ck

�n
m=1 qSS

k,m,
• the PISS rule [14], νSS

k,n = ckμk,n�
m>nqSS

k,m(μk,m−μk,n)
,

where qSS
k,m is the stationary probability of state m of a user

of class k.
Specifically, we only consider the case with at most one

user served at each time slot. If there is more than one user
having the highest index value, we uniformly choose one of
them. In addition, we only consider two classes of users for a
clearer performance comparison. Moreover, before evaluating
the performance of different schedulers, we first test their
similarity for a given scenario by computing the corresponding
index and then choose one scheduler as a representative among
multiple identical schedulers. In this way, we can decrease the
time for numerical simulation and meanwhile, obtain compact
figures for performance comparison.

Let τ = 1.67 msec for each slot for practical application
[28]. The arrival probability for a new user of class k is
characterized by εk = ρkμk,Nk

. For comparison, we adopt the
transmission rate sk,n in [28], and job size E0{bk} = 0.5Mb
for HTML, E0{bk} = 5Mb for PDF, and E0{bk} = 50Mb
for MP3. In this case, the departure probability is determined
by μk,n = τsk,n/E0{bk}. We assume that ρ1 = ρ2 and the
system load ρ = ρ1 + ρ2 varies from 0.3 to 1 for a better
presentation. The initial channel condition of a new user at the
moment of entering the system is assumed to be determined
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TABLE I

PARAMETERS ADOPTED IN SIMULATION

by the stationary probability vector, i.e., with probability qSS
k,m

in state m for a new user of class k. The parameter setting
for the following scenarios is stated in Table I.

A. Scenario 1

In this case, the setting is given in Table I. In particular, the
users are divided into two different classes. Each user requires
a job of expected size of 0.5Mb, and has the same waiting cost
c1 = c2 = 1. The channel state transition matrix is identical.
But the second class of users has a better transmission rate
than the first class. Our goal is to minimize the number of
users waiting for service in the system.

Under this setting, three policies (cμ, RB, and MPI) can
be shown to bring about the same scheduling rule, i.e., the
scheduling (class, state) order (2, 3) > (1, 3) > (1, 2) >
(2, 2) > (2, 1) > (1, 1). Also, PB and PISS yield the same
result, i.e., (1, 3) = (2, 3) > (1, 2) > (2, 2) > (2, 1) > (1, 1).
The SB policy will generate the order (2, 3) = (1, 3) >
(1, 2) = (2, 2) > (2, 1) = (1, 1). Thus, Fig. 1 shows that
the time-average waiting cost varies with system load ρ for
three policies, and the number of users in the system varies
with time slots. Obviously, we observe that the behavior of
all policies is quite similar. In addition, Fig. 1 clearly shows
that cμ, RB, and MPI perform better than PB, SB, and PISS.
This is because cμ, RB, and MPI keep scheduling balance
between class 1 and class 2. All those policies perform well
with ρ < 0.9 but clearly have problems with stability since
those policies become unstable close to 1 at which point the
time-average waiting cost begins rising very steeply.

B. Scenario 2

In this case, we consider two classes of users with different
job sizes: the first one requires a job of expected size 5Mb
while the second one requires a job of 0.5Mb. The waiting
costs for the two classes are c1 = 10 and c2 = 1, respectively.
The two classes have the same transmission rate and different
channel state transition matrices.

Thus, we can easily check that PISS and MPI generate the
same scheduling rule (1, 3) > (2, 3) > (1, 2) > (2, 2) >
(1, 1) > (2, 1), and PB and RB have the same rule (1, 3) >
(1, 2) > (1, 1) > (2, 3) > (2, 2) > (2, 1). Fig. 2 shows that

Fig. 1. Scenario 1 [upper]: Time average waiting cost as a function of ρ;
[lower]: Number of users in the system as a function of time (ρ = 0.98).

MPI has comparable performance with cμ and better perfor-
mance than other policies in both time-average waiting cost
and average number of users in system. From the scheduling
order, we observe that PB (or RB) has the worst performance
because of the extreme unbalance in user class, i.e., severing
class 1 with complete priority than class 2. SB has the worse
performance because of partial unbalance in user class from its
scheduling order (1, 3) > (1, 2) > (2, 3) > (1, 1) > (2, 2) >
(2, 1).

C. Scenario 3

In this case, we assume that every class of users has
4 states, different waiting costs, different transmission rates
and different channel transition matrices.

In this case, we can check that PB and RB are same, i.e.
(1, 4) > (1, 3) > (2, 4) > (2, 3) > (1, 2) > (2, 2) > (1, 1) >
(2, 1). Fig. 3 shows that MPI policy (2, 4) > (1, 4) >
(2, 3) > (1, 3) > (1, 2) > (2, 2) > (1, 1) > (2, 1) has
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Fig. 2. Scenario 2 [upper]: Time average waiting cost as a function of ρ;
[lower]: Number of users in the system as a function of time (ρ = 0.90).

Fig. 3. Scenario 3 [upper]: Time average waiting cost as a function of ρ;
[lower]: Number of users in the system as a function of time (ρ = 0.94).

comparable performance with PISS policy, (2, 4) = (1, 4) >
(2, 3) > (1, 3) > (1, 2) > (2, 2) > (1, 1) > (2, 1), and
better performance than others in both the average cost and
the number of waiting users.

VII. CONCLUSION

In this paper, we have investigated the opportunistic
scheduling problem involving multi-class multi-state time-
varying Markovian channels. Generally, the problem can be
formulated as a restless multiarmed bandit problem. To the
best of our knowledge, previous work only established an
index policy for a two-state channel process and derived some
limited results on multi-state time-varying channels under an

assumption of indexability as a prerequisite. To fill this gap,
for the class of state transition matrices characterized by our
proposed sufficient condition, we prove the indexability of the
Whittle index policy and obtain the closed-form Whittle index.
Simulation results show that the proposed index scheduler is
effective in scheduling multi-class multi-state channels. One
future objective is to seek more generic conditions to guarantee
the indexability.

APPENDIX I
PROOF OF LEMMA 1

Let v∗n denote the optimal value function, and

va
n := ra

n − νwa
n + β

�
m∈N

pa
n,mv∗m,

gn(v∗−n, v∗−(n+1)) :=
n−1�
i=1

�N−1+iv
∗
i −

n−2�
i=1

�N−1+iv
∗
i+1

+
N−1�

i=n+1

�N−iv
∗
i+1 −

N−1�
i=n+2

�N−iv
∗
i ,

α0
n :=

⎧⎪⎨
⎪⎩
−�N−n, if n = 1,

−�N−2+n − �N−n, if 2 ≤ n ≤ N−1
−�2N−2, if n = N,

α1
n+1 :=

⎧⎪⎨
⎪⎩

�N−n − �N−n−1, if 1 ≤ n ≤ N − 2,

�N−n, if n = N − 1,

0, if n = N.

For state n ∈ N , the Bellman equation is

v∗n = max{v0
n; v1

n}
= max

�
r0
n − νw0

n+β
�

m∈N �
hmv∗m+βgn(v∗−n, v∗−(n+1))

+ β[(λ + α0
n)v∗n + α1

n+1v
∗
n+1];

r1
n − νw1

n + β
�

m∈N �
(1− μn)hmv∗m + βμnv∗0

+ β(1− μn)gn(v∗−n, v∗−(n+1))

+ β(1− μn)[(λ + α0
n)v∗n + α1

n+1v
∗
n+1]



= −c + β

�
m∈N �

hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[(λ + α0
n)v∗n + α1

n+1v
∗
n+1]

+ max
�

0;−ν + μn

 
c + βv∗0 − β

�
m∈N �

hmv∗m

− βgn(v∗−n, v∗−(n+1))

− β[(λ + α0
n)v∗n + α1

n+1v
∗
n+1]

"

,

where the first term in the curly brackets corresponds to action
0 and the second to action 1.

Obviously, transmitting (i.e., action 1) is optimal in state
n ∈ N \ {0} if the first term is less than the second one.

For ease of presentation, let

Z := c + βv∗0 − βgn(v∗−n, v∗−(n+1))− β

m �=n,n+1�
m∈N �

hmv∗m,

Zn := Z − β(λ + α0
n + hn)v∗n − β(α1

n+1 + hn+1)v∗n+1.
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Now, we analyze the Bellman equation by two cases.
Case 1: If ν > 0, we have v∗n ≤ 0 for any n ∈ N \ {0}. If

transmitting is optimal in state n ∈ N\{0, N}, we obtain−ν+
μnZn ≥ 0 indicating Zn > 0, and further, −ν + μn+1Zn >
−ν + μnZn since μn+1 > μn. Thus,

v∗n = −c + μnZn − ν + β
�

m∈N �
hmv∗m

+ β[(λ + α0
n)v∗n + α1

n+1v
∗
n+1 + gn(v∗−n, v∗−(n+1))]

< −c + μn+1Zn − ν + β
�

m∈N �
hmv∗m

+ β[(λ + α0
n)v∗n + α1

n+1v
∗
n+1 + gn(v∗−n, v∗−(n+1))],

equivalently,

v∗n(1− β(1− μn+1)(λ − �N−n − �N+n−1))

< −c+μn+1Z − ν+β

m �=n,n+1�
m∈N �

hmv∗m+βgn(v∗−n, v∗−(n+1))

+ β(1− μn+1)(hn + α0
n + �N−n + �N+n−1)v∗n

+ β(1− μn+1)(hn+1 + α1
n+1)v

∗
n+1

= −c+μn+1Z − ν+β

m �=n,n+1�
m∈N �

hmv∗m+βgn(v∗−n, v∗−(n+1))

+ β(1− μn+1)(hn + γn)v∗n

+ β(1− μn+1)(hn+1 + α1
n+1)v

∗
n+1, (41)

where, γn := α0
n + �N+n−1 + �N−n.

For state n + 1, if action ‘1’ is adopted, then we have
according to Bellman equation

v1
n+1 = −c− ν+β

�
m∈N �

hmv∗m+βgn+1(v∗−(n+1), v
∗
−(n+2))

+ β[(λ + α0
n+1)v

∗
n+1 + α1

n+2v
∗
n+2]

+ μn+1

 
c + βv∗0 − β

�
m∈N �

hmv∗m

− βgn+1(v∗−(n+1), v
∗
−(n+2))

− β[(λ + α0
n+1)v

∗
n+1 + α1

n+2v
∗
n+2]

"
(a)
= −c + μn+1Z − ν + β

m �=n,n+1�
m∈N �

hmv∗m

+ βgn(v∗−n, v∗−(n+1))

+ β(1− μn+1)(hn + α0
n + �N+n−1 + �N−n)v∗n

+ β(1− μn+1)
×(hn+1 + λ + α1

n+1 − �N−n − �N+n−1)v∗n+1,

⇔
v1

n+1 − β(1 − μn+1)(λ− �N−n − �N+n−1)v∗n+1

= −c + μn+1Z − ν + β

m �=n,n+1�
m∈N �

hmv∗m

+ βgn(v∗−n, v∗−(n+1)) + β(1 − μn+1)(hn + γn)v∗n
+ β(1− μn+1)(hn+1 + α1

n+1)v
∗
n+1, (42)

where (a) is due to gn(v∗−n, v∗−(n+1)) =
gn+1(v∗−(n+1), v

∗
−(n+2)) + (�N−2+n − �N−1+n)v∗n +

(�N−n−1 − �N−n−2)v∗n+2, α0
n+1 = α1

n+1 − �N−n − �N+n−1,
and α1

n+2 = �N−n−1 − �N−n−2.
Thus, combining (41) and (42), we have

v∗n(1− β(1 − μn+1)(λ− �N−n − �N+n−1))
< v1

n+1 − β(1− μn+1)(λ − �N−n − �N+n−1)v∗n+1

≤ v∗n+1 − β(1− μn+1)(λ − �N−n − �N+n−1)v∗n+1

= v∗n+1(1− β(1 − μn+1)(λ − �N−n − �N+n−1)),

which indicates v∗n < v∗n+1.
Meanwhile,

v∗n ≥ v0
n

= −c + β
�

m∈N �
hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[(λ + α0
n)v∗n + α1

n+1v
∗
n+1]

= −c + β

m �=n,n+1�
m∈N �

hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[(hn + λ + α0
n)v∗n + (hn+1 + α1

n+1)v
∗
n+1]

⇔
v∗n(1 − β(λ− �N−n − �N+n−1))

≥ −c + β

m �=n,n+1�
m∈N �

hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[(hn + γn)v∗n + (hn+1 + α1
n+1)v

∗
n+1]. (43)

On the other hand, we have according to Bellman equation

v0
n+1 = −c + β

�
m∈N �

hmv∗m + βgn+1(v∗−(n+1), v
∗
−(n+2))

+ β[(λ + α0
n+1)v

∗
n+1 + α1

n+2v
∗
n+2]

(b)
= −c + β

�
m∈N �

hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[γnv∗n + (λ + α1
n+1 − �N−n − �N+n−1)v∗n+1]

= −c + β

m �=n,n+1�
m∈N �

hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[(hn + γn)v∗n + (hn+1 + α1
n+1)v

∗
n+1]

+ β(λ− �N−n − �N+n−1)v∗n+1

(a)

≤ −c + β

m �=n,n+1�
m∈N �

hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[(hn + γn)v∗n + (hn+1 + α1
n+1)v

∗
n+1]

+ β(λ− �N−n − �N+n−1)v0
n+1

⇔ v0
n+1(1− β(λ− �N−n − �N+n−1))

≤ −c + β

m �=n,n+1�
m∈N �

hmv∗m + βgn(v∗−n, v∗−(n+1))

+ β[(hn + γn)v∗n + (hn+1 + α1
n+1)v

∗
n+1] (44)

where (a) is due to λ ≤ �N−n+�N+n−1 and v0
n+1 ≤ v∗n+1, and

(b) is due to gn(v∗−n, v∗−(n+1)) = gn+1(v∗−(n+1), v
∗
−(n+2)) +

γnv∗n + (�N−n−1 − �N−n−2)v∗n+2.
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Thus, combining (43) and (44), we have v0
n+1 ≤ v∗n. Since

v∗n < v∗n+1, we conclude v0
n+1 ≤ v∗n < v∗n+1 = v1

n+1, that is,
transmitting is optimal in state n + 1.

Case 2: if ν < 0, then we proceed as follows. First, using
the Bellman equation it is easy to obtain that v∗0 = − ν

1−β
because action 1 is optimal in state 0 and thus −ν is obtained
in every period forever. Notice that the one-period net reward,
ra
n − νwa

n, is for any state n ∈ N and any action a ∈ A
upperbounded by −ν, i.e., |ra

n − νra
n| ≤ −ν. Hence, v∗m ≤

− ν
1−β = v∗0 for any m ∈ N �, and therefore (using c > 0

and λ +
�

m∈N � hm = 1 ) Zn > 0, and finally, for any state
n ∈ N \{0}, −ν +μnZn > 0. That is, transmitting is optimal
in any state n ∈ N .

Combining the two cases, we complete the proof.

APPENDIX II
PROOF OF LEMMA 2

We first show W
�1,δN−n	
n −W

�0,δN−n	
n > 0 by the following

four steps.
Step 1: According to the definition of β-average work, we

have W
�1,δN−n	
n ≥ 1, W

�1,δN−n	
n+1 ≥ 1, · · · , W

�1,δN−n	
N ≥ 1.

To show W
�1,δN−n	
n ≥ W

�1,δN−n	
n+1 ≥ · · · ≥ W

�1,δN−n	
N , we

only need to show W
�1,δN−n	
i ≥ W

�1,δN−n	
i+1 for any i (n ≤

i ≤ N − 1).
For (24), we perform the following operations sequentially

1) dividing the i-th equation by 1− μi,
2) dividing the (i + 1)-th equation by 1− μi+1,
3) subtracting the i-th equation from the (i + 1)-th one,

then we obtain the i-th equation'
− 1

μ̄i
+ βλi−1

(
W

�1,δN−n	
i +

'
1

μ̄i+1
− βλi−1

(
W

�1,δN−n	
i+1

=
1

μ̄i+1
− 1

μ̄i
, (45)

equivalently,'
1
μ̄i
− βλi−1

(
(W�1,δN−n	

i+1 −W
�1,δN−n	
i )

=
'

1
μ̄i+1

− 1
μ̄i

(
(1−W

�1,δN−n	
i+1 ) ≤ 0,

which implies W
�1,δN−n	
i+1 ≤W

�1,δN−n	
i .

Step 2: To show W
�0,δN−n	
1 = · · · = W

�0,δN−n	
n−1 , we only

need to show W
�0,δN−n	
i = W

�0,δN−n	
i+1 for i (1 ≤ i ≤ n− 2).

For (24), we subtract the i-th equation from the (i + 1)-th
one, and come to

− [1− βλi]W
�0,δN−n	
i + [1− βλi] W

�0,δN−n	
i+1 = 0, (46)

which indicates W
�0,δN−n	
i = W

�0,δN−n	
i+1 .

To show W
�0,δN−n	
1 = · · · = W

�0,δN−n	
n−1 ≤ W

�1,δN−n	
n , we

have by the (n− 1)-th equation)
1− β

n−1�
i=1

qn−1,i

*
W

�0,δN−n	
n−1 − β

N�
i=n

qn−1,iW
�1,δN−n	
i = 0,

(47)

equivalently,

W
�0,δN−n	
n−1 =

β
�N

i=n qn−1,iW
�1,δN−n	
i

1− β
�n−1

i=1 qn−1,i

(a)

≤ β
�N

i=n qn−1,iW
�1,δN−n	
n

1− β
�n−1

i=1 qn−1,i

(b)

≤
�N

i=n qn−1,iW
�1,δN−n	
n

1−
�n−1

i=1 qn−1,i

= W
�1,δN−n	
n , (48)

where (a) is due to W
�1,δN−n	
n ≥ W

�1,δN−n	
n+1 ≥ · · · ≥

W
�1,δN−n	
N , and (b) is because β

�N
i=n qn−1,i

1−β
�n−1

i=1 qn−1,i
is increasing

in β (0 ≤ β < 1).
Step 3: Considering the n-th equation of (24), we have

−β(1− μn)
n−1�
i=1

qn,iW
�0,δN−n	
n−1

+ (1− β(1 − μn)qn,n)W�1,δN−n	
n

− β(1− μn)
N�

i=n+1

qn,iW
�1,δN−n	
i = 1, (49)

equivalently,

(1− β(1 − μn)qn,n)W�1,δN−n	
n

= 1 + β(1− μn)
n−1�
i=1

qn,iW
�0,δN−n	
n−1

+ β(1− μn)
N�

i=n+1

qn,iW
�1,δN−n	
i

(a)

≤ 1 + β(1− μn)
n−1�
i=1

qn,iW
�1,δN−n	
n

+ β(1− μn)
N�

i=n+1

qn,iW
�1,δN−n	
n , (50)

further,

W
�1,δN−n	
n ≤ 1

1− β(1 − μn)
<

1
μn

, (51)

due to 0 ≤ β < 1, and (a) is due to W
�1,δN−n	
n ≥W

�0,δN−n	
i

for any i (1 ≤ i ≤ n − 1) and W
�1,δN−n	
n ≥ W

�1,δN−n	
i for

any i (n + 1 ≤ i ≤ N ).
Step 4: For the n-th equation of (24) stated as follows

(eT
n − β(1 − μn)eT

nQ)w1 = 1, (52)

we first subtract μnW
�1,δN−n	
n from both LHS and RHS of

(52), and then divide (52) by 1− μn. As a consequence, (52)
can be written as follows

(eT
n − βeT

nQ)w1 =
1− μnW

�1,δN−n	
n

1− μn
. (53)
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Combined with the other N − 1 equations of (24), then (24)
can be transformed to the following

(I
N
− βM1) ·w1 = 1N − 1n−1

N

⇔ (I
N
− βM0) ·w1 = 1N − 1n

N +
1− μnW

�1,δN−n	
n

1− μn
en.

(54)

Thus,

W
�1,δN−n	
n = eT

n

	
I

N
− βM0


−1

×(1N − 1n
N +

1− μnW
�1,δN−n	
n

1− μn
en), (55)

combined with

W
�0,δN−n	
n = eT

n(I
N
− βM0


−1(1N − 1n
N ),

then we have

W
�1,δN−n	
n −W

�0,δN−n	
n

=
1− μnW

�1,δN−n	
n

1− μn

�
eT

n

	
IN − βM0


−1
en

� (a)
> 0, (56)

where (a) is due to μnW
�1,δN−n	
n < 1 and eT

n

	
IN −

βM0


−1
en > 0. Note that eT

n

	
I

N
−βM0


−1
en > 0 because

I
N
−βM0 is a diagonally dominant matrix and every element

in the diagonal line is larger than 0 when 0 ≤ β < 1.
To the end, we prove W

�1,δN−n	
n −W

�0,δN−n	
n > 0. Follow-

ing the similar deduction, we can easily prove W
�1,δN−n	
n+1 −

W
�0,δN−n	
n+1 > 0. Therefore, we complete the proof.

APPENDIX III
PROOF OF THEOREM 2

According to the definition of the Whittle index, we prove
the indexability by checking ν1 < ν2 < · · · < νN . When
β = 1, we have νN = cμN

1−β →∞.
First, we have

f(n) = βqn,n+1

+
1−

1
μ̄n
− βλn

1
μ̄n+1

− βλn

,
+ μndn−1,n+1Kn+1

+ β

N�
i=n+2

qn,i

⎛
⎝1−

i!
j=n+1

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

⎞
⎠

+ μn

N�
i=n+2

dn−1,iKi,

and

f(n + 1) = β

N�
i=n+2

qn+1,i

⎛
⎝1−

i!
j=n+2

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

⎞
⎠

+ μn+1

N�
i=n+2

dn,iKi

= β

N�
i=n+2

qn,i

⎛
⎝1−

i!
j=n+2

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

⎞
⎠

+ μn+1

N�
i=n+2

dn−1,iKi.

Further,

f(n)− f(n + 1)

= βqn,n+1Kn+1 + (μn − μn+1)
N�

i=n+2

dn−1,iKi

+ μndn−1,n+1Kn+1+β

N�
i=n+2

qn,i

i!
j=n+2

1
μ̄j−1
−βλj−1

1
μ̄j
−βλj−1

Kn+1

= βqn,n+1Kn+1+(μn − μn+1)
N�

i=n+2

dn−1,iKi

−μnβ
 
qn−1,n+1+

N�
i=n+2

qn−1,i

i!
j=n+2

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

"
Kn+1

+ β

N�
i=n+2

qn,i

i!
j=n+2

1
μ̄j−1
−βλj−1

1
μ̄j
−βλj−1

Kn+1

= βqn,n+1Kn+1 + (μn − μn+1)
N�

i=n+2

dn−1,iKi

−μnβ
 
qn,n+1 +

N�
i=n+2

qn,i

i!
j=n+2

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

"
Kn+1

+ β
N�

i=n+2

qn,i

i!
j=n+2

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

Kn+1

= μ̄nβqn,n+1Kn+1 + (μn − μn+1)
N�

i=n+2

dn−1,iKi

+ μ̄nβ
N�

i=n+2

qn,i

i!
j=n+2

1
μ̄j−1

− βλj−1

1
μ̄j
− βλj−1

Kn+1

(a)

≥ 0,

where (a) is due to dn−1,i ≤ 0, Ki ≥ 0, and μn < μn+1.
Hence,

νn =
cμn

1− β + f(n)
≤ cμn

1− β + f(n + 1)

<
cμn+1

1− β + f(n + 1)
= νn+1,

which completes the proof.
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