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Abstract

IEEE 802.11 standards support ad hoc mode which are
ad hoc networks with all nodes within each other’s trans-
mission range. Time synchronization is crucial in such ad
hoc networks. A distributed Timing Synchronization Func-
tion (TSF) is specified by IEEE 802.11 to provide synchro-
nization service, but it suffers from the scalability problem
due to its inefficient synchronization mechanism. Further-
more, TSF is designed without taking into account security.
Such an insecure time synchronization protocol may cause
serious problems on the applications and protocols based
on synchronized time. To the best of our knowledge, cur-
rently no secure time synchronization mechanisms are pro-
posed for such environments. In this paper we propose our
scalable and secure time synchronization protocol SSTSP.
We prove that SSTSP can synchronize the networks with the
maximum clock difference under 20μs without any uncon-
tinuous leaps in clocks. We also conduct simulations to
evaluate the performance of SSTSP. The results show that
without attacks, the performance of our approach is signif-
icantly superior to TSF and is among the best of currently
proposed solutions in terms of accuracy and scalability. Be-
sides, our approach can maintain the network synchronized
even under malicious attacks.

1 Introduction

IEEE 802.11 standards support the peer-to-peer mode,
Independent Basic Service Set (IBSS), which is an ad hoc
network with all nodes within each other’s transmission
range. Time synchronization is crucial in such ad hoc net-
works. It is a key function to perform power management
and to support the medium access control protocol in the
Frequency Hoping Spread Spectrum version of the physical
layer. It also plays an important role in the support of QoS
in ad hoc networks, particularly for real-time applications.

The dynamic nature of ad hoc networks, the non-
determinism of the wireless channel and the lack of refer-
ence nodes make time synchronization a challenging task in
ad hoc networks. An ideal synchronization mechanism for
ad hoc networks should be robust to mobility and topology
changes, efficient in terms of traffic and processing cost,
scalable and secure. We pay a special emphasis on the se-
curity aspect because recently many mechanisms have been
proposed to address the time synchronization problem in ad
hoc networks [1], [4], [5], but most of them do not take
into account security, although ad hoc networks are much
more vulnerable to various attacks than traditional wired
networks. As a result, the proposed solutions are very vul-
nerable to various kinds of attack. An attacker can easily
modify or replay a time synchronization message. It can
also send forged times to desynchronize the network or dis-
turb the receiver’s clock. Such an insecure time synchro-
nization protocol further causes serious problems on the ap-
plications and protocols based on synchronized time. Nodes
may fail to be activated because of the incorrect time esti-
mation, which may further cause serious problems such as
failing to respond to important events and packet loss.

In this paper we propose our secure and scalable syn-
chronization protocol. We start by analyzing the core prob-
lems of existing synchronization mechanisms for ad hoc
networks. Based on the analysis, we propose our scalable
and secure time synchronization protocol SSTSP. We then
provide security analysis and conduct simulations to eval-
uate the performance of SSTSP. Finally we conclude the
paper in Sec.6.

2 Related Work

IEEE 802.11 standards specify the ad-hoc-mode Tim-
ing Synchronization Function (TSF) for IEEE 802.11 ad
hoc networks (IBSS) [3] in which time synchronization is
achieved by periodical time information exchange through
beacons containing timestamps and other parameters. Each
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node maintains a local TSF clock counting in increments of
microseconds. All nodes in the IBSS compete for beacon
transmission every Beacon Period (BP). At the beginning
of each BP, there is a beacon generation window consist-
ing of w + 1 slots each of length aSlotT ime, where w is
a parameter defined by system. Each node calculates a ran-
dom delay uniformly distributed in [0, w]×aSlotT ime and
schedules to transmit a beacon when the delay timer ex-
pires. If a beacon is received before the random delay timer
has expired, the node cancels the pending beacon transmis-
sion. Upon receiving a beacon, the node sets its local clock
to the timestamp of the beacon if the value of the timestamp
is later than its local clock.

In spite of its distributed nature and its efficiency in terms
of communication cost, TSF has the following problems
when applied to large scale ad hoc networks:
• Fastest node1 asynchronization: As identified in [4],

the clock of the fastest node may drift away, because
it may not get a chance to transmit its beacon. Since
the fastest node does not synchronize itself to other
nodes, its clock will keep drifting away from others.
The problem becomes more severe when the number
of nodes of the network increases.

• Beacon collision: As the number of nodes increases,
the synchronization beacon transmission contentions
uprise accordingly. As a result, in large networks,
due to repeated collisions, synchronization beacons
can hardly be successfully transmitted and some nodes
may fail to synchronize with others.

ATSP was proposed in [4] to solve the fastest node asyn-
chronization problem. The basic idea is to let the fastest
node compete for beacon transmission every BP and let
other nodes compete only every Imax BPs. The parame-
ter Imax should be carefully chosen to reach a compromise
between scalability and stability. As an improved version
of ATSP, the authors propose TATSP in which the nodes
are dynamically classified into three tiers according to the
clock speed. The nodes in tier 1 compete for beacon trans-
mission in every BP and the nodes in tier 2 compete once
in a while and the nodes in tier 3 rarely compete. SATSF
is another synchronization protocol proposed in [10] com-
patible with TSF. In SATSF, node i competes for beacon
transmission every FFT (i) BPs. FFT (i) is adjusted at the
end of each BP in the way that fast nodes will gradually
increase their FFT value, thus competing more frequently
than slow nodes.

ASP is proposed in [9] to synchronize multi-hop ad hoc
networks. The basic idea is to synchronize the whole net-
work by fulfilling two tasks: to increase the successful

1Throughout the paper we mean by the fastest node the node whose
clock advances the fastest. The argument to give priority to the fastest node
in TSF is to avoid backward leaps in time, which is a necessary requirement
for some applications.

transmission probability for faster nodes and to spread the
faster time information throughout the whole network. The
first task is achieved by increasing the beacon transmis-
sion priority of a node who has faster time and by cut-
ting down the priorities of the others. When some slower
nodes get enough information to accomplish synchroniza-
tion by themselves, their beacon transmission priorities are
increased to carry out the second task.

[1] proposes a mechanism which differs from the idea
of giving faster nodes higher priorities. In the mechanism
all nodes participate equally in the synchronization of the
network. The authors define a controlled clock, which
is an adjusted clock of the real clock, and a parameter
s = controlled clock

real clock . Each node participate the contention
with probability p every T DELAY BPs if no beacons are
received within last T DELAY beacons. When receiving
a beacon, the node updates s and p to synchronize to the
sender of the beacon.

In spite of the numerous time synchronization protocols
proposed for ad hoc networks, most of them have not been
built with security in mind. To our knowledge, there exist
very few propositions on the secure time synchronization
protocols in the literature among which [7] mainly focus on
a specific type of attack called delay attack. The authors
propose two approaches to detect and accommodate the de-
lay attack. One approach uses the generalized extreme stu-
dentized deviate (GESD) algorithm to detect multiple out-
liers (malicious time offset). The other uses a threshold
based on a time transformation technique to filter out the
outliers. [8] proposes several protocols for sensor networks
to secure pairwise time synchronization over single hop and
multiple hops. The author further extend their efforts to se-
cure group time synchronization. They propose the light-
weight secure group synchronization protocol to counter ex-
ternal attacks and the secure group synchronization protocol
to counter both external and internal attacks but at the price
of the heavy traffic overhead and the lack of scalability.

3 Scalable Secure Time Synchronization Pro-
cedure (SSTSP)

3.1 Design Philosophy

Although TSF provides an efficient distributed synchro-
nization mechanism for WLAN in terms of traffic overhead,
it suffers from the scalability problem due to its beacon con-
tention scheme. Besides, it is vulnerable to various ma-
licious attacks. In this section we address the above two
problems which are vital to build a scalable and secure syn-
chronization protocol.

First we argue that the root of the scalability problem
in TSF lies in the fact that the increase in the number of
nodes in the network decreases the synchronization beacon
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emission opportunity of the fastest node or a subset of the
fastest nodes. Some protocols improving TSF increase the
successful emission probability of the fastest nodes by at-
tributing them priority with respect to other nodes in the
network. These mechanisms are significantly more scalable
than TSF, but since they follow the same contention mech-
anism as TSF, the scalability problem is not totally solved.
Furthermore, they usually depend on the observation of the
beacons to find and locate the fast nodes, which may in-
crease the latency of synchronization.

Our approach, however, addresses the scalability prob-
lem from another angle. In our approach, all nodes content
to emit the synchronization beacon at the beginning follow-
ing the contention mechanism of TSF. The winner becomes
the reference node and emits a beacon in the beginning of
every BP without random delay. Other nodes synchronize
their local clocks to the reference node until the reference
node leaves the network, when another round of contention
begins. To synchronize to the reference node, a node adjusts
its clock parameters to gradually catch up with the pace of
the reference clock in order to avoid backward and uncon-
tinuous leaps in time. All nodes have the equal chance to
become the reference node, but the contention takes place
only when the formal reference node leaves and once the
reference node is established, other nodes disable their bea-
con emission and synchronize their local clocks to the ref-
erence node each BP. The proposed mechanism maintains
the distributed nature of the synchronization process while
removes the scalability problem from its root. By making
the full use of every received synchronization beacon and
adopting a fine adjustment mechanism, we achieve signifi-
cantly better synchronization accuracy than TSF and avoid
all the backward or other uncontinuous leaps in local ad-
justed clock. Furthermore, by carefully choosing parame-
ters, our mechanism is robust to the change of the reference
node and the loss of synchronization beacons.

Furthermore, our approach can detect malicious syn-
chronization attacks and prevent networks from being de-
synchronized by malicious nodes using erroneous time val-
ues. To achieve this goal, we use μTESLA [2], a recently
proposed technique base on one-way hash chain, to protect
synchronization beacons against external attackers. On the
other hand, each node set a threshold called “guard time”. A
beacon is rejected if the difference between the timestamp
in the beacon and local timestamp is beyond the thresh-
old. This mechanism, based on the fact that the difference
between any two clocks cannot drift unboundedly within
a certain period of time, can counter the internal attacks
and other attacks such as delay attacks and replay attacks.
Note that performing asymmetric cryptographic operations
usually takes up to hundreds of milliseconds depending on
the CPU capacity of the nodes, which may increase signifi-
cantly the synchronization error. In contrast, hash functions

are three to four orders of magnitude faster than asymmet-
ric operations and can be performed in an on-the-fly way
such that it causes almost no additional delay. Furthermore,
due to its nature, nodes in ad hoc networks may be resource
constrained. It is sometimes expensive even prohibited for
such nodes to perform heavy asymmetric cryptographic op-
erations. Another alternative is to use Keyed-hash Mes-
sage Authentication Codes (HMAC) based on symmetric
key shared between each pair of nodes [8]. This choice may
pose scalability problem in that it requires N2 keys in a net-
work of N nodes and (N −1) HMACs should be calculated
to protect a beacon, which is clearly impossible to perform
in the on-the-fly way when N is large. The above reasons
push us to use μTESLA in our approach.

3.2 Assumptions and Requirements

To use one-way hash chains, we need some mechanism
for a node to distribute an authenticated element hn(si) in
its hash chain. A traditional approach is to let each node
use its public key sign the hash chain element. Alterna-
tively, a node can securely distribute an authenticated hash
chain element using only symmetric-key cryptography [11]
or non-cryptographic approaches [12].

We also assume that the synchronization beacons are
timestamped below MAC layer. Thus, we remove the most
significant non-deterministic factor of the end-to-end delay
of the beacons, medium access waiting time.
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3.3 Synchronization Procedure

Node initiation
Each node i picks a random seed si and generates its

hash chain based on si: h(si), h2(si), ..., hn(si). The
last element hn(si) is authenticated and published within
the network. The reference time T0 corresponding to the
start time of the hash chain is also published (e.g. T0 can
be configured and published by the first node arriving in
the network or be integrated into the synchronization bea-
cons). Suppose the beacons are expected to be emitted
at time T0 + j ∗ BP (j = 1, 2, ..., n). Each element of
the hash chain hn−j(si) is used as the key to secure the
synchronization beacon sent by node i in the time interval
[T0 + j ∗ BP − BP/2, T0 + j ∗ BP + BP/2] if node i
is the reference node. Node i, in its synchronization bea-
con sent in the above time interval, discloses the element
hn−j+1(si) (j > 1), allowing other nodes to authenticate
previously received beacons sent by itself in last time inter-
val [T0+(j−1)∗BP −BP/2, T0+(j−1)∗BP +BP/2].

Our scalable and secure time synchronization procedure
(SSTSP) consists of two phases: the coarse synchronization
phase and the fine-grained synchronization phase.
Coarse synchronization phase

This phase is actually the pre-synchronization phase last-
ing several BPs during which a node only scans beacons in
order to acquire coarse synchronization before joining the
network. The objective is to enable the application of one-
way hash chains to secure the time synchronization proce-
dure in the fine-grained synchronization phase. The coarse
synchronization can also be achieved by calibration when a
node joins the network.

In this phase the new arriver scans beacons and adjusts its
own clock based on the received timestamps. To counter at-
tacks in this phase, a node collects a number of timestamps
and computes the offsets between these timestamps and its
own timestamps when receiving them. It then eliminates
biased offsets. The mechanism proposed in [7] based on
threshold can be applied here. Note that a loose threshold
is chosen since the objective is to achieve coarse time syn-
chronization. Finally the node averages the rest valid offsets
and uses the averaged value to adjust its own clock ti. In this
phase ci(ti) is set to ti.

It is interesting that our approach uses μTESLA to se-
cure the synchronization process while μTESLA itself re-
quires a loose synchronization. It is not contradictory in
that μTESLA only requires a loose synchronization which
is easy to achieve and once the hash chain scheme is es-
tablished and the fine-grained synchronization is secured,
we can continue to use the hash chain scheme based on the
synchronized time to further maintain the time synchroniza-
tion.
Fine-grained synchronization phase

In this phase, each node competes to be the reference
node if it has not heard the synchronization beacon in the
last l BPs. A larger value of l makes the mechanism more
robust since the failure to receive a beacon may be due
to collision or temporary wireless channel instability other
than the leave of the reference node. As price, a larger l in-
creases the synchronization error when the reference node
changes. In case of collision, the contention may last sev-
eral BPs. The contention mechanism is the same as in TSF.
The winner becomes the reference node and emits a beacon
in the beginning of every BP without random delay. Other
nodes synchronize their local clocks to the reference node
until the reference node leaves the network, when another
round of contention begins. A node joining the network
does not participate in the contention until it is synchronized
with the network. We use μTESLA scheme to protect the
beacons. The synchronization beacon sent by the reference
node ref in time interval j is:

< B, j, hn−j
ref (B, j), hn−j+1(sref ) >

where B is the original unsecured synchronization beacon,
hn−j

ref (B, j) denotes the HMAC output using hn−j(sref )
as the key applied to (B, j), hn−j+1(sref ) is the disclosed
key corresponding to the last interval (interval (j − 1)).

Each node i temporarily stores the recently received bea-
cons. Upon receiving a new beacon from the reference node
ref , node i performs the following checks:
• Node i checks whether interval j corresponds to the

current time interval.
• If the above check passes, node i further checks the

validity of the disclosed key hn−j+1(sref ) in the bea-
con by verifying whether hj−1(hn−j+1(sref )) equals
to the published element hn(sref ). In case of suc-
cess, i checks the authenticity and the integrity of the
beacon received in last interval using disclosed key
hn−j+1(sref ). Node i can store previously authenti-
cated disclosed key hn−j+2(sref ) to reduce process-
ing overhead. In this case only one hash operation is
needed instead of j − 1.

• If above two checks pass, i checks whether the dif-
ference between the timestamp in the beacon and lo-
cal timestamp is under the threshold δ. Otherwise the
beacon may be replayed or delayed or the timestamp
is forged by an internal attacker. We choose a tighter
threshold here than that in the coarse synchronization
phase. [8] and [7] discuss the parameter δ.

If all the above tests pass, node i then adjusts its local
clock using the authenticated beacon (j − 1) and (j − 2).
Note that beacon j cannot be used for clock adjustment un-
til its integrity is verified. In SSTSP each node i has two
clocks: an original clock and an adjusted clock. The orig-
inal clock is the hardware clock of the node, e.g. a 64-bit
counter with the resolution of 1μs in the IEEE 802.11 stan-
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dard. The adjusted clock takes ti, the time of the original
clock as input and adjusts its value ci(ti) according to the
following relation:

ci(ti) = kj ∗ ti + bj , j = 1, 2, ... (1)

Our objective is to synchronize the adjusted clocks of all
the nodes in the network by repeatedly adjusting kj and bj

(kj = 1, bj = 0 if j ≤ 2) at each node when receiving the
beacon in the jth BP from the reference node. Compared
with TSF, SSTSP has the following features:
• SSTSP achieves better accuracy than TSF via a more

sophisticated adjustment scheme in which both the off-
set and the coefficient parameters are adjusted.

• There is no backwards or other uncontinuous leaps in
local clock, which are important in some applications.
TSF only guarantees that no backwards leaps exist.

The following equations illustrate the clock adjustment
of SSTSP:

kj−1 ∗ tji + bj−1 = kj ∗ tji + bj (2)

ci((t
j+m
i )∗) = kj ∗ (tj+m

i )∗ + bj = (tsj+m
ref )∗ (3)

tj−1
i

−tj−2
i

tsj−1
ref

−tsj−2
ref

= (tj+m
i

)∗−tj−1
i

(tsj+m
ref

)∗−tsj−1
ref

(4)

(tsj+m
ref )∗ = T j+m (5)

(2) follows the argument that the adjusted clock ci(ti)
is continuous at tji . (3) indicates that the adjusted clock
of node i is expected to converge to the reference clock at
the expected receiving time of the beacon (j + m). Be-
fore the convergence, the synchronization error is expected
to decrease monotonously. m (m > 1) is the parameter
of aggressiveness. A larger value of m increases the syn-
chronization latency since the local clock converges slower
to the reference node, while it avoids the synchronization
error to be increased significantly when the reference node
changes. (4) establishes the relation of the local clock and
the adjusted clock of the reference node based on the lin-
earity of the clocks2. (5) follows that the expected emis-
sion time of the (j + m)th beacon is T j+m. By solving
the equations (2), (3), (4), (5) containing 4 variables kj , bj ,
(tsj+m

ref )∗ and (tj+m
i )∗, we get:

kj =
(T j+m−(kj−1∗tj

i
+bj−1))∗(tsj−1

ref
−tsj−2

ref
)

(tj−1
i

−tj−2
i

)∗(T j+m−tsj−1
ref

)+(tj−1
i

−tj
i
)∗(tsj−1

ref
−tsj−2

ref
)

bj = − (T j+m−(kj−1∗tj
i
+bj−1))∗(tsj−1

ref
−tsj−2

ref
)∗tj

i

(tj−1
i

−tj−2
i

)∗(T j+m−tsj−1
ref

)+(tj−1
i

−tj
i
)∗(tsj−1

ref
−tsj−2

ref
)

+kj−1 ∗ tji + bj−1

2In this paper, the original clock is regarded as a linear function of real
time within a short period of time. The adjusted clock is regarded as linear
as long as no adjustment occurs during that period of time. A detailed
clock model is described in [1].

By repeatedly updating kj and bj using received beacons
from the reference node, the local adjusted clock of each
node i gradually catches up with the pace of the reference
clock and the network is hence synchronized.

3.4 Analysis of SSTSP

Lemma 1 shows that regardless of the initial value, the
adjusted clock of i, ci, converges to the adjusted timestamp
of the reference node tsref , where tsref = tref + tp .

Lemma 1: For any node i, its local adjusted clock, ci,
converges to tsref .

Proof: Let Dn
i be the difference between ci(tni ) and

tsn
ref when receiving the nth beacon: Dn

i = ci(tni )− tsn
ref .

Let (n + q) ∗ BP + dn+q be the time when the reference
node emits the (n + q)th beacon (q ≥ 1), where dn+q is
the time elapsed between the scheduled emission time of
the beacon and its actual emission time. The timestamp
in the beacon is adjusted at node i by adding tp to tsn+q

ref :

tsn+q
ref = (n + q) ∗ BP + dn+q + tp.

By (3) we have:

kn ∗ (tn+m
i )∗ + bn = (tsn+m

ref )∗ = (n+m)∗BP + tp (6)

Apply (1) at tni and tn+1
i we get:

ci(tni ) = kn ∗ tni + bn = tsn
ref + Dn

i

= n ∗ BP + dn + tp + Dn
i (7)

ci(tn+1
i ) = kn ∗ tn+1

i + bn = tsn+1
ref + Dn+1

i

= (n + 1) ∗ BP + dn+1 + tp + Dn+1
i (8)

By the linearity of the clock we have:

(tn+m
i )∗ − tni

(tsn+m
ref )∗ − tsn

ref

=
(tn+m

i )∗ − tn+1
i

(tsn+m
ref )∗ − tsn+1

ref

(9)

Combining (6), (7), (8) and (9), we get:

Dn+1
i

Dn
i

=
(m − 1) ∗ BP − dn+1

m ∗ BP − dn
<

{
d

m∗BP−d m = 1
(m−1)∗BP
m∗BP−d m > 1

Where d = max(dj), (j > 1). Recursively we get:

Dn+q
i

Dn
i

<

{
( d

m∗BP−d )q m = 1
( (m−1)∗BP

m∗BP−d )q m > 1

Given any synchronization error threshold Δ and Dn
i ,

after [logd/(m∗BP−d)(Δ/Dn
i )] BPs (if m = 1) or

[log(m−1)∗BP/(m∗BP−d)(Δ/Dn
i )] BPs (if m > 1), the dif-

ference between the local adjusted clock of node i and the
clock of the reference node will drop below the threshold.
The adjusted clock thus converges to tsref .
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Apply lemma 1 and |tsref − tref | < ε, it is easy to prove
that the maximum synchronization error is bounded by 2ε,
typically 10μs.

Lemma 2 studies the difference between ci and tsref

when the reference node changes.
Lemma 2: For any node i, let D−

i and D+
i be the

difference between ci and tsref (ref is the old reference
node) before and after the reference node changes, then
D+

i < (l + 2) ∗ D−
i .

Proof: It takes (l + 3) BPs before node i can re-adjust
its local clock to the new reference clock: during the first
(l + 1) BPs, the new reference node is elected via con-
tention; during the following two BPs, each node validates
the timestamp sent by the new reference node in previous
BP and gets enough validated timestamps to adjust its local
clock. Let tnref = n∗BP +dn (dn is defined the same as in
lemma 1) be the time when the last beacon is emitted by the
old reference node. The beacon is received by i at local un-
adjusted time tni . The difference between ci(tni ) and tsn

ref

is D−
i . Let tn+l+3

ref = (n+ l+3)∗BP +dn+l+3 be the local
time of the old reference node when the new reference node
emits its beacon in the (l+3)th BP with which node i begins
to adjust its local clock to the new reference clock. The dif-
ference between ci(tn+l+3

i ) and tsn+l+3
ref is D+

i . Between

tsn
ref and tsn+l+3

ref , the synchronization error cannot be con-
trolled since no adjustment is done during this period. Af-
ter tsn+l+3

ref all the nodes synchronize to the new reference
node, and the synchronization error decreases. We prove in
the following that D+

i < (l + 2) ∗ D−
i .

By (3) we get:

kn∗(tn+m
i )∗+bn = (tsn+m

ref )∗ = (n+m)∗BP +tp (10)

Apply (1) at tni and tn+l+3
i we get:

ci(tni ) = kn ∗ tni + bn = tsn
ref + D−

i

= n ∗ BP + dn + tp + D−
i (11)

ci(tn+l+3
i ) = kn ∗ tn+l+3

i + bn = tsn+l+3
ref + D+

i

= (n + l + 3) ∗ BP + dn+l+3 + tp + D+
i (12)

By the linearity of the clock we have:

(tn+m
i )∗ − tni

(tsn+m
ref )∗ − tsn

ref

=
(tn+m

i )∗ − tn+l+3
i

(tsn+m
ref )∗ − tsn+l+3

ref

(13)

Combining (10), (11), (12) and (13), we get
D+

i

D−
i

=
(m−l−3)∗BP−dn+l+3

m∗BP−dn
. Note that dn, dn+l+3 � BP , we get

D+
i

D−
i

= m−l−3
m + o(1). We can see from the proof that the

optimal value of m in terms of the performance when the
reference node changes is l + 3 in that the adjusted clock
of each node is expected to converge to the same time when

a new round of synchronization begins. Even in the worst
case where m = 1, D+

i can be bounded by (l + 2) ∗ D−
i .

It is further easy to prove that the synchronization er-
ror after the change of the reference node is bounded by
|m−l−3

m |∗syn err+2∗ε where syn err is the synchroniza-
tion error before the reference node changes. Combining
Lemma 1 and Lemma 2, we prove that by carefully choos-
ing m and l, the synchronization error of SSTSP can be
bounded by 2 ∗ ε, which is normally under 20μs.

In terms of traffic overhead, the number of synchroniza-
tion beacons emitted in SSTSP is the same as in TSF, while
the size of each beacon increases from 56 bytes (24 bytes
of preamble and 32 bytes of data) in TSF to 92 bytes (sup-
pose 128-bit hash values are used) in SSTSP due to the hash
values and the interval index included to secure the beacons.

Besides, each node is required to store its own hash
chain. It can either create the hash chain all at once and store
all the elements or only store the last element and compute
the new element on demand. [6] proposes a hybrid storage
efficient mechanism to reduce storage with a small recom-
putation penalty: a one-way hash chain with n elements
only requires log2(n) storage and log2(n) computation to
access an element. Each node is also required to buffer tem-
porarily the synchronization beacons received during last 2
BPs. In most cases 300−500 bytes of memory can meet the
requirement. We argue that the storage requirement as well
as the increase in the beacon size is reasonable considering
the gain in performance and security that SSTSP achieves.

In this paper, we focus on detecting malicious attacks
and preventing the network from being desynchronized by
malicious nodes using erroneous time values. However, we
do not provide recovery mechanisms when an attack is de-
tected but simply discard the erroneous beacon. Possible
solutions includes restarting the synchronization procedure
or sending an alert and eliminating the attackers from the
network. We leave it for our future work.

4 Security Analysis

The attacks to the synchronization protocols can be clas-
sified as external attacks and internal attacks based on
the information the attackers have. External attacks are
launched by external attackers who do not have the cryp-
tographic credentials (authenticated hash chain in SSTSP)
that are necessary to participate in the synchronization pro-
cedure. Internal attacks are launched by internal attack-
ers who have compromised legitimate nodes, and therefore
have access to the cryptographic credentials of those nodes.
Obviously internal attacks are far more difficult to detect
and sometimes cannot be countered by pure cryptographic
primitives.

Attackers may attack the synchronization protocols by
forging or modifying synchronization beacons. SSTSP uses
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μTESLA to ensure the integrity and authenticity of the syn-
chronization beacons. This prevents the external attackers
from modifying or forging the synchronization beacons or
impersonating the reference node. A more serious case is
when an internal attacker becomes the reference node. In
this case, the guard time check serves as a defense line to
decrease the effectiveness of the attacks such that the at-
tacker can only forge timestamps whose difference with the
receiver’s local time is within the guard time, otherwise the
beacons containing incorrect timestamps are rejected. We
argue that the impact of this attack is limited in that all nodes
are synchronized to a virtual clock that may be slightly dif-
ferent to the real clock of the reference node. However, the
internal attacker cannot desynchronize the network.

Attackers may replay the out-of-date synchronization
beacons to deliberately magnify the offset of the time de-
clared in the replayed message and actual time. As a more
delicate version of replay attacks, an attacker may firstly
jam the channel between the reference node and the victim
node A, then delay the synchronization beacons from the
reference node and relay it to A later to make A incorrectly
estimate the time of the reference node (This attack is re-
ferred to as pulse-delay attack in [8]). These attacks can be
countered in our approach by carefully choosing the guard
time parameter.

Besides the efforts to violate the proper behavior of the
synchronization procedure, attackers can generate a mas-
sive amount of messages to jam the wireless channel, im-
peding the traffic including the transmission of time syn-
chronization beacons. Jamming attacks are beyond the
scope of our discussion. Actually under jamming attacks
all communications in the network are disabled.

5 Performance Analysis

We further evaluate the performance of SSTSP by sim-
ulation. We set the relative clock frequency with respect
to real time uniformly distributed in the range of [1 −
0.01%, 1 + 0.01%]. The delay caused by hash operations is
ignored since they can be performed in the on-the-fly way.
We run the simulation for 1000s for OFDM system with bit-
rate of 54Mbps: w = 30, BP = 0.1s, l = 1, the number of
nodes N = 100 − 500 and the beacon length is 4 slot time
in TSP and 7 slot time in SSTSP. We also set the packet
error rate to be 0.01%. We let 5% of the stations leave at
BP k ∗ 200s ( k > 1 ). They return after 50s. In order to
simulate the impact of changing the reference node, we let
the reference node leave at 300s, 500s and 800s.

Fig.1 shows the maximum clock drift of TSF in the net-
work of 100 and 300 nodes. We can see the scalability prob-
lem due to the fastest node asynchronization and the beacon
collision problem discussed in Sec.2.

Fig.2 and shows the maximum clock drift of SSTSP in

Figure 1. Maximum clock difference: TSF, 300
nodes

the network of 500 nodes with m=4. We can see that SSTSP
significantly outperforms TSF by achieving a very precise
synchronization with the maximum clock difference below
10μs after the protocol stabilizes, which is among the best
results of currently proposed solutions (see [10], [9] for
their detailed results). We then run SSTSP with different
m. Tab.1 studies the maximum clock difference and the
synchronization latency. We set an initial clock offset in
(−112μs, 112μs) to each node. We adopt the industrial
expectation that the maximum clock drift should be under
25μs for an IBBS of any size. We consider the network to
be synchronized when the maximum clock difference be-
tween any two nodes is under 25μs. We can see that setting
m = 2 or 3 achieves the best tradeoff between synchroniza-
tion accuracy and latency.

Figure 2. Maximum clock difference: SSTSP,
500 nodes, m = 4

We also simulate TSF and SSTSP in a hostile environ-
ment where an attacker attacks the synchronization proto-
cols during 400s to 600s. The attacker attacks by deliber-
ately sending the synchronization beacons at each BP with-
out delay with an erroneous time value slower than its lo-
cal clock. We carefully configure the erroneous time val-
ues such that they can pass the guard time check in SSTSP.
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m Synchronization latency Synchronization error
1 0.1s 12μs
2 0.4s 7μs
3 0.6s 6μs
4 0.8s 6μs
5 1.1s 6μs

Table 1. Maximum clock difference & syn-
chronization latency Vs m

Fig.3 and Fig.4 show the synchronization error of TSF and
SSTSP under the above attack. The synchronization error
of TSF uprises to 20000μs during the attack. The attacker
always wins the contentions thus disabling the fast nodes
from emitting beacons. Other protocols improving TSF are
also vulnerable to the attack because they depend on the
fast nodes to spread the timing information. However, with
SSTSP the attacker cannot desynchronize the network even
though it manages to become the reference.

Figure 3. Maximum clock difference: TSF, 100
nodes, an attacker

Figure 4. Maximum clock difference: SSTSP,
500 nodes, an attacker

6 Conclusion

In this paper, we address the scalability and the secu-
rity problems of time synchronization protocols for IEEE
802.11 ad hoc networks. We propose SSTSP, a scalable
and secure time synchronization that significantly improves
the performance of TSF. We base our approach on one-way
Hash chain, a lightweight mechanism to ensure the authen-
ticity and the integrity of the synchronization beacons. With
SSTSP, the networks can be synchronized with the maxi-
mum error under 20μs without any uncontinuous leaps in
clocks, which is among the best results of currently pro-
posed solutions. Meanwhile, SSTSP can maintain the net-
work synchronized even in hostile environment. Our fur-
ther work includes extending SSTSP to multi-hop ad hoc
networks and proposing a recovery mechanism when a ma-
licious attack is detected.
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