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On Optimality of Myopic Policy in Opportunistic Spectrum Access:
The Case of Sensing Multiple Channels and Accessing One Channel
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Abstract—Recent works have developed a simple and robust
myopic sensing policy for multi-channel opportunistic communi-
cation systems where a secondary user (SU) can access one of N
i.i.d. Markov channels. The optimality of the myopic sensing
policy maximizing the SU’s expected accumulative reward is
established under certain conditions on channel parameters. This
paper studies the scenario where the SU, equipped with one
radio, can sense k channels but access only one channel each
time slot. The objective of the SU is to maximize its throughput
over the time horizon T . By characterizing the myopic sensing
policy in this context, we establish analytically its optimality for a
subset of specific system settings, notably the cases k = 2, T = 2
and k = N − 1 with arbitrary T . In the more generic case,
we construct counterexamples to show that the myopic sensing
policy is not optimal.

Index Terms—Opportunistic spectrum access (OSA), myopic
sensing policy, partially observed Markov decision process
(POMDP), restless multi-armed bandit problem (RMAB).

I. INTRODUCTION

THE concept of opportunistic spectrum access (OSA), first
envisioned by J. Mitola in the seminal paper [1] on the

software defined radio systems, has emerged in recent years
as a promising paradigm to enable more efficient spectrum
utilization. The basic idea of OSA is to exploit instantaneous
spectrum availability by allowing the unlicensed secondary
users (SU) to access the temporarily unused channels of the
licensed primary users (PU) in an opportunistic fashion. In
this context, a well-designed channel access policy is crucial
to achieve efficient spectrum usage.

In this paper, we consider a generic OSA scenario where
there are N slotted spectrum channels partially occupied
by the PUs. Each channel evolves as an independent and
identically distributed (i.i.d.), two-state discrete-time Markov
chain. The two states for each channel, busy (state 0) and
idle (state 1), indicate whether the channel is free for an SU
to transmit its packet on that channel at a given slot. The
state transition probabilities are given by {pij}, i, j = 0, 1.
An SU equipped with one radio seeks a sensing policy that
opportunistically exploits the temporarily unused channels to
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transmit its packets. To this end, in each slot, the SU is allowed
to sense k channels based on its prior observations and obtain
one unit as reward if one of the sensed channel is in the idle
state, indicating that the SU can effectively send one packet.
The objective of the SU is to find the optimal sensing policy
maximizing the expected reward that it can obtain over a finite
or infinite time horizon. We assume perfect sensing for the
ease of presentation in this paper.

As stated in [2], the design of the optimal sensing policy
can be formulated as a partially observable Markov decision
process (POMDP), or a restless multi-armed bandit problem
(RMAB), of which the application is far beyond the domain of
cognitive radio systems1. Unfortunately, obtaining the optimal
policy for a general POMDP or RMAB is often intractable due
to the exponential computation complexity. Hence, a natural
alternative is to seek simple myopic policies for the SU. In this
line of research, a myopic sensing strategy is developed in [4],
[5] where the SU is limited to sense one and multiple channels
at each slot, and the myopic sensing policy is proven to be
optimal when the state transitions of the Markov channels are
positively correlated, i.e., p11 ≥ p01.

In this paper, we extend the proposed myopic policy to the
scenario where the SU, equipped with one radio, can sense
k channels but can access only one channel each time slot,
and get one unit of reward if one of the sensed channels is in
the idle state. Through mathematic analysis, we show that the
generalized myopic sensing policy is optimal only for a small
subset of cases, notably the cases k = 2, T = 2 and k = N−1
with arbitrary T . In other cases, we give counterexamples to
show that the myopic sensing policy is not optimal.

It is insightful to note that the work most relevant to our
study presented in this paper is [5] where the user can sense
multiple channels and access all that are sensed idle. In our
study, at most one available channel can be used due to
system limitation. In terms of engineering implication, our
work differs from [5] in that the sensing decision serves an
immediate purpose, which is the reward in [5]; in our model
as long as there is one available channel, the sensing outcome
of the other channels serves a more long-term purpose, which
is to keep the channel state information up to date. We believe
that our results presented in this paper, together with [3],
[4], [5], lead to more in-depth understanding of the intrinsic
structure and the resulting optimality of the myopic sensing
policy and will stimulate more profound research on this topic.

1Please refer to [3], [4] for more examples where this formulation is
applicable. A summary on the related works on the analysis of this problem
using the POMDP and RMAB approaches are presented in [4]. We thus do
not provide a literature survey in this paper.
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II. PROBLEM FORMULATION

As explained in the Introduction, we are interested in a
synchronously slotted cognitive radio network where an SU,
equipped with one radio, can opportunistically sense a set N
of N i.i.d. channels partially occupied by PUs and access
only one channel. The state of each channel i in time slot
t, denoted by Si(t), is modeled by a discrete time two-state
Markov chain. At the beginning of each slot t, the SU selects
a subset A(t) of k channels to sense sequentially. If at least
one of the sensed channels is in the idle state (i.e., unoccupied
by any PU), the SU transmits its packet using its radio and
collects one unit of reward. Otherwise, the SU cannot transmit,
thus obtaining no reward.

We use similar notations as those adopted in [3], [4]. More
specifically, let ωi(t) denote the conditional probability that
Si(t) = 1 given the past actions and observations, based on
the sensing policy A(t) in slot t and the sensing result. Define
the channel belief vector Ω(t) � {ωi(t), i ∈ N}. Ω(t) can be
updated using Bayes Rule as shown in (1).

ωi(t+ 1) =

⎧⎪⎨
⎪⎩
p11, i ∈ A(t), Si(t) = 1

p01, i ∈ A(t), Si(t) = 0

τ(ωi(t)), i �∈ A(t)

, (1)

where τ(ωi(t)) � ωi(t)p11 + [1− ωi(t)]p01 characterizes the
evolution of the belief value of the non-sensed channels. It is
easy to check the following property:{

p01 ≤ τ(ωi) ≤ p11, p01 ≤ p11

p11 ≤ τ(ωi) ≤ p01, p01 > p11
. (2)

Formally, let E[Rπt(t)] denote the expected reward obtained
at slot t under a sensing policy πt sensing channels in A(t)
for slot t, we have

E[Rπt(Ω(t))] = 1−
∏

i∈A(t)

(1− ωi(t)).

The focus of our work is to study the optimal sensing policy of
the SU in order to maximize the average reward over T slots.
Formally, the optimization problem for the SU PSU , when the
SU is allowed to sense k channels given Ω(1)2, is formally
defined as follows:

PSU : max
π

1

T
E

[
T∑

t=1

Rπt(Ω(t))|Ω(1)
]
. (3)

As already shown in [3], [4], [5], the optimization problem
PSU is by nature a POMDP, or a restless multi-armed bandit
problem, of which the optimal sensing policy is in general
intractable. Hence, a natural alternative is to seek simple
myopic sensing policy, i.e., the sensing policy maximizing the
immediate reward based on current belief.

Definition 1 (Myopic Sensing). Sort {ωi(t)}Ni=1 such that
ω1(t) ≥ · · · ≥ ωN (t), the myopic policy consists of sensing
channel 1 to channel k.

The myopic sensing policy is easy to implement and maxi-
mizes the immediate payoff. In the next section, we show that

2ωi(1) of Ω(1) can be set to p01
p01+p10

if no information about the initial
system state is available.

the myopic sensing policy is optimal for the case k = N − 1,
k = 2 and T = 2 when p11 ≥ p01 and when p11 < p01
and N ≤ 4. Beyond this small subset of parameter settings,
we show that the myopic sensing policy is not optimal by
constructing several representative counterexamples.

III. OPTIMALITY OF MYOPIC SENSING POLICY

In this section, we study the optimality of the myopic
sensing policy. We structure our analysis into three cases from
the particular case to the general case: (1) T = 2, k = 2; (2)
k = N − 1; (3) the general case.

A. Optimality of myopic sensing policy when T = 2 and k = 2

This subsection is focused on the case where the SU is
allowed to sense two channels each slot and aims at maxi-
mizing the expected reward of the upcoming two slots. The
following two theorems study the optimality of the myopic
sensing policy for p11 ≥ p01 and p11 < p01, respectively.

Theorem 1. When T = 2 and k = 2, the myopic sensing
policy is optimal for p11 ≥ p01.

Proof: We sort {ωi(t)}Ni=1 at the beginning of slot t such
that ω1 ≥ · · · ≥ ωN

3. Under this notation, the expected reward
of the myopic sensing policy (i.e., sensing channels 1 and 2),
denoted as R∗, is R∗ = R∗(t) + R∗(t + 1), where R∗(t),
R∗(t+ 1) denote the expected reward of the myopic sensing
policy of slot t and t+1, respectively. R∗(t) can be calculated
as

R∗(t) = 1− (1− ω1)(1 − ω2).

We now derive R∗(t+ 1) by distinguishing four cases:

• Case 1: in slot t, both channel 1 and channel 2 are sensed
idle, which happens with probability ω1ω2. In this case,
recall (1) and (2), the myopic sensing policy for slot t+1
is to still sense channels 1 and 2, resulting an expected
reward 1− (1− p11)(1 − p11) following (1).

• Case 2: in slot t, channel 1 is sensed idle and channel 2
busy, which happens with probability ω1(1−ω2). In this
case, recall (1) and (2), the myopic sensing policy for slot
t + 1 is to sense channel 1 and channel 3, resulting an
expected reward 1− (1− p11)(1− τ(ω3)) following (1).

• Case 3: in slot t, channel 1 is sensed busy and channel
2 idle, this is the symmetrical scenario of Case 2. The
expected reward in this case is also 1 − (1 − p11)(1 −
τ(ω3)).

• Case 4: in slot t, both channel 1 and channel 2 are sensed
busy, which happens with probability (1 − ω1)(1 − ω2).
In this case, recall (1) and (2), we can further distinguish
two subcases:

– Case 4.1: N ≥ 4. In this subcase, the myopic sensing
policy for slot t + 1 is to sense channels 3 and 4,
resulting an expected reward 1−(1−τ(ω3))(1−τ(ω4))
following (1).

– Case 4.2: N = 3. In this subcase, the myopic sensing
policy for slot t+ 1 is to sense channels 3 and either

3For the simplicity of presentation, by slightly abusing the notations without
introducing ambiguity, we drop the time slot index of ωi(t).
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channel 1 or channel 2 as their expected idle proba-
bilities are both p01 following (1). In this subcase, the
resulting expected reward is 1− (1− τ(ω3))(1− p01).

Following the above analysis, we have

R∗ = 1− (1−ω1)(1−ω2) +ω1ω2[1− (1− p11)(1− p11)]

+ ω1(1− ω2)[1 − (1− p11)(1− τ(ω3))]

+ (1− ω1)ω2[1− (1− p11)(1− τ(ω3))]

+ (1− ω1)(1− ω2)[1− (1− τ(ω3))(1 − F )], (4)

where F = p01 when N = 3 and τ(ω4) when N ≥ 4.
We now show that sensing any two channels {i, j} �= {1, 2}

cannot bring the SU more reward. We proceed the proof by
distinguishing the following two cases:

• Case 1: {i, j} is partially overlapped with {1, 2}, i.e.,
{i, j}⋂{1, 2} �= ∅;

• Case 2: {i, j} is totally distinct to {1, 2}, i.e.,
{i, j}⋂{1, 2} = ∅;

Case 1. When {i, j} is partially overlapped with {1, 2},
without loss of generality, assume that i = 1 and j ≥ 3,
we can derive the upper bound of the expected reward of
sensing the channels {i, j} = {1, j}. Here by upper bound
we mean that the SU senses channel i and j in slot t and the
two channels with the largest idle probabilities for slot t+ 1,
leading to the maximal reward that the SU can achieve.

• When j = 3, following the similar analysis as that in (4),
we can get the utility upper bound R1 when sensing the
channels {i, j} = {1, 3}. By some algebraic operations,
we obtain

R∗ −R1 = (1− ω1)(ω2 − ω3)(1− (1− p11)(F − p01)),

where F is defined in (4). Noticing that p01 ≤ τ(ωi) ≤
p11, ∀i ∈ N following (1), it holds that F ≥ p01. Hence
R∗ −R1 ≥ 0 holds for j = 3.

• When j ≥ 4,we obtain, by similar induction, that R∗ −
R1 ≥ 0 holds for j ≥ 4, too.

The above results show that any other sensing policy cannot
outperform the myopic sensing policy in this case.

Case 2. When {i, j} is totally distinct to {1, 2}, implying
N ≥ 4, we can obtain the reward upper bound R2 of the
sensing policy {i, j}. It then follows R∗ − R2 ≥ 0, meaning
that sensing {i, j} cannot outperform the myopic sensing
policy in this case, either. Combining the results of both cases
completes the proof of Theorem 1.

The following theorem studies the optimality of the myopic
sensing policy when p11 < p01. The proof follows the similar
way as that of Theorem 1 and is thus omitted.

Theorem 2. When k = 2, N ≤ 4 and T = 2, the myopic
policy is optimal for p11 < p01.

B. Optimality of myopic sensing policy when k = N − 1

In this subsection, we show that the myopic sensing policy
is optimal when the SU can sense N − 1 out of N channels.

To that end, inspired by the analysis in [5], let Vt(Ω;A(t))
denote the expected accumulative reward obtained by sensing
A(t) in slot t followed by the myopic policy in subsequent
slots, and p11[n] (p01[n]) denote the vector of length n with

each element being p11 (p01). To prove the optimality of the
myopic sensing policy, we establish three lemmas regarding
Vt(Ω;A(t)).

Lemma 1. Vt(ω1, · · · , ωi, · · · , ωj, · · · , ωN ;A(t)) =
Vt(ω1, · · · , ωj, · · · , ωi, · · · , ωN ;A(t)) for ∀i, j ∈ A(t).

Proof: The proof is straightforward by noticing that both
the immediate reward and the channel belief vector Ω(t+ 1)
are unrelated with the sensing order of ωi, ωj .

Lemma 2. It holds that Vt is an affine function, i.e.,

Vt(ω1, · · · , ωi, · · · , ωN ;A(t)) = ωiVt(ω1, · · · , 1, · · · , ωN ;A(t))

+ (1 − ωi)Vt(ω1, · · · , 0, · · · , ωN ;A(t)).

Proof: We prove the lemma by induction. It can be easily
checked that the lemma holds for slot T . Assume that it holds
for slot T, · · · , t + 1, we now prove it holds for slot t. We
proceed by distinguishing the following two cases:
Case 1: i /∈ A(t). In this case we have

Vt(Ω;A(t)) =1−
∏

j∈A(t)

(1− ωj) +
∑

e∈A(t)

∏
p∈e

ωp

∏
q∈A(t)\e

(1− ωq)·

Vt+1(p11[|e|], τ(ωi), p01[N − 1− |e|]).
By induction, Vt+1(Ω(t+1)) is an affine function of τ(ωi), and
meanwhile, τ(ωi) is an affine transform of ωi, thus Vt+1(Ω(t+
1)) is an affine function of ωi. It follows that Vt(Ω(t);A(t))
is also an affine function of ωi.
Case 2: i ∈ A(t). Let j denote the channel not selected in
slot t (j /∈ A(t)), and let A′(t) = A(t) \ {i}, we have

Vt(Ω;A(t))

=1−
∏

l∈A(t)

(1 − ωl) +
∑

e∈A(t)

∏
p∈e

ωp

∏
q∈A(t)\e

(1− ωq)·

Vt+1(p11[|e|], τ(ωj), p01[N − 1− |e|])
=1−

∏
l∈A(t)

(1 − ωl) +
∑

e∈A′(t)

∏
p∈e

ωp

∏
q∈A′(t)\e

(1− ωq)·
[
ωiVt+1(p11[|e|+ 1], τ(ωj), p01[N − 2− |e|])
+ (1 − ωi)Vt+1(p11[|e|], τ(ωj), p01[N − 1− |e|])

]
Obviously, 1−∏

l∈A(t)(1−ωl) = 1−(1−ωi)
∏

l∈A′(t)(1−ωl)
is an affine function of ωi, the second term is also an affine
function of ωi by induction. Therefore, Vt(Ω(t);A(t)) is an
affine function of ωi.

Lemma 3. Let A(t) = N \ {j} and A′(t) = N \ {i} where
ωi(t) ≥ ωj(t), it holds that Vt(Ω;A(t)) ≥ Vt(Ω;A′(t)).

Proof: We prove by backward induction. It can be easily
checked that the lemma holds for slot T . Assume that it holds
for slot T, · · · , t+ 1, we now prove it holds for slot t.

In the case p11 > p01, we have

Vt(Ω;A(t)) − Vt(Ω;A′(t))
=Vt(· · · , ωi, ωj;A(t)) − Vt(· · · , ωj , ωi;A′(t))
=(ωi − ωj)

[
Vt(· · · , 1, 0;A(t))− Vt(· · · , 0, 1;A′(t))

]
=(ωi − ωj)

[
ωi

N∏
l=1, �=i,j

(1− ωl) +

N∏
l=1, �=i,j

ωl·
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[
Vt+1(p11[N − 2], p11, p01)− Vt+1(p11[N − 2], p01, p11)

]]

≥(ωi − ωj)
[
ωi

N∏
l=1, �=i,j

(1 − ωl)
]
≥ 0

where, the first inequality follows the induction, the second
equality follows Lemma 2, the third equality is due to the
fact that if any channel l (1 ≤ l ≤ N, l �= i, j) is sensed
busy (happened with 1 − ∏N

l=1, �=i,j ωl), then Vt+1(p11[N −
m], p11, p01, p01[m−2])−Vt+1(p11[N−m], p01, p11, p01[m−
2]) = 0 (m ≥ 3) according to Lemma 1.

The case of p11 < p01 can be proved similarly.

Theorem 3. The myopic policy is optimal if k = N − 1.

Proof: We prove the theorem by induction. In slot T , the
optimality of the myopic policy is obvious. Assume that the
myopic policy is also optimal for slot T−1, ..., t+1. We prove
it holds for slot t. To that end, we sort Ω(t) in the decreasing
order such that ω1 ≥ · · · ≥ ωN . To prove the optimality of my-
opic policy, we need to show that Vt(Ω;A(t)) ≥ Vt(Ω;A′(t))
where A(t) = {1, · · · , N − 1} = N \ {N} and A′(t) is any
N − 1 elements of N . Without loss of generality, we assume
A′(t) = N \ {l}. Noticing that ωl ≥ ωN , it follows from
Lemma 3 that Vt(Ω;A(t)) ≥ Vt(Ω;A′(t)).

C. Non-optimality of myopic sensing policy in general cases

In this subsection, we show that the myopic sensing policy
is not optimal for the general cases beyond those studied in
the previous subsections by constructing several representative
counterexamples.

Counterexample 1 (k = 3, T = 2, N = 6, p11 ≥ p01).
Let R∗

c1 denote the expected reward generated by the myopic
sensing policy (sensing the 3 channels with highest elements
in the believe vector at each slot, i.e., ω1, ω2, ω3). Let
Rc1 denote the expected reward from the sensing policy that
senses the 2 highest elements and the forth highest element
in the believe vector (i.e., ω1, ω2 and ω4 according to our
notation) for the current slot t and senses the highest 3
elements in the believe vector for slot t + 1. It can be
calculated that under the setting [ω1, ω2, ω3, ω4, ω5, ω6] =
[0.99, 0.5, 0.4, 0.39, 0.25, 0.25], p11 = 0.5, p01 = 0.3, it holds
that Rc1−R∗

c1 = 0.00005625> 0. The myopic sensing policy
is not optimal for this counterexample.

Counterexample 2 (k = 2, T = 3, N = 4, p11 > p01). Let
R∗

c2 denote the expected reward of the myopic sensing policy
and Rc2 that of the policy of sensing channels 1, 3 for the
first slot and the 2 channels with the largest belief values for
the following two slots. We have Rc2 − R∗

c2 > 0 with the
parameters [ω1, ω2, ω3, ω4] = [1.0, 0.8, 0.7, 0.6], p11 = 0.8,
p01 = 0.3. The myopic sensing policy is not optimal for this
counterexample, either.

Counterexample 3 (k = 2, T = 2, N = 5, p11 < p01).
Let R∗

c3 denote the expected reward of the myopic sensing

policy and Rc3 that of the policy of sensing channels 1, 3 for
the first slot and the 2 channels with the largest belief values
for the second slot. We have Rc3 − R∗

c3 = 0.0005 > 0 with
the parameters [ω1, ω2, ω3, ω4, ω5] = [1.0, 0.8, 0.7, 0.5, 0.0],

p11 = 0.3, p01 = 0.8. The myopic sensing policy is not
optimal for this counterexample, either.

To conclude this section, it is insightful to note that the
major results of this paper on the optimality of the myopic
sensing policy hinge on the fundamental trade-off between
exploration, by sensing unexplored channels in order to learn
and predict the future channel state, thus maximizing the long-
term reward, and exploitation, by accessing the channel with
the highest estimated idle probability based on currently avail-
able information (the belief vector) which greedily maximizes
the immediate reward. For a short-sighted SU (T = 1 and
T = 2), exploitation naturally dominates exploration (i.e.,
the immediate reward overweighs the potential gain in future
reward) under certain system parameter settings, resulting the
optimality of the myopic sensing policy in a subset of this
scenario. When sensing N − 1 of N , the SU can completely
obtain enough information to justify the optimality of myopic
policy. In contrast, to achieve maximal reward for T ≥ 3 and
1 < k < N − 1, the SU should strike a balance between
exploration and exploitation, and thus the myopic sensing
policy that greedily maximizes the immediate reward is no
more optimal.

IV. CONCLUSION

In this paper, we study the optimality of the myopic sensing
policy with perfect sensing in the generic scenario of oppor-
tunistic spectrum access in a multi-channel communication
system where an SU senses a subset of channels partially
occupied by licensed PUs. We show that the myopic sensing
policy is optimal only for a small subset of cases. In the
generic case, we give counterexamples to show that the
myopic sensing policy is not optimal. Due to the generic
nature of myopic policy, we believe that the results obtained
in this paper lead to more in-depth understanding of the
intrinsic structure and optimality of the myopic policy, and
will stimulate more profound research on this topic.
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