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Abstract—Cooperative multicast has been demonstrated to
achieve significant performance gain over the classic source-
destination transmission paradigm by exploiting spatial diversity
through the participation of multiple relay nodes. As a major
technical challenge, the selection of relays for a multicast session
has significant impact on the multicast performance. The chal-
lenge is even more pronounced when the number of channels
are limited as the relay selection is in this context coupled with
channel allocation. We establish an analytical framework for
joint relay selection and channel allocation problem and develop
a lexicographic max-min multicast relay selection scheme. Our
design consists of two technical steps. 1) We consider the
maximization of the minimal data rate. By decoupling relay
selection and channel allocation, the problem is transformed to a
max-min-max problem, which is difficult to solve. To make this
problem tractable, we reformulate it as a convex optimization
problem via relaxation and smoothing, and prove the asymptotic
equivalence from a geometrical perspective. 2) We propose an
adjustment algorithm based on the initial max-min solution, and
prove that the proposed scheme achieves lexicographic optimality.

I. INTRODUCTION

Multicast is a spectrum-efficient method for one-to-many
transmissions over wireless channels by enabling service
providers to send multimedia data to multiple users simultane-
ously [1]. Scalable video coding (SVC) divides a multimedia
stream into multiple layers. An SVC stream has one base
layer and multiple enhancement layers, where the base layer
provides a minimum quality of the multimedia while the
enhancement layers gradually increase the quality. To further
proliferate multimedia applications over wireless networks,
multicast with SVC plays an important role to improve
the wireless resource utilization and provide differentiated
QoS [2].

Cooperative multicast takes the merit of spatial diversity
and efficiently combats the influence of path loss and channel
fading to further enhance the multicast capacity [3][4]. In two-
hop cooperative multicast systems, the source node first trans-
mits data to relay nodes, then the users requesting the same
data can be logically grouped as multicast groups and served
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by designated relay nodes respectively. Although cooperative
multicast has the potential to increase the capacity, an improper
relay selection scheme will result in an even lower data rate.

To use in multicast with SVC scenarios, most publications
assume that the number of orthogonal channels are many
enough to avoid co-channel interference among relays [5][6].
However, few publication studies the multicast relay selection
problem with considering the limitation of the number of
channels. In some practical networks, e.g., IEEE 802.11 [7],
the number of available channels is small. Such limitation
brings fundamental challenge and complexity to the multi-
cast relay selection problem, because different relay nodes
are coupled with each other, leading to complicated relay
activation, relay selection and channel allocation problems.
Moreover, the effects of the limitation to the system capacity is
not straightforward. It is nontrivial to obtain a multicast relay
selection scheme taking the limitation into consideration.

In this paper, we develop an analytical framework for
lexicographic max-min multicast relay selection scheme with
a limited number of channels for cooperative multicast. Lexi-
cographic optimization is a well-recognized fair optimility cri-
terion [8][9] for multi-objective optimization problems. Lex-
icographic max-min optimization provides a unique solution
and outperforms all possible classic max-min solutions [10].
Specifically, we design the scheme in two steps. 1) We
consider the maximization of the minimal data rate first. By
decoupling relay selection and channel allocation, the problem
is transformed to a max-min-max problem, which is difficult
to solve. To make this problem tractable, we reformulate it as
a convex optimization problem via relaxation and smoothing,
and prove the asymptotic equivalence from a geometrical
perspective. 2) Towards lexicographic optimal solution, be-
sides the minimal rate, it is necessary to further consider the
capacities of other nodes. We propose an adjustment approach
based on the initial max-min solution, and prove that the
proposed scheme achieves lexicographic optimality. Finally,
our proposed algorithm is demonstrated by simulation results.

The rest of this paper is organized as follows. Section II
presents the system model. Section III proposes the details in
designing the relay selection algorithm. The performance of
the proposed algorithm is evaluated by simulation in Section
IV. Finally, this paper is concluded in Section V.
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Fig. 1. Cooperative Multicast System

II. SYSTEM MODEL

A. Cooperative Multicast Model

Consider a wireless cooperative multicast network, con-
sisting of a source node S = {s}, M relay nodes
R = {r1, r2, · · · , rM} and N destination nodes D =

{d1, d2, · · · , dN}. Relay nodes multicast with SVC to improve
the wireless resource utilization and provide differentiated
QoS according to the weakest channel conditions in their
corresponding multicast group. The time is slotted and it takes
two time slots to accomplish the cooperative multicast. In the
first time slot, as the blue links in Fig. 1, the source node s

broadcasts the data to all relay nodes according to the weakest
source-relay channel condition �. In the second time slot, the
relay nodes multicast the received data to all destination nodes
simultaneously, as the yellow links. As in [4], we assume that
K orthogonal channels are available in the network (e.g., using
OFDMA), denoted as C = {c1, c2, · · · , cK}.

Let G = (V,E) denote the conflict graph, where each relay
node r

i

2 V, 8r
i

is a vertex of the conflict graph, and (r

i

, r

j

) 2
E implies that r

i

and r

j

cannot transmit on the same channel
simultaneously since their transmissions interfere with each
other. If any destination node can receive the signal from both
the relay nodes r

i

and r

j

, then (r

i

, r

j

) 2 E. Taking Fig. 1
as an example, we obtain that the relay nodes r1 and r2 are
conflict, r2 and r3 are conflict while r1 and r3 are not conflict.

Decode-and-forward transmission mode is adopted in the
cooperative multicast systems. Each destination node either
receives data directly from source node s or uses cooperative
multicast with the help of only one relay node. The relay node
r

i

decodes and estimates the signal received from the source
node s and then transmits the estimated data to the destination
node d

j

. The capacity from source node s to destination node
d

j

with the assistance of relay node r

i

is

C

ij

=

W

2

min{log2(1 + �), log2(1 + �

ij

)}. (1)

where �

ij

represents the SINR between i and j.

B. Problem Formulation

Define µ : D ! R as a relay selection scheme, where
µ(d

j

) = r

i

indicates the relay node r

i

is selected to help the

transmission to d

j

via cooperative multicast, and µ(d

j

) = �

means that the source node s transmits to the destination node
d

j

directly. Note that it is possible that µ(d
i

) = µ(d

j

), d

i

6= d

j

,
which is different from the models in [4][5], where a relay
node can be assigned to assist only one destination node. The
channel allocation matrix of relay nodes is denoted as ⌧ =

{⌧
ik

}
M⇥N

, where ⌧

ik

= 1 represents that relay node r

i

is
activated using channel c

k

.
Considering the multicast nature of wireless communication

systems, a relay node r

i

multicasts data to destinations D
i

=

{d
j

|µ(d
j

) = r

i

, 8d
j

2 D} with a maximal rate of

R

i

=

X

ck2C
⌧

ik

min

dj2Di

{C
ij

}, (2)

such that each destination node in D
i

can successfully receive
and decode the data.

Our goal is to design a lexicographic max-min relay selec-
tion scheme, in which the lexicographic optimal rate vector is
no lexicographically less than that of any other scheme.

Definition 1 (Lexicographic Optimality). Let R =

(⌫1, ⌫2, ..., ⌫N ) be an achievable rate vector which is sorted
in non-descending order, where ⌫ represents the received data
rate of destination nodes. Any two relay selection schemes
µ and µ

0 resulting in two such vectors R and R0 have the
following relationships:

• If ⌫
i

= ⌫

0
i

for any i = 1, 2, ..., N , then R is lexicograph-
ically equal to R0.

• If there exist a prefix (⌫1, ⌫2, ...⌫i) of R and a prefix
(⌫

0
1, ⌫

0
2, ...⌫

0
i

) of R0 such that ⌫
i

> ⌫

0
i

, and ⌫

j

= ⌫

0
j

for
1  j  i� 1. Then R is lexicographically greater than
R0.

R is lexicographically optimal if it is no lexicographically less
than all other feasible rate vectors.

The received data rates for destination nodes are lexi-
cographically optimized by determining which relay nodes
should be activated and which destination nodes these relay
nodes forward data to. Based on the definition of lexicographic
optimality in Definition 1, we can formulate the lexicographic
max-min problem as follows.

lexmax

⌧ ,µ
R, (3)

s.t.

X

ck2C
⌧

ik

 1, (4)

⌧

ik

+ ⌧

lk

 1, 8(r
i

, r

l

) 2 E, (5)

⌧

ik

2 {0, 1}, (6)

where lexmax indicates the operation of lexicographic maxi-
mization. Constraint (4) indicates that a relay node can use at
most one channel which depends on the fact that usually only
one radio is deployed in a device. Constraint (5) represents
that if two relay nodes r

i

and r

l

interfere with each other, they
must engage different channels to avoid cross-channel inter-
ference. The optimization problem in Eq. (3) lexicographically
maximizes the rate vector by determining the relay selection
scheme µ and channel allocation scheme ⌧ .
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III. ALGORITHM DESIGN

In this section, we propose an analytical framework for
lexicographic max-min multicast relay selection scheme for
cooperative multicast with a limited number of channels. To
overcome the coupling between relay selection and channel
allocation, we address the problem in two steps:

• Consider only the minimal data rate and solve the max-
min problem to obtain an initial relay selection solution.

• Optimize the rates of other nodes by further adjusting the
relay selection to achieve lexicographic optimality.

A. Decoupling in Max-Min Subproblem

Maximizing the minimal data rate among the destination
nodes is equivalent to maximizing the minimal multicast rate
among the relay nodes according to Eq. (2), we can formulate
the max-min subproblem from Eq. (3)-(6) as follows:

max

⌧ ,µ
min

i

R

i

s.t. (4)(5)(6).
(7)

This max-min problem involves coupled relay selection
scheme µ and channel allocation scheme ⌧ . To decouple these
two aspects, we exploit the property of the max-min problem
and suggest a capacity-based relay selection scheme which is
independent to channel allocation in the following lemma.

Lemma 1 (Capacity-Based Relay Selection). The max-min
solution of the cooperative multicast system is achievable only
by adjusting channel allocation if each destination node d

j

joins the multicast group of the relay r

i

which has the largest
channel capacity C

ij

, i.e.,

max

⌧ ,µ
min

i

R

i

= max

⌧
min

i

R

i

(µ̂), (8)

where
µ̂(d

j

) = arg max

ri2R
{C

ij

}. (9)

To decouple relay selection and channel allocation in Eq.
(7), we adopt the relay selection scheme µ̂ in Lemma 1 and
transform the max-min problem in Eq. (7) to a max-min-max
problem which is a channel allocation problem only.

max

⌧
min

j

max

i

X

ck2C
⌧

ik

C

ij

s.t. (4)(5)(6).
(10)

B. Tractable Reformulation for Channel Allocation

Due to the non-smooth structure of max-min-max function,
the min-max-min problem in Eq. (10) is very difficult to solve
both in theoretical analysis and in numerical calculation [11].
To solve it directly, the result comes close to the exhausting
method, which faces the curse of dimensionality[12]. There-
fore, we transform the min-max-min problem into a convex
one by relaxation and smoothing techniques, and further prove
that the relaxation and smoothing are tight.

The max-min-max problem is a combinational optimization
problem, which is not differentiable due to constraint (6),
which should be relaxed to obtain the optimal solution,

⌧

ik

2 [0, 1], (11)

so that the objective in Eq. (10) is a continuous function of ⌧ .
With the above relaxation, the max-min-max problem is

continuous but still undifferentiated, we further adopt a
smoothing technique to approximate the original max-min-
max optimization problem, such that the transformed approx-
imation problem is differentiable about ⌧ .

Adopting the smoothing technique in [13], the objective of
the max-min-max problem in Eq. (10) can be approximated
by

1

✏

ln

 
NX

i=1

1

P
M

j=1 e
✏

PK
k=1 ⌧ikCij

!
+

U

✏

, (12)

where ✏ is the approximation parameter and U is a constant.
For given U and ✏ > 0, consider the exponential of objective

function in Eq. (12), the optimality is preserved according
to the monotone property of exponential function [14]. The
optimization problem in Eq. (10) can be transformed to

min

⌧

NX

i=1

1

P
M

j=1 e
✏

PK
k=1 ⌧ikCij

s.t. (4)(5)(11).

(13)

Theorem 1 (Convexity of Problem (13)). The optimization
problem in Eq. (13) is convex.

Proof: Please refer to Appendix A.

C. Geometrical Analysis

To obtain some critical insight of the convex problem, we
consider the relay selection optimization problem in Eq. (13)
as a geometrical problem which investigates the relationship
of positions of a line and a few points. On one hand, such a
method decreases the computational complexity. On the other
hand, we are managed to prove that the relaxation is tight by
adopting geometrical analysis.

We first consider the optimality condition of the problem
in Eq. (13). Adopting the Karush-Kuhn-Tucker (KKT) condi-
tion [14], the problem can be transformed to

minP =
NX

i=1

1
PM

j=1 e
✏
PL

k=1 ⌧ikCij
+

NX

i=1

�i

 
KX

k=1

⌧ik � 1

!

+
KX

k=1

NX

i=1

X

j2Ei

�ijk(⌧ik + ⌧jk � 1)

s.t. �i

 
KX

k=1

⌧ik � 1

!
= 0

�ijk(⌧ik + ⌧jk � 1) = 0,

(14)

where E
i

= {r
j

|(r
i

, r

j

) 2 E, 8r
j

2 R} represents the set of
the conflict relay nodes of r

i

, �
i

is the Lagrangian multiplier
for constraint Eq. (4) and �

ijk

is the Lagrangian multiplier for
constraint Eq. (5).
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The first derivative of P with respect to ⌧ can be trans-
formed into

P
0⇤ =

@P
@⌧in

MX

j=1

e✏
PK

k=1 ⌧ikCij

=�
MX

j=1

✏Cij +

0

@�i +
X

j2Ei

�ijn

1

A
MX

j=1

e✏
PK

k=1 ⌧ikCij .

(15)

Since
P

M

j=1 e
✏

PK
k=1 ⌧ikCij

> 0, the optimality conditions does
not change for P

0⇤.
To analyze the first derivative in Eq. (15), we rewrite

the optimality condition for the problem in Eq. (15) as an
expression of a line in two-dimensional space [15],

y

in

= A

i

x

in

, (16)

where x

in

= �

i

+

P
j2Ei

�

ijn

, A
i

=

P
M

j=1 e
✏

PK
k=1 ⌧ikCij and

y

in

=

P
M

j=1 ✏Cij

.
From a geometrical perspective, each relay r

i

using channel
c

n

has a corresponding point S

in

= (x

in

, y

in

) in the two
dimensional space. Define S

i

as the set of all points S

in

, 8n.
For given �, � and relay r

i

, the coordinates x

in

and y

in

are
determinate. In such a case, the problem is transformed to a
geometrical one to find the slope of the line Y

i

= A

i

X

i

by
adjusting ⌧ to let some of the points S

in

on the line and all
the other points under the line. Accordingly, the following rule
can be determined

⌧

ik

= 1, 9A
i

=

y

ik

x

ik

⌧

ik

= 0, 8A
i

>

y

ik

x

ik

,

(17)

where k = argmax

j

x

ij

. To determine the tangency of the
line, as the example in Fig. 2, the blue points belong to
relay node r

i

, the blue region represents the feasible region of
the tangency A

i

, and there exists a tangency A

i

that passes
through the right-most point (x

i3, yi3) in the region. Thus,
relay node r

i

is activated to transmit with a channel 3. While
there does not exist a tangency A

j

that passes through the left-
most point (x

j1, yj1). As a result, relay node r

j

is deactivated.
In this way, we obtain the optimal conditions for the

reformulated convex optimization problem in Eq. (13). Besides
providing the optimal conditions, we further prove that the
relaxation and smoothing in the tractable reformulation step
are asymptotically tight in the following theorem.

Theorem 2 (Asymptotic Equivalence). With sufficiently large
smoothing parameter ✏, the solution of the convex optimization
problem in Eq. (13) is asymptotically optimal for the original
max-min-max problem in Eq. (10).

Proof: For optimality, for each relay node r

i

, only at most
one channel it can use to transmit, leading to the relaxation
being tight. A similar proof can be found in [15] that a line
has probability 0 to go through all the 3 points. Therefore, the
relaxation of ⌧ in Eq. (11) is tight.

According to [13], with sufficiently large smoothing param-
eter ✏, the value of the approximating function converges to a
stationary point, such that the smoothing in Eq. (12) is tight.

Relay i activated

x

y

Base point

Relay j deactivated

knyy ikin ,,� 

knyy jkjn ,,� 

1jx 3jx 2jx3ix 2ix 1ix

Fig. 2. Relationship between lines and points

Since the relaxation of ⌧ (t) in Eq. (11) and the smoothing
in Eq. (12) are tight, the optimization problem in Eq. (12) and
the one in Eq. (10) are asymptotically equivalent.

D. Proposed Algorithm

Towards lexicographic optimality, we proposed a relay
selection scheme µ

⇤ based on the initial relay selection scheme
µ̂ in Lemma 1 and the channel allocation ⌧ . Even though µ̂

achieves max-min optimal, a destination node may actually
receives a higher data rate from another relay node.

We first divide the destination nodes into two categories, i.e.,
the node with the weakest channel quality in each multicast
group and other destination nodes. Denote the set of the
weakest node in each multicast group as J ,

J = {d(r
i

)|d(r
i

) = arg min

dj2Di

{C
ij

}, 8r
i

2 R}, (18)

where D
i

= {d
j

|µ(d
j

) = r

i

, 8d
j

2 D} and d(r

i

) is the
destination node which has the weakest channel quality in the
multicast group of relay r

i

.
For the destination node d

j

2 J ,

µ

⇤
(d

j

) = µ̂(d

j

) = arg max

ri2R
{C

ij

}. (19)

For the destination node d

j

2 D/J ,

µ

⇤
(d

j

) = arg max

ri2R
{min{C

ij

, R

i

}}, (20)

where R

i

is the multicast rate of relay r

i

with the initial relay
selection scheme µ̂ and the channel allocation ⌧ obtained in
the first step.

Remark 1 (Interpretation of Relay Selection Scheme). The
destination nodes in J suffer from bad channel conditions
and limit the multicast rate of each relay node. As for the
nodes in J , their relay selection scheme stay the same in µ

⇤

as in µ̂. For other destination nodes, they select a relay that
reaches their maximal possible data rate they can receive.

Theorem 3 (Lexicographic Optimality). The proposed relay
selection scheme µ

⇤ is lexicographically optimal.

Proof: Please refer to Appendix B.
In the pseudo-codes, Lines 1 initializes the system param-

eters, Line 3 calculates the potential transmission rate, Line
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TABLE I
RATE VECTOR R

1 2 3 4 5 6 7 8 9 10
Proposed 12.7496 12.7496 12.7496 14.7067 14.7067 15.8894 15.8894 15.8894 17.2415 17.2415
Random 12.2972 12.2972 12.2972 14.2155 14.2155 14.2155 15.0306 15.0306 18.2415 18.2415
EPSA 11.5488 11.5488 11.5488 13.4623 18.0838 18.0838 18.0838 20.2415 20.2415 20.2415

Max-Min 12.7496 12.7496 12.7496 12.7496 14.7067 14.7067 14.7067 15.8894 15.8894 17.2415

Algorithm 1 Lexicographic Max-Min Relay Selection
1: Initialize parameters M

J

, ✏,D,S,R, C.
2: loop
3: Calculate C

ij

, 8i, j according to Eq. (1)
4: Obtain the neighborhood graph G, E

i

, 8i
5: Each destination node selects a relay node according to

Eq. (9)
6: Adjust � and � by augmented lagrange method
7: for i = 1 : N do
8: for k = 1 : K do
9: if 9A

i

=

yik

xik
and relay r

i

does not have a channel
then

10: ⌧

ik

= 1

11: end if
12: end for
13: end for
14: end loop until the approximation gap is within a given

threshold by updating the approximation parameter ✏
15: Each destination node selects a relay node according to

Eq. (19) and Eq. (20)
16: The multicast rate of each relay node is determined

according to Eq. (2)

2 4 6 8 10

6

8

10

12

14

16

18

20

22

24

 

 

M
in
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Number of Channels
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 Random
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Fig. 3. Minimal capacity varying number of channels

4 obtains the topology, Line 5 adopts the max-min relay
selection scheme, Lines 6-14 determine the channel allocation
according to the proposed algorithm, Line 15 deploys the lexi-
cographic optimal relay selection scheme, Line 16 determines
the scheduled transmission rate.

IV. SIMULATION

In the simulation, destination nodes are randomly distributed
in a circular field with a radius of 50 and relay nodes are
randomly distributed in a circular field with a radius of 10,
and the source node is located at the center. Following the
simulation parameter settings in [5], we set the bandwidth W

as 22 MHz for all channels. The transmission power is the

same for each node, i.e., P
s

= P

ri = 1 for source node and
relay nodes. For the transmission model, we assume that the
path loss exponent ↵ = 4 and the noise power N0 = 10

�10.
For performance comparison with the proposed lexico-

graphic max-min scheme µ

⇤, three baseline schemes are
adopted.

• Random: Relay nodes are activated randomly, destination
nodes choose the relay with the largest channel quality.

• EPSA [17]: The resources are allocated to the multicast
groups with large potential to maximize total capacity.

• Max-Min: The max-min scheme µ̂ in Lemma 1.
For each setting, we randomly generated 10 instances and
obtain the average results.

In Fig. 3, there are 10 relay nodes and 30 destination
nodes. The performance of the proposed scheme and Max-Min
scheme is the same. The proposed scheme outperforms EPSA
and random schemes. It is observed that the performance
increment is smaller when the number of the channels is larger
than 7, because when 7 channels are available, through proper
channel allocation, nearly all relay nodes are all activated for
transmission.

Besides the minimal capacity, we further analyze the data
rates of other destination nodes. Table I provides the rate
vector R for these three schemes in a scenario with 10
destination nodes and 10 relay nodes with 3 available channels.
It can be found that the rate vector of the proposed scheme is
lexicographically greater than those of three baseline schemes,
which provides relatively homogeneous service quality to all
users in the cooperative multicast system.

V. CONCLUSION

In this paper, we construct an analytical framework for
lexicographic max-min multicast relay selection for cooper-
ative multicast with a limited number of channels. Specifi-
cally, by decoupling relay selection and channel allocation,
the problem is transformed to a max-min-max problem. To
make this problem tractable, we reformulate it via relaxation
and smoothing, and prove the asymptotic equivalence from a
geometrical perspective. We propose an adjustment algorithm
based on the initial max-min solution, and prove that the
proposed scheme achieves lexicographic optimality.

APPENDIX A
PROOF OF THEOREM 1

Denote the objective function in Eq. (13) as f(⌧ ). To
analyze the convexity of f(⌧ ), we take the first derivative
of f(⌧ ) with respect to ⌧

ik

as
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@f(⌧ )

@⌧

ln

= � 1

P
M

j=1 e
✏

PL
k=1 ⌧lkvlj

MX

j=1

✏v

lj

< 0, (21)

which is a strictly decreasing function of ⌧ .
We derive the hessian of f(⌧ ) as follows

0

BBB@

A1 0 0 0

0 A2 0 0

...
...

. . .
...

0 0 0 A

N

1

CCCA
. (22)

where

A

i

=

0

B@
a

i

. . . a

i

...
. . .

...
a

i

. . . a

i

1

CA . (23)

and a

l

=

�
1

PM
j=1 e

✏(
PL

k=1
⌧lkvlj)

�2.

Note that the hessian of f(⌧ ) is a symmetric matrix. Each
sub-block of the hessian of f(⌧ ) is also a symmetric matrix.
It can be derived according to [16] that

E = (M, 0, · · · , 0), (24)

where E is the eigenvector of the matrix in Eq. (23).
Therefore, the eigenvalue of the hessian of f(⌧ ) is non-

negative. According to [14] [16], the hessian is semi-positive
definite, and f(⌧ ) is convex with respect to ⌧ . Since all the
constraints in Eq. (13) are linear, we obtain the conclusion that
the problem in Eq. (13) is a convex optimization problem.

APPENDIX B
PROOF OF THEOREM 3

Reasoning by contradiction, suppose there exist a relay
selection scheme µ

0 that lexicographically greater than µ

⇤.
According to Definition 1, 9i, ⌫0

i

> ⌫

⇤
i

and ⌫

0
k

= ⌫

⇤
k

, 8k < i.
First let us check whether µ

0
(d

j

) = µ

⇤
(d

j

), 8d
j

2 J .
If not, then 9d

j

2 J , ⌫

0
j

< ⌫

⇤
j

, because according to relay
selection scheme µ

⇤, if 9d
j

2 J , µ

0
(d

j

) 6= r

l

= µ

⇤
(d

j

), then
destination node d

j

must receive a lower data rate ⌫

0
j

< ⌫

⇤
j

,
since relay node r

l

holds the best channel condition and
provides the maximal data rate for destination node d

j

.
• Since the weakest link of r

l

is removed, the multicast
rate of r

l

can be larger R0
l

> R

⇤
l

.
• As for users d

q

2 D/J , their received data rate could
change as follows

⌫

0
q

= ⌫

⇤
q

, if⌫

⇤
q

< R

⇤
l

⌫

0
q

� ⌫

⇤
q

, ifR

⇤
l

 ⌫

⇤
q

 R

0
l

⌫

0
q

= ⌫

⇤
q

, if⌫

⇤
q

> R

0
l

.

(25)

The first line of Eq. (25) means that, since destination nodes
in D/J already select the relay node which provides the
maximal possible data rate that one can receive, the increment
of the multicast rate of r

l

will not affect their choice. The
second line of Eq. (25) means that destination nodes which
select r

l

or could receive higher data rate from r

l

might benefit
from µ

0. The third line of Eq. (25) means that destination nodes

who receive higher data rate is not affected by µ

0. Assume that
the position of d

j

in R0 is p, satisfying ⌫

0
p�1  ⌫

0
p

< ⌫

0
p+1.

According to Eq. (25), the top p�1 items of both R⇤ and R0

are the same. Therefore, ⌫⇤
l

= ⌫

0
l

, 8l  p � 1. Because d

j

is
inserted to the position p in R0, the item of the position p+1

in R0 equals to the item of the position p in R⇤, ⌫⇤
p

= ⌫

0
p+1.

Therefore, ⌫⇤
p

> ⌫

0
p

, which is a contradiction.
If it is positive, then ⌫

0
j

 ⌫

⇤
j

, 8d
j

2 D, because the pro-
posed relay selection scheme µ

⇤ selects the relay node which
provides the maximal possible data rate that one can receive
for the rest of the destination nodes. Thus, it is not possible
when µ

0
(d

j

) = µ

⇤
(d

j

), 8d
j

2 J , that ⌫0
j

> ⌫

⇤
j

, 9d
j

2 D/J .
Therefore, there does not exist a relay selection scheme

µ

0 that lexicographically greater than µ

⇤, which proves µ

⇤

achieves lexicographic optimality.
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