Power-Aware Population Protocols

Chuan Xu1 Janna Burman1 Joffroy Beauquier1

1LRI, Université Paris Sud, CNRS, Université Paris Saclay, France

June 6, 2017
Overview

1. Network model (Population protocols) and motivation
2. Energy model
Overview

1. Network model (Population protocols) and motivation

2. Energy model

3. Data collection in Population Protocols
 - Analytical results on energy complexity for a known time optimal protocol and a new power-aware protocol
 - Lower bounds on energy complexity
Population Protocols (PP) [Angluin et al, PODC ’04]:

1. Finite state agents (sensors): Anonymous, uniformly bounded memory
2. Interaction in pairs:

\[p \xleftrightarrow{} q \rightarrow p' \xleftrightarrow{} q' \]

3. Time: the number of interactions
Population Protocols (PP) [Angluin et al, PODC ’04]:

1. Finite state agents (sensors): Anonymous, uniformly bounded memory
2. Interaction in pairs:
3. Time: the number of interactions

Examples of passively Mobile Sensor Network
- ZebraNet (wildlife tracking)
- EMMA (pollution monitoring)
Cover Time Property in PP [Beauquier et al, PODC ’10]:

Definition of cover time \((cv_i) \)

In any \(cv_i \) consecutive interactions, an agent \(i \) meets every other agent at least once.
Cover Time Property in PP [Beauquier et al, PODC ’10]:

Definition of cover time (c_{vi})

In any c_{vi} consecutive interactions, an agent i meets every other agent at least once.

$c_{Vi} < c_{Vj}$

Fastest agent:

$c_{v_{min}} = \min\{c_{vi}\}$

Worst case complexity

Faster Slower
Sleep

\[E_{slp} \]
Energy Model

\[E_{\text{wkp}} = E_{\text{slp}} + E_{\text{sw}} + E_{\text{trans}} \]
Energy Model

$E_{wkp} = E_{slp} + E_{sw} + E_{trans}$
Energy Model

\[E_{\text{wkp}} = E_{\text{slp}} + E_{\text{sw}} + E_{\text{trans}} \]

Sleep Terminated

Power-Aware Population Protocols
Energy complexity measure

$E_{s_{\text{max}}}$: The maximum energy spent by an agent in the worst case
Data Collection

- Time optimal protocol [Beauquier et al, PODC'10]
- Power-aware protocol

Power-Aware Population Protocols

6/11
Data Collection

- Time optimal protocol [Beauquier et al, PODC’10]
- Power-aware protocol
If $cv_i < cv_j \land mark_i := 1$
Protocol I: TTFM [Beauquier et al, PODC’10]

If \(cv_i < cv_j \land mark_i := 1 \)

Theorem

An upper bound on the maximum energy spent by an agent is

\[
(2cv_{\min}\left\lceil \frac{|NF|}{M \times |F|} \right\rceil - 1)E_{wkp},
\]

where \(M \) is the size of memory, \(F \) is the set of fastest agents, and \(NF \) is the set of non-fastest agents.
$mark_i := 1$
Power-Aware Protocol II: Energy-Balanced TTFM(\(\lambda\))

\[P_i = E_0 \]

\[E_0 \lambda : E_0 \lambda \]

TTFM

i:

j:
Power-Aware Protocol II: Energy-Balanced TTFM(λ)

i: $\frac{E_0}{\lambda}$

j:

E_0^λ
Power-Aware Protocol II: Energy-Balanced TTFM(\(\lambda\))

\[E_0 : \frac{E_0}{\lambda} : j \]

\[i \rightarrow j \]
Power-Aware Protocol II: Energy-Balanced TTFM(\(\lambda\))

Parameter: \(\lambda \in (0, 1]\)

1. \(\frac{E_0}{\lambda}\) is too small: \(EB-TTFM = TTFM\)
2. \(\frac{E_0}{\lambda}\) is too large: Values are transferred to slowest agents
Power-Aware Protocol II: Energy-Balanced TTFM(\(\lambda\))

\[i := 1 \]

\[E_0 : \]

When \(\left(\frac{\theta}{1-(1-\theta)\lceil \frac{|F|}{2} \rceil} \right)cv_{min}E_{wkp} \leq \frac{\lambda-1}{\lambda} E_0 \leq (2cv_{min} - 1)E_{wkp}, \]

Theorem

An upper bound on the maximum energy spent by an agent is

\[
\frac{\lambda-1}{\lambda} E_0 + (1 + \frac{1}{2-\theta})cv_{min}E_{wkp} = \Theta(cv_{min}E_{wkp})
\]

\(\theta = \frac{E_{slp}}{E_{wkp}}, \ |F|: \) number of fastest agents, \(cv_{min}: \) smallest cover time
\[\tilde{\lambda} = \frac{E_0}{(E_0 - \left(\frac{\theta}{1 - (1 - \theta) \lceil |F| / 2 \rceil}\right)c_{\text{min}}E_{wkp})} \]

\[E_{\text{max}}(EB-TTFM(\tilde{\lambda})) = (1 + \frac{\theta}{1 - (1 - \theta) \lceil |F| / 2 \rceil} + \frac{1}{2 - \theta})c_{\text{min}}E_{wkp} \]

\[E_{\text{max}}(TTFM) = (2c_{\text{min}} - 1)E_{wkp} \]

(\(\theta = \frac{E_{\text{slp}}}{E_{wkp}} \), \(c_{\text{min}} \): smallest cover time, \(|F| \): number of fastest agents)
Comparison of energy performances

For $|F| \geq 10$ and $\theta \leq (3 - \sqrt{5})/2 \approx 0.38$, $EB\text{-}TTFM(\tilde{\lambda})$ outperforms $TTFM$. ($\theta = \frac{E_{slp}}{E_{wkp}}$, $|F|$: the number of fastest agents)
Lower Bound on energy complexity in population protocols

Theorem

The energy spent by an agent in the worst case is at least
\[\max\left\{ \frac{E_{s_{\text{max}}}(TTFM)}{\left\lceil \frac{|F|}{2} \right\rceil}, cv_{\text{min}}E_{\text{wkp}} \right\}. \]

Corollary

When \(|F| \leq 2\), TTFM is energy-optimal.

Corollary

EB-TTFM(\(\tilde{\lambda}\)) reaches the lower bound asymptotically.
Thanks for your attention!