Overview

1. Network model and motivation
2. Non uniformly random scheduler
3. Data collection in Population Protocols
Overview

1. Network model and motivation
2. Non uniformly random scheduler
3. Data collection in Population Protocols
 - Lower bounds on expected convergence time
 - Analytical results on time complexities of data collection protocols
 - Energy-efficient protocol
 - Numerical results
Population Protocols

1. Anonymous agents
2. Interaction in pairs: $p \rightarrow q$
3. Asymmetric: initiator, responder
4. Scheduler: order of interaction
Population Protocols

1. Anonymous agents
2. Interaction in pairs:
3. Asymmetric: initiator, responder
4. Scheduler: order of interaction

Examples of passively Mobile Sensor Network
- ZebraNet (wildlife tracking)
- EMMA (pollution monitoring)
Enhanced Population Protocols: Non uniformly random scheduler $S(P)$, $P \in R^{n \times n}$

- Uniform random scheduler: $P_{i,j} = 1/n(n-1)$
- Non-uniform random scheduler: general probability distribution $P_{i,j}$
- Motivation: differing mobility patterns, differing speeds
- Every agent starts with an initial value.
- Data collection is complete when the base station has all values.
- Values can be transferred from agent to agent.
Lower bounds on the expected convergence time

Theorem

The expected convergence time of any protocol solving data collection with non-uniformly random scheduler is \(\Omega(n \log n) \).

Theorem

The expected convergence time of any protocol solving data collection is \(\Omega(\max_i \frac{1}{\sum_{j=1}^n (P_{i,j} + P_{j,i})}) \).
TTF Protocol: Transfer to the Faster [Beauquier et al, PODC’10]

Transfer all values from j to i if i is faster than j
TTF Protocol: Transfer to the Faster [Beauquier et al, PODC’10]

Transfer all values from j to i if i is faster than j

- faster = smaller cover time (= time to meet all agents)
TTF Protocol: Transfer to the Faster [Beauquier et al, PODC’10]

Transfer all values from j to i if i is faster than j

- faster = smaller cover time (= time to meet all agents)
- define $x_i(t) =$ number of data held by agent i at step t
TTF Protocol: Transfer to the Faster [Beauquier et al, PODC’10]

Transfer all values from \(j \) to \(i \) if \(i \) is faster than \(j \)

\begin{align*}
\text{faster} &= \text{smaller cover time} \ (= \text{time to meet all agents}) \\
\text{define } x_i(t) &= \text{number of data held by agent } i \text{ at step } t \\
\text{then } x(t) &= W(t) \cdot x(t-1) \text{ where }
\end{align*}

\[
W(t) = \begin{pmatrix}
1 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & 1 & \ddots & 0 \\
0 & 0 & \ldots & 0 & \ldots & 1
\end{pmatrix}
\]
TTF Protocol

Transfer all values from \(j \) to \(i \) if \(i \) is faster than \(j \)

\[
\text{then } x(t) = W(t) \cdots W(1) \cdot x(0)
\]

• convergence speed of matrix product \(W(t) \cdots W(1) \) depends on the second eigenvalues of the \(W(\tau) \)

Theorem

The expected convergence time of the TTF protocol is

\[
O \left(\frac{n \log n}{\log \lambda_2(\tilde{W})^{-1}} \right)
\]

where \(\tilde{W} \) is the expected value w.r.t. \(P_{i,j} \) of a matrix associated to the matrices \(W(\tau) \).
TTF Protocol

- this upper bound on the data collection time of TTF is quite loose
- however,
this upper bound on the data collection time of TTF is quite loose

however,
During an interaction as initiator, do nothing with probability p_i, otherwise execute TTF.
During an interaction as initiator, do nothing with probability p_i, otherwise execute TTF.

Decide whether to execute TTF

with probability p_i
During an interaction as initiator, do nothing with probability p_i, otherwise execute TTF.

Transfer if i is faster than j
During an interaction as initiator, do nothing with probability p_i, otherwise execute TTF.
Lazy TTF (p)

During an interaction as initiator, do nothing with probability p_i, otherwise execute TTF.

When p is a vector of all ones, lazy TTF(p) = TTF

When p is a vector of all zeros, infinite time but zero energy consumption

Energy/Time trade off
Lazy TTF (p)

During an interaction as initiator, do nothing with probability p_i, otherwise execute TTF.

Theorem

The expected convergence time of the TTF protocol is

$$O \left(\frac{n \log n}{\log \lambda_2(\tilde{W}_p)^{-1}} \right).$$
Lazy TTF (p)

During an interaction as initiator, do nothing with probability p_i, otherwise execute TTF.

Theorem

The expected convergence time of the TTF protocol is

$$O \left(\frac{n \log n}{\log \lambda_2(\tilde{W}_p)^{-1}} \right).$$

Choose p: optimize the upper bound on the gathering time.
\[OP_1 : \min_{p \in \mathbb{R}^n} \lambda_2(\tilde{W}) \]

subject to \(s \).

\(Eq. \ (1) \)

\[0 \leq p_i \leq 1 \quad \forall i \in \{1, \ldots, n\} \]

equivalent to

\[OP_2(\text{convex}) : \min_{p \in \mathbb{R}^n, s} \quad s \]

subject to

\[sl - \tilde{W} \succeq 0 \]

\(Eq. \ (1) \)

\[0 \leq p_i \leq 1 \quad \forall i \in \{1, \ldots, n\} \]

Solving \(OP_2 \Rightarrow \hat{p} \).
For small systems, the expected convergence time $T_E(TTF)$ and $T_E(lazy\ TTF(\hat{\rho}))$ can be calculated directly via the Markov chain.

\[\mathcal{E}: \text{Total energy consumption of a protocol} \]

\[
\mathcal{E}(TTF) = 2T_E(TTF) \cdot \mathcal{E}_{wkp} \\
\mathcal{E}(\text{lazyTTF}(\hat{\rho})) = 2T_E(\text{lazyTTF}(\hat{\rho})) \times \sum_i \sum_j (P_{i,j}\hat{p}_i + P_{j,i}\hat{p}_j) \cdot \mathcal{E}_{wkp}.
\]
For small systems, the expected convergence time $T_E(TTF)$ and $T_E(lazy\ TTF(\hat{p}))$ can be calculated directly via the Markov chain.

E: Total energy consumption of a protocol

\[
E(TTF) = 2 \cdot T_E(TTF) \cdot E_{wkp}
\]
\[
E(lazy\ TTF(\hat{p})) = 2 \cdot T_E(lazy\ TTF(\hat{p})) \times \sum_i \sum_j (P_{i,j} \hat{p}_i + P_{j,i} \hat{p}_j) \cdot E_{wkp}.
\]

Each system of size n, $S(n)$: 10000 schedulers randomly generated

\[
Gap(T_E, n) = \left(\sum_{s \in S(n)} \frac{T_E^s(lazy\ TTF(\hat{p}^s)) - T_E^s(TTF)}{T_E^s(TTF)} \right) / 10000
\]

and

\[
Gap(E, n) = \left(\sum_{s \in S(n)} \frac{E^s(lazy\ TTF(\hat{p}^s)) - E^s(TTF)}{E^s(TTF)} \right) / 10000.
\]
<table>
<thead>
<tr>
<th>Size n</th>
<th>$\text{Gap}(T_E, n)$</th>
<th>$\text{Gap}(E, n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>11.60%</td>
<td>-15.32%</td>
</tr>
<tr>
<td>5</td>
<td>17.10%</td>
<td>-23.60%</td>
</tr>
<tr>
<td>6</td>
<td>22.04%</td>
<td>-30.79%</td>
</tr>
<tr>
<td>7</td>
<td>26.31%</td>
<td>-36.99%</td>
</tr>
<tr>
<td>8</td>
<td>27.41%</td>
<td>-39.07%</td>
</tr>
</tbody>
</table>

Table: Gaps on time and energy.
Conclusions:

- Initiate the study of non uniformly random scheduler in the context of population protocols
Conclusions:

- Initiate the study of non uniformly random scheduler in the context of population protocols
- Give explicit lower bounds on expected convergence time of any data collection protocol
- Give analytical results for two distributed data collection protocols (a known TTF and a new parametrized energy efficient protocol)
Conclusions:

- Initiate the study of non uniformly random scheduler in the context of population protocols
- Give explicit lower bounds on expected convergence time of any data collection protocol
- Give analytical results for two distributed data collection protocols (a known TTF and a new parametrized energy efficient protocol)
- Present numerical results to show the efficiency of the new protocol
Thanks for your attention!