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Stéphane Lescuyer1,2 and Sylvain Conchon2,1

1 INRIA Saclay-̂Ile de France, ProVal, Orsay F-91893
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Abstract. We present a Coq formalization of an algorithm deciding
the satisfiability of propositional formulas (SAT). This SAT solver is
described as a set of inference rules in a manner that is independent of the
actual representation of propositional variables and formulas. We prove
soundness and completeness for this system, and instantiate our solver
directly on the propositional fragment of Coq’s logic in order to obtain a
fully reflexive tactic. Such a tactic represents a first and important step
towards our ultimate goal of embedding an automated theorem prover
inside the Coq system. We also extract a certified Ocaml implementation
of the algorithm.

1 Introduction

The fact that safety-critical software keeps getting bigger and more numerous
has certainly contributed to a lot of effort being spent on certification systems
in the recent years. However, improvements of automation techniques have only
partially benefited to interactive provers in general, and to the Coq proof assis-
tant [4] in particular. Although specific decision procedures have been and are
still being implemented in Coq, they still lack co-operation with each other. For
instance, tactics like omega, tauto and congruence respectively address linear
arithmetic, propositional logic and congruence closure, but their combination
still has to be driven manually by users, whereas tools like SMT solvers can
perform this combination automatically.

We are currently developing an SMT solver dedicated to program verifica-
tion [3] and our goal is to embed it as a decision procedure in Coq. Not only
would it validate the algorithms and schemes at work in our solver, but it would
also provide the automatic interaction of dedicated decision procedures in Coq.
In this paper, we present our first step towards this goal: the formalization of a
SAT solver, the decision procedure that lies at the heart of our prover. We also
use reflection to obtain a tactic that relies on this certified decision procedure.

In Section 2, we quickly recall what the DPLL procedure is and we formalize
it by a set of inference rules. In Section 3, we describe a Coq formalization of
this procedure and we prove its soundness and completeness. We then use this
procedure in Section 4 in order to build a reflexive tactic solving propositional
goals. We show examples of applications of this tactic and its limitations in
Section 5, before concluding with a discussion of related work in Section 6.



2 The DPLL Procedure

The DPLL procedure [7, 6], named after its inventors Davis, Putnam, Logemann
and Loveland, is one of the oldest decision procedure for the problem of check-
ing the satisfiability of a propositional formula. DPLL deals with formulas in
conjunctive normal form (CNF), i.e. conjunction of clauses, where a clause is
a disjunction of propositional literals. A formula in CNF can thus be written∧n

i=1
(l1 ∨ · · · ∨ lki

) where each lj is a propositional variable or its negation.
DPLL essentially tries all possible valuations of the variables of a formula

until it finds one that satisfies the formula. Since there is an exponential number
of such valuations, DPLL enhances over the basic exploration of all valuations
by the eager use of the following two simplifications:

– Boolean constraint propagation: once a truth value has been chosen for a
given variable, the literals that become false can be removed from their
clauses, and if a clause contains a literal that becomes true, the whole clause
can be removed from the formula since it is now known to be true;

– Unit propagation: whenever a clause is reduced to a single literal, the valu-
ation of this literal’s variable must be set so that the literal is true, other-
wise the whole formula would be false; an efficient detection of such clauses
can dramatically change the overall performance of industrial-strength SAT
solvers [17].

When every possible simplification has been applied, the algorithm tries to assign
a boolean value to a variable of its choice, which leads to more simplification.
Eventually, the procedure reaches one of the following cases:

– the problem is empty, i.e. the formula has been reduced to the empty con-
junction, in which case a valuation satisfying the original formula has been
found and the algorithm terminates;

– the formula contains an empty clause, which means it is obviously unsat-
isfiable; in that case, DPLL backtracks to an earlier point, where it tries
assigning another value to a variable.

Unit
Γ, l ⊢ ∆

Γ ⊢ ∆, {l}
Red

Γ, l ⊢ ∆, C

Γ, l ⊢ ∆, l̄ ∨ C
Elim

Γ, l ⊢ ∆

Γ, l ⊢ ∆, l ∨ C

Conflict
Γ ⊢ ∆, ∅

Split
Γ, l ⊢ ∆ Γ, l̄ ⊢ ∆

Γ ⊢ ∆

Fig. 1. The DPLL procedure seen as a proof derivation system

We give a formalization of this DPLL procedure as a set of five inference
rules, presented in Fig. 1. The current state of the algorithm is represented as a



sequent Γ ⊢ ∆ where Γ is the set of literals that are assumed to be true, and ∆

is the current formula, seen as set of clauses, i.e. a set of sets of literals.

More precisely, we write l ∨ C for a clause that contains the literal l, and
l1, l2, l3 for the set of literals {l1, l2, l3}. We keep the braces around unit clauses
so as to avoid confusion, e.g. {l} for the clause containing only l. On the right-
hand side of the sequent, we denote by ∆, C the conjunction of a clause C and
a CNF formula ∆. Finally, the negation of a literal l is denoted l̄, with ¯̄l = l.

We now take a closer look at the rules of Fig. 1, which should be read bottom-
up. The Conflict rule corresponds to the case where a clause has been reduced
to the empty clause: this rule terminates a branch of the proof search and forces
the algorithm to backtrack in order to find another valuation. Unit implements
unit propagation: if a clause is reduced to the literal l, this literal can be added
to the context before proof search goes on. Elim and Red each perform one
kind of boolean constraint propagation: if the negation of a literal is in Γ , it can
be removed from all clauses (Red); if a clause contains a literal that is supposed
true, the whole clause can be removed (Elim). The last rule is the rule that
actually performs the branching, and thus the “proof search”. Split picks any
literal l and adds it to the context Γ . If no instantiation is found on this side
(i.e. all the branches end with Conflict), then l̄ is supposed true instead and
the right branch is explored.

If there exists a derivation for a formula F starting with an empty context
∅ ⊢ F , this means that the whole tree has been explored and no model has been
found, and therefore that the formula F is unsatisfiable.

3 Formalizing DPLL in Coq

In this section, we present a Coq formalization of the system presented in Sec-
tion 2, for which we prove soundness and completeness with respect to a notion
of semantics for formulas.

3.1 Preliminary Definitions

We start by defining how literals and formulas shall be represented. To do so,
we will make use of Coq’s module system [5, 2]. Coq module types allow one to
pack together types, functions and related axioms by keeping a high level of
abstraction. One can then create functors, i.e. modules which are parameterized
by other modules of a certain signature and which can then be instantiated on
any modules that match the expected signature.

Therefore, by taking advantage of Coq’s module system, it is sufficient to
define module types for literals and formulas, and we can then develop our
decision procedure in a way that is independent of the actual representation of
the input. For instance, the module type LITERAL (Fig. 2) provides a type t for
literals, a function mk not that builds the negation of a literal and some axioms
about this function (like the fact that it is involutive). Literals also come with



Module Type LITERAL.

Parameter t : Set.

(* Stuff literals should provide *)

Parameter mk not : t → t.

Axiom mk not invol : ∀l, mk not (mk not l) = l.

...

(* t is an ordered type *)

Parameter eq : t → t → Prop.

Parameter lt : t → t → Prop.

...

End LITERAL.

Fig. 2. A module type for literals

a decidable equality and a total order, which are necessary to later define finite
sets of literals.

Once literals are defined, we can similarly define a module type CNF for
formulas, as shown in Fig. 3. Such a module shall of course provide a type
formula for formulas, and embed a module of type LITERAL. It also comes with
two modules of finite sets3: LSet, whose elements are literals, and CSet, whose
elements are sets of literals, as can be seen in the with Module E := ... part of
their definitions. Finally, a module for formulas comes with a function make, that
transforms a formula into a set of sets of literals; in other words, the function
make performs conversion into conjunctive normal form.

Module Type CNF.

Parameter formula : Set.

Declare Module L : LITERAL.

Declare Module LSet : FSetInterface.S with Module E := L.

Declare Module CSet : FSetInterface.S with Module E := LSet.

Parameter make : formula → CSet.t.

End CNF.

Fig. 3. A module type for formulas

We can now start the definition of a functor SAT parameterized by a module
F of type CNF and which will implement our SAT solving algorithm without any
knowledge about the actual formulas. The development can only use elements
that are defined in F’s signature and this ensures modularity as well as reusability.
Fig. 4 shows the beginning of the module, as well as the definition of sequents:

3 FSetInterface.S is an interface for finite sets from the standard Coq library; it
contains a module E which is the module of its elements.



a sequent, noted G ⊢ D, is simply a record with a set of literals G and a set of
clauses D, as discussed in Section 2.

Module SAT (F : CNF).

Import F.

Record sequent : Set := {G : LSet.t; D : CSet.t}.

Fig. 4. The SAT module and a definition of sequents

The next step is the definition of the rules system presented in Fig. 1. We
use an inductive definition shown4 in Fig. 5 by enumerating all possible ways a
derivation can be built from a given sequent. We call this inductive derivable

and an object of type derivable (G ⊢ D) represents a proof derivation of se-
quent G ⊢ D. Note that each constructor faithfully follows from a rule of the
original system. For instance, AUnit describes unit propagation, and AElim and
ARed together describe the two Bcp rules.

Inductive derivable : sequent → Set :=

| AConflict : ∀G D, ∅ ∈ D → derivable (G ⊢ D)

| AUnit : ∀G D l, {l} ∈ D → derivable (G, l ⊢ D \ {l}) →
derivable (G ⊢ D)

| AElim : ∀G D l C, l ∈ G → l ∈ C → C ∈ D →
derivable (G ⊢ D \ {C}) → derivable (G ⊢ D)

| ARed : ∀G D l C, l ∈ G → l̄ ∈ C → C ∈ D →
derivable (G ⊢ D \ C, C \ {l̄}) → derivable (G ⊢ D)

| ASplit : ∀G D l, derivable (G, l ⊢ D) → derivable (G, l̄ ⊢ D) →
derivable (G ⊢ D).

Fig. 5. The inductive definition of the proof system

3.2 Semantics

In the previous subsection, we defined literals, formulas and what it means for
a sequent to be derivable. To show the correctness of this derivation system,
we need a notion of semantics, i.e. what it means for a formula to be “true”.
We cannot directly (nor do we want to) rely on the prover’s notion of truth
because we are dealing with abstract formulas and not native Coq propositional
formulas.

4 In this figure and in the following, we use mathematical notations for set-related
operations, rather than Coq’s concrete syntax, for the sake of readability.



Once again we use Coq’s functorization system and define semantics as a
functor with respect to a module F of type CNF. A model is simply defined as a
function assigning a propositional value Prop to any literal:

Definition model := {M : L.t → Prop | ∀l, M l ↔ ~(M l̄)}.

We use a dependent type to ensure that models are only functions which
have the reasonable property of not assigning the same truth value to a literal
and its negated counterpart. We can then use (via a coercion) a model M as a
function interpreting a literal to an element of the propositional sort Prop. It is
straightforward to define what it means for a model to satisfy a clause or a set
of clauses, and when a formula is unsatisfiable:

Definition sat clause (M : model) (C : LSet.t) := ∃l ∈ C, M l.

Definition sat goal (M : model) (D : CSet.t) := ∀C ∈ D, sat clause M C.

Definition unsatisfiable (D : CSet.t) := ∀(M : model), ~sat goal M D.

This gives us a notion of satisfiability for clauses and formulas, but we also
need to take the context of a sequent into account. What does it mean for a
sequent G ⊢ D to be “unsatisfiable”? The context G of such a sequent represents
a partial assignment and instead of considering any model when checking the
satisfiability of D, it means that we have to consider only models that entail G.
This leads to a notion of “submodel” that we define as follows:

Definition submodel (G : LSet.t) (M : model) := ∀l ∈ G, M l

Note that this definition of a submodel implies that G is a valid partial assign-
ment, in the sense that it does not contain both a literal and its negation. From
this notion of submodel naturally follows the correct definition of unsatisfiability
for a sequent, which we call incompatibility, and states that there is no model of
the context that also satisfies the clauses on the right-hand side:

Definition incompatible (G ⊢ D : sequent) :=

∀(M : model), submodel G M → ~sat goal M D.

3.3 The Decision Procedure

Using the semantics we just defined, we can now proceed to prove the funda-
mental theorems about our derivation system. First in line is the soundness of
the proof system:

if there exists a derivation of the sequent ∅ ⊢ D, D is unsatisfiable

We actually prove something more general than this statement, using the notion
of incompatibility that we just described:

Theorem soundness : ∀S : sequent, derivable S → incompatible S.



The special case where the context of sequent S is empty yields exactly the
above statement. This theorem can be proved by a structural induction on the
derivation of S: for each case, it is sufficient to show that if the premises are
incompatible, then so is S. We gave the informal arguments when describing the
DPLL procedure in Section 2. The Coq proof is not difficult (about 50 lines of
tactics).

Conversely, the completeness of the algorithm could be expressed by the
following statement:

Theorem completeness : ∀S : sequent, incompatible S → derivable S.

There are at least two reasons why we do not prove completeness in this partic-
ular form:

– We do not only want full equivalence between the notions of derivability
and incompatibility, but we also want a decision procedure, i.e. a function
capable of telling if a given formula is unsatisfiable or not. Proving such a
theorem of completeness would certainly give us an equivalence between the
derivability of a sequent and its incompatibility, thus bringing the problem of
deciding satisfiability down to the one of deciding derivability. However, de-
ciding derivability amounts to try and build a derivation for a given sequent
if possible, and it is a proof that actually encompasses the completeness
theorem presented above. Thus, we want to avoid doing the same job twice.

– Not only do we need a decision procedure that we could extract, but we want
to be able to use that procedure in Coq through the mechanism of reflection,
i.e. by actually computing the proof search in the system. It is well known
that procedures with propositional contents cannot be executed as efficiently
as computational-only functions, because in the first case, proofs need to be
replayed along with computations. Thus, we do not want to encode the
decision procedure as part of a general completeness theorem.

For these reasons, we will build the decision procedure in two steps: first we
will program a function without propositional content to implement the actual
decision procedure, and then we will show that its results are correct. This
function will not return any “complex” information, but only Sat G if it has
found a partial model G, and Unsat otherwise:

Inductive Res : Set :=

Sat : LSet.t → Res

| Unsat.

The decision procedure per se can now be implemented as a recursive function
returning such a result:



Fixpoint proof search (G ⊢ D : sequent) n {struct n} : Res :=

match n with

| O ⇒ Sat ∅ (* Absurd case *)

| S n0 ⇒
if D = ∅ then Sat G (* Model found! *)

else

if ∅ ∈ D then Unsat (* Rule AConflict *)

else ...

end.

Because the recursion is not structural, we use an extra integer argument
n, and we will later make sure that we call the function with an integer large
enough so that n never reaches 0 before the proof search is completed. This
short excerpt of the function proof search shows that it proceeds by trying to
apply some rules one after another, with a given strategy. Here, the function first
checks if the problem is empty, in which case it returns the current context as a
model; otherwise, it checks if the empty clause is in the formula, in which case
it returns Unsat. We do not explicit the strategy further because it has no real
interest in the scope of this paper.

The first theorem about proof search states that when it returns Unsat, it
indeed constructed a derivation on the way:

Theorem proof unsat : ∀n S, proof search S n = Unsat → derivable S.

The proof follows the flow of the function and shows that each recursive
call that was made corresponds to a correct application of the derivation rules.
One may wonder why we didn’t construct this derivation in proof search, so
as to return it with Unsat: the reason is that a derivation contains proofs (in
side conditions) and had we done so, our function would not have been 100%
computational anymore.

The second theorem about proof search is the one that encompasses com-
pleteness: it states that if Sat M has been returned, it is indeed a model of the
formula and of the context5.

Theorem proof sat :

∀n S M, µ(S) < n → wf context S.G → proof search S n = Sat M →
S.G ⊆ M ∧ sat goal M S.D.

A couple of remarks about this theorem are necessary:

– µ is a measure of a sequent that we have defined in Coq, and for which we
proved that it decreases for every recursive call in the algorithm. We could
have defined the function by a well-founded induction on this measure, but
it is computationally slightly more efficient to use the extra integer. This is

5 Technically, the set returned is not a model because it is only partial; it can be
completed into a model though, as long as it is a valid partial assignment, and we
simplified the actual details here since they seem cumbersome.



a well-known technique to transform non-structural inductions in structural
inductions [1]. When calling proof search on a sequent S, a suitable integer
is µ(S) + 1;

– we need an extra hypothesis that the context remains well-formed (wf context

S.G), which means that it doesn’t contain a literal and its negation. This
is not guaranteed by the derivation rules because the side conditions were
purposely very loose in order to allow any kind of strategy. Here, it is our
strategy that guarantees this invariant is never broken, and this is part of
the completeness proof.

Together with the soundness theorem, these two theorems show that proof search
is a decision procedure for unsatisfiability and we can now prove the following
theorem:

Theorem dpll dec (∆ : CSet.t) :

{incompatible (∅ ⊢ ∆)} + {~incompatible (∅ ⊢ ∆)}.

The definition of proof search and the proofs of its properties require 700
lines of code.

4 Deriving a Reflexive Tactic

The procedure we have developed so far can be extracted to an OCaml functor
(cf. Section 5), but we are also greatly interested in directly using this procedure
as a tactic to solve goals in our proof assistant.

4.1 Reification

In order to use our SAT solver on Coq propositional formulas, we need to in-
stantiate the SAT functor. This raises the question of the actual representation
of formulas and literals: we need to build modules of types LITERAL and CNF

that will represent Coq formulas.
A natural choice for the type of literals would be to directly use the type Prop

of propositions, but this is impossible because we need to build sets of literals,
and more generally we need to be able to decide if two given propositions are
equal or not. Indeed, consider the formula A ∧ ~A: we need to know that the
propositional variable A is the same on both sides to conclude that this formula
is unsatisfiable. Since the only decidable equality on sort Prop is the one that is
always true, we cannot use Prop as the type of literals.

Instead, we resort to Coq’s metalanguage Ltac [8]. This language provides
pattern-matching facility on Coq terms, and thereby allows us to check the syn-
tactic equality of propositional terms at a metalevel. We will use this language
to build, for a given propositional formula F, an abstract representation of F on
which we will be able to apply the algorithm. This process, called reification or
sometimes metaification, has already been used and described in [9, 11] .



Using Ltac, we first build a function get vars which traverses a formula F
and retrieves a list of all the propositional variables of F. We define another
function list to map that turns such a list into a balanced map. This map now
contains all the propositional variables of F and provides an efficient way to
search for a particular variable into a map. For instance, if F is the following
formula:

F: A ∧ (~B ∨ (p A C)) ∧ (∀D, (p D D)).

the result of list to map (get vars F) will be a map containing the variables
A, B, (p A C) and ∀D, (p D D). In particular, the last variable is abstracted be-
cause our propositional language does not include quantifiers. Given this map,
we are able to represent variables by their path in the map. It is now straight-
forward to create the module LPROP of literals, where a literal is just a path in
the map and a boolean saying if it is negated or not, and the mk not function a
simple inversion of this boolean:

Module LPROP <: LITERAL.

Inductive path : Set := Lft : path → path | Rgt : path → path | E.

Definition t := path × bool.

Definition mk not (p,b) : t := (p, negb b).

...

End LPROP.

We can move on to defining the corresponding types for formulas. We will
for now assume that our formulas are already in conjunctive normal form, and
we address the problem of conversion to CNF later in Section 4.2. In Fig. 6,
we show an excerpt of the module CNFPROP of type CNF, which implements our
type of formulas. Its literals are, of course, the literals of the module LPROP we
just defined. Formulas and clauses are defined in a very natural way by two
inductives: a formula is either a clause or a conjunction of formulas; a clause
is a literal or a disjunction of clauses. This representation makes the function
make converting a formula to a set of sets of literals (not represented here) really
straightforward.

Module CNFPROP <: CNF.

Module L := LPROP.

Inductive clause : Set :=

| COr : clause → clause → clause

| CLit : L.t → clause.

Inductive formula : Set :=

| FAnd : formula → formula → formula

| FClause : clause → formula.

...

End CNFPROP.

Fig. 6. A module for propositional formulas



We also define an interpretation function interp such that interp v f in-
terprets an object f of type formula to its propositional counterpart in Coq. The
extra argument v is the map binding paths to concrete propositional variables,
which is needed to interpret literals. In particular, interp uses the following sub-
routine to interpret literals, where lookup id v returns the proposition bound
to id in the map v:

Definition linterp (l : L.t) : Prop :=

match l with | (id, true) ⇒ lookup id v

| (id, false) ⇒ ~(lookup id v) end.

The last step of the reification process is to build a tactic in Ltac, that, for a
given formula F in Coq’s propositional language, builds an abstract formula f of
type formula and a map v such that interp v f = F. We have already covered
the construction of the map v. The construction of the formula f is realized by
a couple of recursive Ltac tactics which analyze the head symbol of the current
formula to construct the corresponding abstract version. For instance, the top-
level function matches conjuncts and goes like this:

Ltac reify formula F v :=

match constr:F with

| and ?F1 ?F2 ⇒
let f1 := reify formula F1 v with f2 := reify formula F2 v in

constr:(FAnd f1 f2)

| ?F ⇒
let c := reify clause F v in constr:(FClause c)

end.

Now, if we go back to our previous example, and if we take this formula as
our current goal, we can use the tactics we just described to build a suitable
map, reify the goal in an abstract formula f, and replace the current goal by
the interpretation of f. The tactic change asks Coq to perform the so-called
conversion rule: it computes the interpretation and checks that it is indeed equal
to the original goal.

============================

A ∧ (~ B ∨ (p A C)) ∧ (∀D : Prop, (p D D))

> match goal with | ⊢ ?F ⇒
let v := list to map (get vars F) in

let f := reify formula F v in

change (interp v f)

end.

============================

interp (...) (FAnd (FClause ...) (FAnd ... ...))

4.2 The Generic Tactic

At this point, in order to turn our development into a user-friendly generic tactic,
we still need to address a couple of issues.



Conversion to normal form. Before running the actual proof search, a formula
should be put in CNF. If it is not in CNF, then some subformulas will be ab-
stracted (like the quantified part in our example above). We could have coded
the conversion to normal form as a Coq function running on reified formulas,
but we decided to avoid this additional tedious work by again using tacticals.
Coq provides a tactic named autorewrite which performs automatic rewriting
of expressions. When fed with a set of (oriented) equalities describing a nor-
malizing system, autorewrite will transform an expression into its normal form
with respect to this system. Thus, we encode the conversion into CNF as a set of
rewriting rules6: linearizing implications, pushing negations to the atomic vari-
ables, distributing disjunction over conjunction, etc. Some of these rules only
hold in classical logic, and we discuss this further in Section 5.

Lifting the Semantics. In Section 3.2, we defined a notion of semantics and
proved the properties of our decision procedure in this respect. Recall that a
model is a function associating a propositional variable to every literal. Thus, it
turns out that our abstract formulas have a very canonical notion of model: the
interpretation of the literals itself. Indeed, if l is a literal representing a variable
A of type Prop, the canonical model satisfies l if and only if there is a proof of
A. This result lifts to clauses and formulas, and we can prove this adequation:

Theorem adequation :

∀(f : formula), interp v f → sat goal (model v) (make f).

where model v is the canonical model interpreting literals in the map v. This
theorem can be read as : “if there is a proof of a formula F, then its reified coun-
terpart f is satisfiable”. Together with the soundness of the decision procedure,
this gives us the following fact:

Corollary validity : ∀(f : formula),

proof search (∅ ⊢ (make f)) = Unsat → ~(interp v f).

We can now wrap everything up in a high-level tactic unsat that builds the
conjunction F of all the hypotheses in the context, turns it into normal form, con-
structs the abstract version f of F, changes F in the context to interp v f, and
finally applies the validity theorem to bring the current goal down to a proof
of proof search (∅ ⊢ (make f)) = Unsat. Coq is then asked to compute the
left-hand side of this equation, which triggers the actual proof search. If the pro-
cedure returns Unsat, the goal is trivial and the proof is completed. Otherwise,
it returns a countermodel and we print it out, since it can be very valuable to
the user in order to understand why the tactic did not succeed.

The same mechanism can also be used to prove the validity of a current goal
F, by applying double negation and trying the unsat tactic on ~F. We provide
a tactic called valid that performs these operations. The definitions and proofs
for unsat and valid represent about 400 lines.

6 In practice, we use several complementary rewriting systems, because for efficiency
reasons, some transformations must be done before others, e.g. rewriting of implica-
tions.



5 Results and Examples

We start this section by giving a small example of how the tactic unsat can be
used in practice. Suppose our goal is the following propositional formula where
variables A to D have type Prop:

============================

A ∧ (C ∨ ~B ∧ (~D → ~A)) → D ∧ D ∧ ~A

> unsat.

The formula in not valid.

The following countermodel has been found :

D : true

B : false

A : true

If we try to apply unsat to this goal, the tactic will try to show that the
left-hand side of the implication is unsatisfiable. Since it is not, the tactic fails
and prints out the countermodel shown above: indeed, one can easily verify
that this valuation makes the goal false. We can use this countermodel to add
complementary hypotheses to our formula, for instance that B is true and A is
false. By doing so, we see that the unsat tactic now succeeds in about one tenth
of a second:

============================

A ∧ (C ∨ ~B ∧ (~D → ~A)) → B ∧ ~A → D ∧ D ∧ ~A

> Time unsat.

Proof completed.

Finished transaction in 0. secs (0.108007u,0.s)

Our experiments with this tactic show that goals that occur in practice during
an interactive proof are reasonably small and the biggest part of the time needed
to prove a goal is often spent in the conversion into CNF. We also tried our
tactic on artificial benchmarks from the SATLIB initiative [14], in comparison
to the performance of the extracted SAT solver, and the results are summarized
in Fig. 7. The second row gives the number of variables and clauses in each
problem. The fourth row gives the time spent by the tactic on the reification
alone. The last two rows respectively show the number of nodes in the proof
derivation, and the number of Split nodes. These results show that both the
tactic and the extracted implementation perform rather badly on these tests.
In some cases, the tactic was unable to succeed in reasonable time (less than
a couple of hours), even though the input problems were already in CNF. This
can be explained by the fact that we used a very unoptimized version of the
DPLL procedure and that these benchmarks are especially good at stressing
optimizations of DPLL. The high number of branching nodes illustrates the fact
that we are exploring a great part of the search tree.

An important characteristic of the DPLL procedure is that its performance
heavily depends on how decision literals, i.e. literals that are introduced in the
rule Split, are chosen. Considering this, we took advantage of the modularity



aim-1 aim-2 aim-3 aim-4 phole 5 phole 6 phole 7 phole 8

vars/clauses 50/80 50/80 50/80 50/80 30/81 42/133 56/204 72/297

OCaml time 7m20s 33s 7m 1m50s 0.3s 2.0s 25s 6m

Coq time - 2h30m - - 15s 3m20s 1h9m -

whereof reification 25s 22s 26s 25s 3.5s 10s 24s 56s

Nodes 13M 1.3M 33M 6.8M 12k 111k 1.2M 15M

Branching 630k 64k 2M 400k 370 3250 32k 378k

Fig. 7. Some results on harder SAT problems

of our development to allow the user to instantiate our SAT solver with a cus-
tomized function called pick, and coming with the module CNF. This function
pick is used by the procedure to pick a literal from the current goal when apply-
ing the rule Unsat. The correctness of the procedure only relies on a couple of
easy properties that the user shall prove for his customized function pick. This
way, the SAT solver does not depend on particular heuristics and new efficient
heuristics can be implemented by the front-end user.

Another advantage of our modular approach comes to light when considering
whether our procedure works in classical or intuitionistic logic. A SAT solver for
propositional logic is inherently classical, as the rule Split, for instance, relies
on the fact that a literal must be either true or false. Nonetheless, some instances
of the excluded-middle are provable in intuitionistic logic and there may be cases
where the decision literals used in the proof search are actually decidable (e.g.
membership of an element in a finite set). For this reason, we made sure that our
SAT functor did not depend on the excluded-middle, but that we only put the
restriction on models instead: a model M shall have the property that, for any
literal l, M l ∨ ~M l is provable. Of course, when creating the tactics unsat and
valid, we were dealing with any kind of propositional atoms, and therefore we
had to assume the excluded-middle. Another possible approach, but that we have
not implemented yet, would be to generate one subgoal for every decision literal
in the proof and let the user deal with them. To ensure that users proving goals
with our generic tactics are aware of the fact that they are working in classical
logic, we encapsulated the top-level tactic definitions in a functor LoadTactic

expecting the classical axiom in input:

Module Type K.

Axiom classic : ∀P, P ∨ ~P.

End K.

Module LoadTactic (K : K).

Import K.

...

End LoadTactic.

To further illustrate our point, it is possible to instantiate our procedure on
boolean formulas: the difference between propositional and boolean formulas in
Coq is that booleans are a type in Set, whose equality is decidable and which
can be extracted to ML booleans. In particular, a canonical model for booleans
would be:



Definition model (b : bool) := if b then True else False.

and such a model has the property required by the SAT solver. Therefore, it
is possible to use our SAT solver to create a tactic deciding satisfiability of
boolean formulas in intuitionistic logic by just following the same steps as in
Section 4. The whole development presented so far, including these extra tactics
on booleans, is available online7 and can be compiled with Coq v8.1pl3.

6 Related Work and Conclusion

Related Work. Decision procedures for classical propositional logic have already
been formalized in proof assistants before. For instance, Harrison [13] on one side,
and Letouzey and Théry [15] on the other side, both presented formalizations
of St̊almarck’s algorithm, respectively in HOL [10] and Coq. In both cases, they
extracted certified versions of the algorithm which also produced traces. The
traces were then used to reconstruct a proof from inside the prover, yielding
a “partially reflexive” tactic. In our work, we focused on developing a totally
reflexive tactic in order to avoid the cost of reconstructing a proof from traces.
Harrison showed how to implement Binary Decision Diagrams (BDDs) as a HOL
derived rule [12], with pretty much the same approach as in [13]. Closer to our
work, Verma et al. [16] implemented reflexive BDDs in Coq as a first step towards
a reflexive model checker in Coq. Our approach is similar in the sense that our
SAT solver is the cornerstone of the SMT solver we are planning to formalize.

Conclusion. We have presented the formalization in Coq of a DPLL-like pro-
cedure deciding satisfiability of propositional formulas. We extracted a certified
Ocaml implementation of this SAT solver, which is about 1700 lines long (in-
cluding 800 lines for the interface). We also instantiated our procedure on Coq’s
propositional formulas in order to derive a reflexive tactic. Even if its perfor-
mance remains limited, our tactic can be used in Coq to automatically discharge
valid goals or unsatisfiable contexts.

The use of Ltac allowed us to avoid coding parts of the tactic in Ocaml, and
we hope our development illustrates what we think is a key feature of Coq: the
ability to reason and program about terms directly at the top-level, without any
knowledge of its inner mechanisms, and without having to compile stubs coded
in Ocaml. We also showed how modularity can be beneficial, just as in a usual
programming language. By using Coq’s module system to develop our procedure
in a very modular way, we were able to use this procedure on different types of
propositional formulas without much pain and to give the user the ability to
define his own heuristics. Modularity also ensures that the decision procedure
can be used in an intuitionistic setting on suitable data structures.

We plan to work in several directions, mainly by adding common optimiza-
tions to the DPLL procedure in order to prune some parts of the proof search.

7 http://www.lri.fr/~lescuyer/sat/unsat.tgz



We are also greatly interested in combining this decision procedure with other,
more specific, decision procedures like linear arithmetic or congruence closure.
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1. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions, 2004.

2. J. Chrzaszcz. Implementation of modules in the Coq system. In TPHOLs, volume
2758 of Lecture Notes in Computer Science, pages 270–286. Springer, 2003.

3. S. Conchon and E. Contejean. The Ergo Theorem Prover. http://ergo.lri.fr/.
4. The Coq Proof Assistant. http://coq.inria.fr/.
5. J. Courant. A module calculus for pure type systems. In R. Hindley, editor,

Proceedings fo the Third International Conference on Typed Lambda Calculus and
Applications (TLCA’97), Nancy, France, 1997. Springer-Verlag LNCS.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communication of the ACM, 5(7):394–397, 1962.

7. M. Davis and H. Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, 1960.

8. D. Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic for
Programming and Automated Reasoning (LPAR), Reunion Island (France), volume
1955 of LNCS/LNAI, pages 85–95. Springer-Verlag, November 2000.

9. D. Delahaye and M. Mayero. Field: une procédure de décision pour les nom-
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