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Abstract. We define the n-syntactic theories as a natural extension of
the syntactic theories. A n-syntactic theory is an equational theory which
admits a finite presentation in which every proof can be performed with
at most n applications of an axiom at the root,but no finite presentation
in which every proof can be performed with at most n−1 applications of
an axiom at the root. The n-syntactic theories inherit the good properties
of the syntactic theories for solving the word problem, or matching or
unification problems. We show that for any integer n ≥ 1, there exists a
n-syntactic theory.

1 Introduction

The solving of symbolic constraints is a major problem for constraint logic pro-
gramming. Unification constraints, and in particular unification in equational
theories, are among the most frequently encountered symbolic constraints. Uni-
fication has been widely studied for particular equational theories as well as for
arbitrary theories.

Besides general E-unification [6], two major directions, narrowing and syn-
tactic theories have been investigated these last years. This paper extends the
notion of syntactic theories to the case where not one, but a bounded number of
replacements of equals by equals at the root are necessary to perform any equa-
tional proof. We define the n-syntactic theories to which the results for syntactic
theories extend naturally (this is easy) and show that n-syntactic theories do
really exist (this is more difficult).

Kirchner [7] has defined the syntactic theories as the collapse-free equational
theories E which have a resolvent presentation A, that is a finite presentation
such that two E-equal terms can always be proved equal with at most one
application of an axiom of A at the root.

The knowledge that any equality proof needs at most one application of an
axiom at the root leads to a dramatic cut of the search space for solving the
word problem, or matching or unification problems. It is remarkable that back
in ’81, Kozen’s results on ground equational theories [10] already used the fact
that ground theories are syntactic.
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Arnborg and Tidén [1] have solved the problem of unification modulo the
one-sided distributivity, presented by the axiom x ∗ (y + z) = (x ∗ y) + (x ∗ z).
Their algorithm is based on the fact that one-sided distributivity is a syntactic
theory, even if the generality of their method was not known at that time. The
algorithm uses the three following results:

1. s1 ∗ s2
?
= t1 ∗ t2 and s1

?
= t1 ∧ s2

?
= t2 have the same solutions.

2. s1 + s2
?
= t1 + t2 and s1

?
= t1 ∧ s2

?
= t2 have the same solutions.

3. s1 ∗ s2
?
= t1 + t2 and ∃x1, x2 : s2

?
= x1 + x2 ∧ t1

?
= s1 ∗ x1 ∧ t2

?
= s1 ∗ x2

have the same solutions.

What these results actually prove is that one-sided distributivity is a syntactic
theory and the authors used this fact for solving unification problems. The dif-
ficult part of their paper is the termination proof. Unfortunately, Arnborg and
Tidén’s algorithm does not provide any help for the general case, namely the
unification problem for any syntactic theory. This is because their termination
proof cannot be extended, for it strongly uses some specific properties of the
one-sided distributivity. Moreover, Klay [9] has proved that there exists a syn-
tactic theory in which the word problem is undecidable. Hence there are some
syntactic theories in which the unification problem is undecidable. Some theo-
ries, such as associativity-commutativity, are known to be syntactic and to have
a decidable unification problem, but we do not how to use the syntacticness for
associative-commutative unification.

At the very beginning, commutativity and permutative theories presented by
axioms of the form

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

seemed to be the only syntactic theories, until Kirchner and Klay [8] have shown
that a theory E is syntactic if and only if all the equations of the form

f(x1, . . . , xn)
?
= g(y1, . . . , ym)

have a finite complete set of most general E-unifiers. In particular, associativity-
commutativity (AC) is a syntactic theory, but the usual presentation, consisting
of the two axioms

(x+ y) + z = x+ (y + z)
x+ y = y + x

is not a resolvent presentation. Figure 1 gives a resolvent presentation of the
associative-commutative theory of +, borrowed from [8].

Nipkow [11] shows how some rules, derived from a resolvent presentation,
may be added to the rules of equality (reflexivity, symmetry, transitivity and
functional reflexivity), yielding a PROLOG program for solving matching prob-
lems. In addition, Nipkow gives a geometrical interpretation of each equation of
the resolvent presentation of AC in term of area covering.

Unfortunately, Klay [9] has proved that



x+ y = y + x

(x+ y) + z = x+ (y + z)

(x+ y) + z = (x+ z) + y

x+ (y + z) = y + (x+ z)

(x+ y) + (z + t) = (x+ z) + (y + t)

Fig. 1. Resolvent presentation of the AC theory of +

1. Syntacticness is undecidable,
2. there exists a syntactic theory in which the word problem is undecidable.

Kirchner and Klay [8] have shown that the theory of mid-commutativity,
presented by the only axiom

(x+ y) + (z + t) = (x+ z) + (y + t)

is not syntactic, and they conjectured that every proof needs at most two appli-
cations of an axiom at the root. The existence, for n > 1 of a n-syntactic theory,
that is a theory E such that

– E has a finite presentation A in which any proof can be performed with at
most n applications of an axiom at the root.

– E has no finite presentation A in which any proof can be performed with at
most n− 1 applications of an axiom at the root.

was left open until now.
In the following, we show that the n-syntactic theories have the same good

properties as the syntactic theories, and we show the existence of a n-syntactic
theory for every n > 1.

2 Syntactic Theories and n-Syntactic Theories

We assume the reader is familiar with the notions of term algebra, substitution,
equational theory, equational and rewrite proof. Our notations are consistent
with [5], for instance, we use postfix notation for substitution application; t|p
denotes the subterm of t at position p; t[u]p is the term obtained by replacing



in t the subterm at position p by u. The root position of a term is denoted by Λ
and the top function symbol of t is t(Λ).

Given a signature F and a set X of variables, T (F ,X ) is the free F-algebra
over X . An equational axiom is an unordered pair < l, r > of terms of T (F ,X ),
denoted by l = r. Given a set A of equational axioms, we have a one-step proof
s↔ t if there exists an axiom l = r ∈ A, a substitution σ and a position p of s
such that s|p = lσ and t = s[rσ]p. If p = Λ, then such a one-step proof is called
a Λ-step.

The equational theory E presented by A is the least congruence containing
all the instances of the axioms of A and it coincides with the reflexive-transitive
closure

∗↔ of ↔. The set A of axioms is called a presentation of E. We write
s =E t if there is a proof s

∗↔ t and we call it an equational theorem. An
equational theory is collapse-free if it has no theorem x =E t[x]p, with x ∈ X
(or, equivalently no presentation containing an axiom x = t[x]p) with p 6= Λ.

Definition 1
A presentation A of an equational theory E is n-resolvent if A is finite and for
every equational theorem s =E t, there exists a proof s

∗↔ t in which there are
at most n Λ-steps.
A collapse-free equational theory E is syntactic if it has a 1-resolvent presenta-
tion.
A collapse-free equational theory E is n-syntactic if it has a n-resolvent presen-
tation but no n− 1-resolvent presentation1.

Comon et al. [2] have dropped the assumption that the theories are collapse-
free and introduced the notion of cycle-syntacticness for solving cyclic equations
in the shallow equational theories, that is the theories presented by a set of
axioms where all the variables are at depth at most one. In the case of n-syntactic
theories, it does not make sense to drop the assumption that the theories are
collapse-free since every theorem in a collapsing theory has a proof with exactly
two Λ-steps: assume x = t[x]p is an axiom of A and that we have a proof s

∗↔ s′.
Then, we have a proof

s↔ t[s]p
∗↔ t[s′]p ↔ s′

where the only Λ-steps are the first one and the last one.

2.1 Properties of the n-Syntactic Theories

The main advantage that we can take of the knowledge that the number of Λ-
steps is bounded in a proof using a n-resolvent presentation is the use of efficient
complete strategies for solving the word problem, or matching or unification
problems.

The contents of this section is a straightforward extension of the previous
works on syntactic theories.

1 According to this definition, Kirchner’s syntactic theories are either 0-syntactic (free
theory) or 1-syntactic.



Succeed
s

?←→
i
s ⇒ T

Λ-step

lσ
?←→
i
t ⇒ rσ

?←→
i−1

t

if l = r ∈ A and σ is a substitution and i ≥ 1

6= Λ-step

s[lσ]p
?←→
i
t ⇒ s[rσ]p

?←→
i
t

if l = r ∈ A and σ is a substitution and p 6= Λ

Decompose

f(s1, . . . , sm)
?←→
0
f(t1, . . . , tm) ⇒ s1

?←→
n
t1 ∧ · · · ∧ sm

?←→
n
tm

Decrease
s

?←→
i
t ⇒ s

?←→
i−1

t

if i ≥ 1

Clash
f(s1, . . . , sm)

?←→
0
g(t1, . . . , tk) ⇒ F

if f 6= g

Fig. 2. Rules for the word problem in a n-syntactic theory



Word Problem
We introduce the binary predicates

?←→
i

for 0 ≤ i ≤ n, and s
?←→
i
t is to be

interpreted as “s and t can be proved equal, using the axioms of A, with at most i

Λ-steps”. Since A is a n-resolvent presentation of E, we have s =E t ⇔ s
?←→
n
t.

We can solve word problems, that is problems involving the predicates
?←→
i

and the connective ∧ , all the variables being implicitely universally quantified.
The set of rules of figure 2 is complete for proving equational theorems. The

rules must be applied modulo

– the commutativity of
?←→
i

,

– the associativity, commutativity and idempotence of ∧ ,
– the rewrite rules φ ∧ T → φ, φ ∧ F → F .

Proposition 1
Let E be a n-syntactic equationnal theory and A a n-resolvent presentation of E.

Let s, t ∈ T (F ,X ) such that s =E t. There is a derivation s
?←→
n
t ⇒ · · · ⇒ T ,

using the rules of figure 2.

Unification Problems
More interesting is the use of n-syntacticness for unification. For 1 ≤ i ≤ n,

we introduce the binary predicates
?
=
i
. Given a n syntactic theory E with a n-

resolvent presentation A, the solutions of s
?
=
i
t are the substitutions σ such that

there exists a proof sσ
∗↔ tσ, using the axioms of A, with at most i Λ-steps.

Figure 3 gives a complete set of mutation rules for solving unification problems
in a n-syntactic theory E which has a n-resolvent presentation A. These rule
extend naturally Kirchner’s rules for syntactic theories.

Like syntactic theories, n-syntactic theories have a complete set of mutation
rules, but if we add a Merge rule or a Replacement rule in order to obtain perform
unification, the extended set may not terminate. For example, the mutation and
merging process does not terminate forAC theories: there is an infinite derivation
starting from the unification problem

u+ v
?
= w + v

Indeed, if we perform the mutation using the last equation of figure 1, a merge
on v yields a renaming of the original problem.

3 A n-Syntactic Theory for Arbitrary n

Let A0 be set reduced to the axiom

l0(u0(x)) = l1(d1(x))



Mutate
f(s1, . . . , sm)

?
=
i
t ⇒ r

?
=
i−1

t ∧ s1
?
=
n
l1 ∧ · · · ∧ sm

?
=
n
lm

if f(l1, . . . , lm) = r ∈ A and i ≥ 1

Decompose

f(s1, . . . , sm)
?
=
0
f(t1, . . . , tm) ⇒ s1

?
=
n
t1 ∧ · · · ∧ sm

?
=
n
tm

Decrease
s

?
=
i
t ⇒ s

?
=
i−1

t

if i ≥ 1

Clash
f(s1, . . . , sm)

?
=
0
g(t1, . . . , tk) ⇒ F

if f 6= g

Fig. 3. Mutation rules for unification problems in a n-syntactic theory



and Ai the following set of axioms (for i ≥ 1)

di(ai(x)) = bi(di(x))

di(ri−1(x)) = ui(ri(x))

bi(ui(x)) = ui(ai+1(x))

li(ui(x)) = li+1(di+1(x))

In the sequel, E1 is the equational theory presented by A0 and, for n ≥ 2, En is
the theory presented by A0 ∪A1 ∪ · · · ∪An−1.

If all the axioms are oriented from left to right, the symbols have the following
intuitive meaning:

– l stands for “left” and li is the i-th left mark.
– r stands for “right”, and ri is the i-th right mark.
– di is a symbol which goes down into a term, changing ai into bi until it

reaches a right mark.
– ui is a symbol which goes up into a term, changing bi into ai+1 until it

reaches a left mark.

Figure 4 shows a complete search of the class of the term

l0(u0(a1(a1(a1(r0(x))))))

obtained by applying the axioms of E3 from left to right.

Proposition 2
For n ≥ 1, En is a n-syntactic equational theory.

The case where n = 1 is straightforward, and we assume in the following that
n ≥ 2. The proposition follows from two lemmas. The first lemma shows that
En has a n-resolvent presentation.

Lemma 1
Let s and t be two En-equal terms. Then s and t can be proved equal using the
axioms of A0 ∪A1 ∪ · · · ∪An−1, with at most n Λ-steps.

Proof:
For 0 ≤ i ≤ n consider the following partial orderings on the alphabet
F = {l0, d0, a0, b0, u0, r0} ∪ · · · ∪ {ln, dn, an, bn, un, rn}.

– Oi : li > di > bi > ui > ai
– O i : li > ui > bi > di > ai

For such a partial ordering P , Max(P ) (resp. Min(P )) is the maximal (resp.
minimal) function symbol for P .
We denote the partial ordering P ∪ P ′ ∪ {Min(P ) > Max(P ′)} by P > P ′.
Consider the precedence

rn > rn−1 > · · · > ri > r0 > r1 > · · · > ri−1 > O0 > O1 > · · ·
· · · > Oi−1 > O n > O n−1 > · · · > O i



l0 (u0 (a1 (a1 (a1 (r0 (x)))))) →
l1 (d1 (a1 (a1 (a1 (r0 (x)))))) →
l1 (b1 (d1 (a1 (a1 (r0 (x)))))) →
l1 (b1 (b1 (d1 (a1 (r0 (x)))))) →
l1 (b1 (b1 (b1 (d1 (r0 (x)))))) →
l1 (b1 (b1 (b1 (u1 (r1 (x)))))) →
l1 (b1 (b1 (u1 (a2 (r1 (x)))))) →
l1 (b1 (u1 (a2 (a2 (r1 (x)))))) →
l1 (u1 (a2 (a2 (a2 (r1 (x)))))) →
l2 (d2 (a2 (a2 (a2 (r1 (x)))))) →
l2 (a2 (d2 (a2 (a2 (r1 (x)))))) →
l2 (a2 (a2 (d2 (a2 (r1 (x)))))) →
l2 (b2 (b2 (b2 (d2 (r1 (x)))))) →
l2 (b2 (b2 (b2 (u2 (r2 (x)))))) →
l2 (b2 (b2 (u2 (a3 (r2 (x)))))) →
l2 (b2 (u2 (a3 (a3 (r2 (x)))))) →
l2 (u2 (a3 (a3 (a3 (r2 (x)))))) →
l2 (u2 (a3 (a3 (a3 (r2 (x)))))) →
l3 (d3 (a3 (a3 (a3 (r2 (x))))))

Fig. 4. The equivalence class of l0(u0(a1(a1(a1(r0(x)))))) for E3.



Using the recursive path ordering (RPO) [3, 4] extending this precedence, we can
prove that the following rewrite system is convergent

Ri = R0 ∪R1 ∪ · · · ∪Ri−1 ∪Ri ∪Ri+1 ∪ · · · ∪Rn−1

where Rk (resp. Rk ) is the rewrite system obtained by orienting the equations of
Ak from left to right (resp. from right to left). Indeed, the RPO orients suitably
all the equations, and there are no critical pairs. As an example, the rewrite
system R2 for E4 and the precedence used to prove its termination are given in
figure 5.

l0(u0(x)) → l1(d1(x))

d1(a1(x)) → b1(d1(x))

d1(r0(x)) → u1(r1(x))

b1(u1(x)) → u1(a2(x))

l1(u1(x)) → l2(d2(x))

d2(a2(x)) ← b2(d2(x))

d2(r1(x)) ← u2(r2(x))

b2(u2(x)) ← u2(a3(x))

l2(u2(x)) ← l3(d3(x))

d3(a3(x)) ← b3(d3(x))

d3(r2(x)) ← u3(r3(x))

b3(u3(x)) ← u3(a4(x))

l3(u3(x)) ← l4(d4(x))

Precedence:

r4 > r3 > r2 > r0 > r1 > l0 > d0 > b0 > u0 > a0 > l1 > d1 > b1 > u1 > a1

> l4 > u4 > b4 > d4 > a4 > l3 > u3 > b3 > d3 > a3 > l2 > u2 > b2 > d2 > a2

Fig. 5. The rewrite system R2 for the 4-syntactic theory E4

Several cases are to be considered:

– The top function symbol of s is li for some i ∈ {0, . . . , n}. In this case, t has
some lj for top function symbol, because the axioms can only change li into
some lj .



Consider a rewrite proof, using Ri:

s→ s1 → · · · sh → · · · ← tk · · · ← t1 ← t

Since no rule of Ri can change li into some other symbol at the root of a
term, no rule applies at the top of s, or any sh. If j = i, the same holds for
t and we have a proof with zero Λ-steps. Otherwise, if j < i the only rules
of Ri that will apply at the root are

lj(uj(x))→ lj+1(uj+1(x)), . . . , li−1(ui−1(x))→ li(ui(x))

and we have i− j Λ-steps. Finally, if j > i, we have j − i Λ-steps using the
axioms

lj(uj(x))→ lj−1(uj−1(x)), . . . , li+1(ui+1(x))→ li(ui(x))

In every case, the equality proof requires no more than n Λ-steps.
– The top function symbol of s is some ai or some ri. In this case, t has the

same top function symbol, because no axiom has such a symbol as the top
of one of its terms. The proof uses zero Λ-steps.

– The top function symbol of s is some ui (resp. some di). In this case, s is in
head normal form for the convergent rewrite system Rn = R0∪R1∪· · ·∪Rn−1
(resp. R0 = R0 ∪ R1 ∪ · · · ∪ Rn−1 ). Now, for s and t to be En-equal, the
top function symbol of t must be di, bi or ui, and a rewrite proof will use at
most two Λ-steps.

– The top function symbol of s is some bi. Again, the top function symbol of
t must be ui, bi or di. In the two first cases, Rn will provide a rewrite proof
with at most two Λ-steps; in the latter case, such a proof will be obtained
with R0.

In any case, we have shown that there is a convergent rewrite system obtained by
orienting suitably the axioms of A0 ∪ · · · ∪An−1 in which a rewrite En-equality
proof requires at most n Λ-steps. 2

The second lemma shows that En has no n− 1-resolvent presentation.

Lemma 2
Let A be an arbitrary finite presentation of En. There exist two En-equal terms
s and t such that every proof that s =E t with the axioms of A requires at least
n Λ-steps.

Proof:
We assume that A contains all the equational theorems l =En

r for | l |=| r |<
m, where m is an arbitrary natural number. Let s = l0(u0(am1 (r0(x)))). The
equivalence class of s for =En is

s = {s} ∪ {li(bhi (di(a
k
i (ri−1(x))))) | 1 ≤ i ≤ n− 1, h+ k = m}

∪ {li(bhi (ui(a
k
i+1(ri(x))))) | 1 ≤ i ≤ n− 1, h+ k = m}

∪ {ln(dn(amn (rn−1(x))))}



A Λ-step t1 ↔ t2 with t1, t2 ∈ s must use an axiom l[x]p = r[x]p of A with
p = 1 1 · · · 1︸ ︷︷ ︸

b<m times

and t1[x]p = l[x]p and t2[x]p = r[x]p. The only pairs < t1, t2 > of

terms of s such that

1. t1(Λ) 6= t2(Λ)

2. t1[x]p =En
t2[x]p for some position p = 1 1 · · · 1︸ ︷︷ ︸

b<m times

are of the form

li(b
h
i (ui(a

k
i+1(t′)))) = li+1(bh

′

i+1(di+1(ak
′

i+1(t′))))

where h + k = h′ + k′. Hence, if a Λ-step changes the top function symbol of a
term in s it must use an axiom of A of the form

li(b
h
i (ui(a

k
i+1(x)))) = li+1(bh

′

i+1(di+1(ak
′

i+1(x))))

Indeed, the only way to change the top symbol li of a term is to find either a
symbol ui or a right mark ri−1 in the rest of the term. In the terms of s , the
right marks are too deep in the terms for making it possible to use some axioms
which are not of the above form.

Hence, every proof, using the axioms of A, that

l0(u0(am1 (r0(x)))) =En
ln(dn(amn (rn−1(x))))

requires n Λ-steps using axioms of the form li(· · ·) = li+1(· · ·). 2

More n-Syntactic Theories

The theories En were designed in order to have a simple proof of the existence of
n-syntactic theories, but there are some more natural non-monadic n-syntactic
equational theories. We now give such an example: here is a presentation A of a
3-syntactic theory:

(x+ y) + z = x+ (y + z)
a+ b = b+ a

The + symbol is associative, and AC on the terms of T ({+, a, b}). For any finite
presentation A of this theory, there exists an n such that a proof that

(a+ (. . .+ a) . . .)︸ ︷︷ ︸
n times

+ (b+ (. . .+ b) . . .)︸ ︷︷ ︸
n times

∗↔ (b+ (. . .+ b) . . .)︸ ︷︷ ︸
n times

+ (a+ (. . .+ a) . . .)︸ ︷︷ ︸
n times

using the axioms of A requires at least 3 Λ-steps. In addition, the above presen-
tation is 3-resolvent.



An ω-Syntactic Theory

Whether the theories of mid-commutativity and two-sided distributivity are n-
syntactic for some n is an open problem. Some theories have no n-resolvent
presentation for any n, we call them ω-syntactic theories. An simple example of
an ω-syntactic theory is the theory Eω presented by the following axioms:

x ∗ (y ∗ z) = (x ∗ y) ∗ z
x ∗ y = y ∗ x

(x ∗ a) + (b ∗ y) = (x ∗ b) + (a ∗ y)

This can easily be proved by showing that applying a theorem of Eω to a term
of the form (s ∗ t) + (s′ ∗ t′) can only exchange finitely many occurrences of a on
one side of the root with the same number of occurrences of b on the other side.
Hence, for any finite presentation of Eω, a proof that

(a ∗ (· · · ∗ a) · · ·)︸ ︷︷ ︸
m times

+ (b ∗ (· · · ∗ b) · · ·)︸ ︷︷ ︸
m times

∗↔ (b ∗ (· · · ∗ b) · · ·)︸ ︷︷ ︸
m times

+ (a ∗ (· · · ∗ a) · · ·)︸ ︷︷ ︸
m times

may require arbitrarily many Λ-steps for a large enough m.

4 Conclusion

Syntactic theories have raised more and more interest since Kirchner and Klay
[8] have shown that there are many syntactic theories, including all the finitary
unifying theories. We have shown that some non-syntactic theories, namely the
n-syntactic theories have similar properties that can be used for solving symbolic
constraints.

Some criteria are given in [8, 11], which are sufficient conditions for a presen-
tation to be resolvent. The techniques are based on one-step proofs permutations
in the proofs that use more than one Λ-step. Similar techniques should apply to
define criteria for n-resolvent presentations.

We believe that for solving unification problems, the interesting distinction
is not between syntactic and non-syntactic theories but rather between the the-
ories that are n-syntactic for some finite n and ω-syntactic theories. Indeed, uni-
fication is undecidable in general in syntactic theories as well as in n-syntactic
theories while in both cases, the top-down strategy with at most one (or n)
paramodulations at the root is complete. At the moment, we have no idea of
any characterization of the ω-syntactic theories.
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