
AC-Unification of Higher-order Patterns?

Alexandre Boudet and Evelyne Contejean

LRI, CNRS URA 410
Bt. 490, Universit Paris-Sud, Centre d’Orsay

91405 Orsay Cedex, France

Abstract. We present a complete algorithm for the unification of
higher-order patterns modulo the associative-commutative theory of
some constants +1, . . . ,+n. Given an AC-unification problem over
higher-order patterns, the output of the algorithm is a finite set DAG
solved forms [9], constrained by some flexible-flexible equations with the
same head on both sides. Indeed, in the presence of AC constants, such
equations are always solvable, but they have no minimal complete set of
unifiers [13]. We prove that the algorithm terminates, is sound, and that
any solution of the original unification problem is an instance of one of
the computed solutions which satisfies the constraints.

Introduction

Higher-order unification is undecidable [8], yet the unification of higher-order
patterns, a subset of the terms of the simply-typed λ-calculus is decidable, and
useful in practice [11, 12]. The combination of algebraic and functional program-
ming paradigms [10] leads one to investigate higher-order unification modulo
equational theories. Unification of higher-order patterns will also be a key to
higher-order extensions of membership equational logic described in [5].

The problem we address here is the unification of higher-order patterns mod-
ulo the associativity and commutativity of some constant symbols. This was
partially achieved by Qian and Wang [13] who used a combination algorithm by
Jouannaud and Kirchner [9] for first-order unification algorithms, and an AC1-
unification algorithm for solving elementary AC problems. The most surprising
result in their paper is that although unification of patterns is unitary in the
standard case, in the AC case a single flexible-flexible equation with the same
head has no minimal complete set of unifiers. Their algorithm is not complete
because AC-unification of pure patterns (i.e. involving only one AC constant)
is more involved than in the first-order case and one cannot just use an AC
or AC1-unification algorithm as a black box in the case of patterns (see the
example in Section 3.2). Our main contribution is to present a complete AC-
unification algorithm for pure patterns. The paper is organized as follows. The
next section briefly recalls some background on patterns and equational theo-
ries. Section 2 introduces a variable abstraction rule and recalls all but one of
? This research was supported in part by the EWG CCL, the HCM Network CON-

SOLE, and the “GDR de programmation du CNRS”.



Nipkow’s rules for pattern unification. Section 3 gives an algorithm for unifica-
tion of pure AC-patterns, and section 4 shows how one gets an AC-unification
algorithm by combining the previous steps using some standard techniques for
combining first-order unification algorithms.

1 Preliminaries

We assume the reader is familiar with simply-typed lambda-calculus, and equa-
tional unification. Some background is available in e.g. [7, 9, 2] for lambda-
calculus and unification in (combinations of) first-order equational theories. We
shall use the following notations: λx1 · · ·λxn.s will be written λxn.s, or even λx.s
if n is not relevant. If in a same expression x appears several times it denotes the
same sequence of variables. In addition, we will use the notation t(u1, . . . , un)
or t(un) for (· · · (tu1) · · ·)un. If π is a permutation of (1, . . . , n), xn

π stands for
the sequence xπ(1), . . . , xπ(n). The free (resp. bound) variables of a term t are
denoted by FV(t) (resp. BV(t)). The notation t[u]p stands for a term t with a
subterm u at some position p. Upper-case X,F,G,L, L1, . . . denote free variables,
lower-case x, x1, y, z, . . . bound variables, and a, b, f, g, . . . constants.

1.1 Patterns

Definition 1. A pattern is a term of the simply-typed λ-calculus in β-normal
form in which the arguments of a free variable are η-equivalent to distinct bound
variables.

For instance, λxyz.f(H(x, y), H(x, z)) and λx.F (λz.x(z))1 are patterns while
λxy.G(x, x, y), λxy.H(x, f(y)) and λxy.H(F (x), y) are not patterns.

We always assume that the terms are in η-long β-normal form [7, 12, 13], the
β and η rules being respectively oriented as follows:
(λx.M)N →β M{x 7→ N} (only the free occurrences of x are replaced by N),
F →η λxn.F (xn) if the type of F is α1 → . . .→ αn → α, and α is a base type.
The η-long β-normal form of a term t is denoted by t lηβ . Pattern unification is
decidable, a result by Miller [11], refined by Nipkow [12]:

Theorem 1. The unifiability of patterns is decidable and if two patterns are
unifiable, there is an algorithm computing a unique most general unifier.

We define now what we mean by “associative-commutative operators”.

1.2 Equational theories, E-unification and AC-unification

Let E = {l1 ' r1, . . . , ln ' rn} a set of axioms such that li and ri are terms of
the same type, for 1 ≤ i ≤ n. The equational theory =E generated by E is the

1 We will always write such a pattern in the (η-equivalent) form λx.F (x), where the
argument of the free variable F is indeed a bound variable.



least congruence2 containing all the instances of the axioms of E. The theory
we consider here is the associative-commutative theory of one or more constant
operators.

We distinguish some binary constant operators which are associative and
commutative (which we denote by +,+1, . . .), and that we write in infix no-
tation. The other constants are called free. Actually, we shall use a flattened
representation, and when a term is written in the form t1 + · · · + tn, it is im-
plicitly assumed that the top symbol of the tis is not +. For instance, the term
λxyz. + (+(F (x, y), H(y, z)), F (x, y)) will be written λxyz.F (x, y) + H(y, z) +
F (x, y). In addition, we will sometimes write it λxyz.2F (x, y) + H(y, z), with
the usual convention that nt stands for t+ · · ·+ t︸ ︷︷ ︸

n times

, where n is a positive integer.

Definition 2. The associative-commutative (AC) theory of + is the equational
theory presented by AC(+) = {(x + y) + z ' x + (y + z), x + y ' y + x}. The
theory AC(+1, . . . ,+n) is the theory presented by AC(+1) ∪ · · · ∪ AC(+n). In
the sequel, we will refer to AC and =AC when +1, . . . ,+n are not relevant.

Definition 3 (Unification problems). An equation is a pair < s, t > of
patterns of the same type, denoted by s = t. A unification problem is either
> (the trivial problem), or ⊥ (the unsolvable problem), or a (disjunction of)
conjunction(s) of equations of the form P ≡ s1 = t1 ∧ · · · ∧ sn = tn. A
substitution σ is an E-unifier of P if siσ and tiσ are equivalent modulo ηβ-
equivalence and the theory =E for 1 ≤ i ≤ n, which we write si =βηE ti.

Since we consider only terms in η-long β-normal form, the following result from
Tannen will allow us to restrict our attention to =E instead of =βηE :

Theorem 2 ([6]). For any terms u and v, u =βηE v if and only if u lηβ=E v lηβ.

In the case of AC-theories, we can assume without loss of generality that the
AC-operators have types of the form α → α → α for some type α. Indeed, if it
wasn’t so, then (a+b)+c and a+(b+c) would not be of the same type. Further,
we assume that α is a base type. Nevertheless, we can still define a “higher-order
+”. Consider two terms u and v of type σ → α where α is a base type. Then
define u+σ→α v as the term λx.u(x) + v(x) of type σ → α.
Under the above assumptions, there cannot be an abstraction below an AC-
operator, since otherwise either the term would not be in η-long β-normal form,
or the AC-operator would not apply to a base type.

2 Purification

In this section we start by giving a Variable abstraction rule which is obviously
correct and terminating, and allows us to split the original problem into pure
subproblems.

2 i.e., compatible also with application and abstraction, in our context.



Definition 4. A unification problem P is pure in the free theory if it contains
no AC symbol. P is pure in the AC-theory of + if the only constant occurring
in P is the associative-commutative constant +.

Definition 5. A subterm u of a term t is an alien subterm if it occurs imme-
diately under an AC symbol and its head is not a free variable, or if it occurs
immediately under a free constant and its head is an AC symbol.

Applying repeatedly the following rule will yield a problem with no alien
subterms.

VA
λx.t[u]p = λxs → λx.t[H(y)]p = λx.s ∧ λy.H(y) = λy.u
if u is an alien subterm of t[u]p at position p, and y = FV(u) ∩ x, where H is
a new variable.

Clearly, VA alone terminates, and we introduce some syntax for the unifica-
tion problems obtained after applying it as long as possible.

Definition 6. A unification problem in the theory AC(+1, . . . ,+n) will be writ-
ten in the form

P ≡ PF ∪ P0 ∪ P1 ∪ · · · ∪ Pn
where

– P0 is pure in the free theory, containing no equations of the form
λx.F (x1, . . . , xn) = λx.F (xπ(1), . . . , xπ(n)) (where π is a permutation of
(1, . . . , n)),

– PF contains all the flexible-flexible equations with the same heads described
above.

– Pi is a pure unification problem in the AC theory of +i, the arguments of
+i being of the form F (x) where F is a free variable.

We will also distinguish some equations that will not be written in η-long
β-normal form.

Definition 7. An equation in a unification problem P is quasi-solved if it is
of the form F = s where F is a free variable and F /∈ FV(s). A quasi-solved
equation F = s of a unification problem P is solved in P if F has no other free
occurrence in P .

We can now present some of the rules of Nipkow’s algorithm [12] which are
valid in the presence of =AC . Only part of the work is done here since two
special cases are not treated, namely the flexible-flexible equations with the
same free variable on both sides and the equations where the top constant is
associative-commutative. We also introduce some new rules which are specific
to AC-unification.



Dec-free
λx.a(s1, . . . , sn) = λx.a(t1, . . . , tn) ∧ P∅ →
λx.s1 = λx.t1 ∧ · · · ∧ λx.sn = λx.tn ∧ P∅
if a is a free constant symbol or a bound variable of x.

FR-free
λx.F (yn) = λx.a(s1, . . . , sm) ∧ P∅ →
λyn.H1(yn) = λyn.s1 ∧ · · · ∧ λyn.Hm(yn) = λyn.sm
∧ P∅{F 7→ a(H1(yn), . . . ,Hm(yn))}
∧ F = λx.a(H1(yn), . . . ,Hm(yn))}
If F is a free variable, a a free constant and F /∈ FV(si) for 1 ≤ i ≤ m, where
H1, . . . ,Hm are new variables.

FF 6=
λx.F (yn) = λx.G(zm) ∧ P∅ →
P∅{F 7→ λyn.H(vp), G 7→ λzm.H(vp)}
∧ F = λyn.H(vp) ∧ G = λzm.H(vp)
if F and G are different free variables where vp = yn ∩ zm.

Fail1
λx.a(s) = λx.b(t) →
⊥
if a and b are constants or bound variables and a 6= b.

Fail2
λx.F (y) = λx.a(s) →
⊥
if F is free in s or a ∈ x \ y.

Fig. 1. A subset of Nipkow’s rules for the unification of higher-order patterns



The rules of figure 1 are a subset of those presented by Nipkow and as such,
they terminate. These rules are to be applied to the pure subproblem P0. Note,
however that Nipkow explicitly states that his termination proof relies on the
fact that he uses lists, and not multisets (conjunctions in our case). Hence, the
conjunction operator must not be considered as associative commutative when
applying these rules. It has to be noticed that the rules FR-free and FR 6=
make some solved equations appear. These equations will not be put in η-long
β-normal form, and no rule of figure 1 will apply to them.

Note that the rule Fail1 is still correct if a or b is an AC constant due to
Tannen’s theorem and to the fact that AC-theories are collapse-free.

Some cases are missing in figure 1, which is not surprising, since they require
a special treatment in the presence of AC constants. A first case we omitted
above is the flexible-flexible case with equal heads. It has been noticed by Qian
and Wang that although such equations are always solvable, they do not have
finite complete sets of AC-unifiers. That is why we will freeze them and just
check for the compatibility of such equation with the rest of the problem. The
second case that has not been considered yet is the pure AC subproblems.

Another rule is added to those of figure 1 which just ignores the flexible-
flexible equations with same heads and freezes them by storing them in PF . This
is made necessary by the fact that even if P0 does not contain such equations at
the beginning, some may appear by applying the other rules.

Freeze
PF ∧ (s = t ∧ P0) ∧ P1 ∧ · · · ∧ Pn → (s = t ∧ PF ) ∧ P0 ∧ P1 ∧ · · · ∧ Pn
if s = t is a flexible-flexible equation where s and t have the same head variable.

Once the VA has been applied as long as possible to the original problem,
and the rules of figure 1 plus the rule Freeze have been applied as long as
possible to the subproblems P0 and PF , the problem has the form

PF ∧ P0 ∧ P1 ∧ · · · ∧ Pn

where

– PF contains only flexible-flexible equations with the same free constant on
both sides,

– P0 is in a DAG solved form, from which a most general unifier is trivially
obtained by applying a variable elimination rule.

– Pi is a pure problem in the AC-theory of +i.

We extend the usual notion of DAG solved forms so as to take into account
the frozen equations.

Definition 8. A problem P is in a DAG solved form if it is of the form P ′ ∧ PF
where



– P ′ is a conjunction F1 = t1 ∧ · · · ∧ Fn = tn of quasi-solved equations,
containing no cycle as in the premise of the Cycle rule of figure 2 (section
4), and where each Fi occurs exactly once as a left-hand side of an equation,

– PF is a conjunction of frozen equations of the form λx.F (x) = λx.F (xπ)
such that if F = λx.u(x) is in P ′, then u(x) =ηβAC u(xπ).

What we are left to do is to solve the pure AC subproblems (this is the
object of the next section), to recombine the different solved subproblems
P0, P1, . . . , Pn, and to check the compatibility of the frozen flexible-flexible equa-
tions with the rest of the problem. This will be done in section 4.

3 Elementary AC-unification of higher-order patterns

In this section, we show how to handle the two cases that we omitted in the
previous section.

3.1 Flexible-flexible equations with the same head variable

Actually, there is not much to do with such equations. Indeed, even though they
are always solvable, they do not have finite complete sets of AC-unifiers. This
was noticed by Qian and Wang [13] who give the following example:

Example 1 ([13]). Consider the equation e ≡ λxy.F (x, y) = λxy.F (y, x) in the
AC-theory of +. For m ≥ 0, the substitution

σm = {F 7→ λxy.Gm(H1(x, y) +H1(y, x), . . . ,Hm(x, y) +Hm(y, x))}

is an AC-unifier of e. On the other hand, every solution of e is an instance of
some σi. In addition σn+1 is strictly more general than σn.

Hence, AC-unification of patterns is not only infinitary, but nullary, in the sense
that some problems do not have minimal complete sets of AC-unifiers [14].

As Qian and Wang, we keep these equations as constraints, and we will see
in section 4, how to check the compatibility of such constraints with the rest of
the solutions.

3.2 Elementary AC-unification: an example

Before giving the algorithm for elementary AC-unification, let us develop an
example which will help to follow the remainder of this section. Consider the
equation

λxyz.2F (x, y, z) + F (y, z, x) = λxyz.2G(x, y, z)

A solution σ may introduce a term t(x, y, z) which does not depend on the order
of its arguments (i.e. t(x, y, z) = t(y, z, x)). Such a term is introduced 2α times
by 2F (x, y, z)σ and α times by F (y, z, x)σ. On the other hand t(x, y, z) must
be introduced 2β times by 2G(x, y, z)σ where (α, β) is a positive solution of the



linear Diophantine equation 3n = 2m. The set of minimal positive solutions of
this equation is {(2, 3)}. Let L1 be a new variable and assume that θ is such that
L1(x, y, z)θ = L1(y, z, x)θ = L1(z, x, y)θ. Then

{F 7→ λ(x, y, z).2L1(x, y, z)θ,G 7→ λ(x, y, z).3L1(x, y, z)θ}

is a solution of the original equation.
On the other hand, σ may introduce a term t(x, y, z) which depends on the
order of its variables (i.e. t(x, y, z) 6= t(y, z, x))3. Assume that F (x, y, z)σ intro-
duces α1 times t(x, y, z), α2 times t(y, z, x) and α3 times t(z, x, y). In this case,
G(x, y, z) introduces respectively β1, β2, β3 times the terms t(x, y, z), t(y, z, x)
and t(z, x, y) where (α1, α2, α3, β1, β2, β3) are positive solutions of the system of
linear Diophantine equations

2n1 + n3 = 2m1

2n2 + n1 = 2m2

2n3 + n2 = 2m3

Each of the above equations ensures that the respective numbers of occur-
rences of t(x, y, z), t(y, z, x) and t(z, x, y) introduced by σ in both hands of
the equation are the same. The set of minimal positive solutions of this sys-
tem is {(2,0,0,2,1,0),(0,2,0,0,2,1),(0,0,2,1,0,2)} Let us associate the new variables
L2, L3, L4 with each of these solutions. A solution of the original problem is

{ F 7→ λxyz. 2L1(x, y, z)θ + 2L2(x, y, z) + 2L3(y, z, x) + 2L4(z, x, y),

G 7→ λxyz. 3L1(x, y, z)θ + 2L2(x, y, z) + L2(y, z, x) + 2L3(y, z, x)

+L3(z, x, y) + L4(x, y, z) + 2L4(z, x, y)}

provided that L1(x, y, z)θ = L1(y, z, x)θ = L1(z, x, y)θ. As in the first-order
AC-unification, some of the new variables may be omitted as long as one has a
well-formed substitution (i.e. not mapping a variable onto an “empty” term).

3.3 Elementary AC-unification

We show now how to solve a pure equation modulo AC in the general case. The
technique naturally extends to the solving of pure problems as in the first-order
case, but the notations are already quite involved, and we prefer to restrict our
presentation to the case of a single equation. We can assume without loss of
generality that the problem has the form:

P ≡ λx.
n1∑
i=1

∑
π∈Π

ai,πFi(x
π) = λx.

n2∑
i=n1+1

∑
π∈Π

ai,πFi(x
π)

3 This case was not considered in [13], since AC-unification was a black box: this is
why the algorithm is not complete



where Π is a subgroup of the group of permutations over all the variables of
x. Π is actually the subgroup generated by the permutations occuring in the
problem4. Note that some of the ai,πs may be equal to zero.

As in the example, a solution of the problem may introduce a term t(x), which
is invariant under some permutations of its arguments. These permutations are
a subgroup Π0 of Π. Let us denote by PΠ0

Dioph the following linear Diophantine
system in n2 × Card(Π) natural unknowns yi,π:

PΠ0

Dioph ≡

n2∧
i=1

∧
(π1,π2)|Π0◦π1=Π0◦π2

yi,π1 = yi,π2

∧∧
π′∈Π

n1∑
i=1

∑
π∈Π

ai,π−1◦π′yi,π =

n2∑
i=n1+1

∑
π∈Π

ai,π−1◦π′yi,π

and by PDioph the disjunction
∨
Π0 subgroup of Π P

Π0

Dioph. yi,π is the number of

occurrences of a given term t(x) in Fi(x
π). The first part of PΠ0

Dioph states that t
is invariant under the permutations of Π0, and the second part states that the
number of t(xπ

′
)s is the same on both sides of the equation.

Definition 9. Let P =
⋃
Π0
PΠ0

be a subset of minimal solutions of the linear
Diophantine system PDioph, where each PΠ0 is a subset of minimal solutions of

PΠ0

Dioph. P is said to be great enough if

∀i ∈ {1, . . . , n2}
∑
Π0

∑
m∈PΠ0

∑
π∈Π/Π0

m(i, π) > 0

Proposition 1. Let P be any subset of the minimal solutions of PDioph, which
is great enough. Then σP is a solution of P :

σP = {Fi 7→ λx.
∑
Π0

∑
m∈PΠ0

∑
π′∈Π/Π0

m(i, π′)Lm(xπ
′
)}

where Lm,m ∈ PΠ0
is a new variable constrained by ∀π ∈ Π0 Lm(xπ) = Lm(x).

Proof. Since P is great enough,
∑
Π0

∑
m∈PΠ0

∑
π′∈Π/Π0

m(i, π′)Lm(xπ
′
) is a

non-empty sum for all i, hence FiσP is well-defined. Moreover, we have:∑n1

i=1

∑
π∈Π ai,π(FiσP)(xπ) =∑n1

i=1

∑
π∈Π ai,π

∑
Π0

∑
m∈PΠ0

∑
π′∈Π/Π0

m(i, π′)Lm(xπ
′◦π) =∑

Π0

∑
m∈PΠ0

∑
π∈Π

∑n1

i=1

∑
π′′∈Π/Π0

ai,πm(i, π−1 ◦ π′′)Lm(xπ
′′
) =∑

Π0

∑
m∈PΠ0

∑
π′′∈Π/Π0

(
∑
π∈Π

∑n1

i=1 ai,πm(i, π−1 ◦ π′′))Lm(xπ
′′
) =∑

Π0

∑
m∈PΠ0

∑
π′′∈Π/Π0

(
∑
π′′′∈Π

∑n1

i=1 ai,π′′◦π′′′−1m(i, π′′′))Lm(xπ
′′
) =

since m is a solution of PΠ0

Dioph∑
Π0

∑
m∈PΠ0

∑
π′′∈Π/Π0

(
∑
π′′′∈Π

∑n2

i=n1+1 ai,π′′◦π′′′−1m(i, π′′′))Lm(xπ
′′
) =∑n2

i=n1+1

∑
π∈Π ai,π(FiσP)(xπ)

4 In the example, Π is equal to {π0, π1, π2}, where π0 = {x 7→ x, y 7→ y, z 7→ z},
π1 = {x 7→ y, y 7→ z, z 7→ x}, π2 = {x 7→ z, y 7→ x, z 7→ y}



Proposition 2. {σP | P is great enough} is a complete set of solutions for P .

Proof. Let σ be a solution of P . Let {tπj }j∈J,π∈Π be a set of terms which contains
all the immediate alien subterms of the Fiσ, and such that

∀j, k (∃π, π′ tπj = tπ
′

k )⇔ (j = k)

Fiσ may be written as λx.
∑
j∈J

∑
π′∈Π

αi,j,π′tj(x
π′) σ is a solution, hence by the

theorem of Tannen [6]:

n1∑
i=1

∑
π∈Π

ai,π(Fiσ)(xπ) =AC

n2∑
i=n1+1

∑
π∈Π

ai,π(Fiσ)(xπ)

n1∑
i=1

∑
π∈Π

ai,π(
∑
j∈J

∑
π′∈Π

αi,j,π′tj(x
π′◦π)) =AC

n2∑
i=n1+1

∑
π∈Π

ai,π(
∑
j∈J

∑
π′∈Π

αi,j,π′tj(x
π′◦π))

∑
j∈J

n1∑
i=1

∑
π∈Π

∑
π′∈Π

ai,παi,j,π′tj(x
π′◦π) =AC

∑
j∈J

n2∑
i=n1+1

∑
π∈Π

∑
π′∈Π

ai,παi,j,π′tj(x
π′◦π)

Hence, by hypothesis, for all j ∈ J , we have

n1∑
i=1

∑
π∈Π

∑
π′∈Π

ai,παi,j,π′tj(x
π′◦π) =AC

n2∑
i=n1+1

∑
π∈Π

∑
π′∈Π

ai,παi,j,π′tj(x
π′◦π)

Let Πj be the subgroup of invariant permutations of tj i. e.
Πj = {π ∈ Π | λx.tj(x) = λx.tj(x

π)}. Hence we have for all π′′ ∈ Π:

n1∑
i=1

∑
π,π′|π′◦π◦π′′−1∈Πj

ai,παi,j,π′tj(x
π′′) =AC

n2∑
i=n1+1

∑
π,π′|π′◦π◦π′′−1∈Πj

ai,παi,j,π′tj(x
π′′)

n1∑
i=1

∑
π,π′|π′◦π◦π′′−1∈Πj

ai,παi,j,π′ =N

n2∑
i=n1+1

∑
π,π′|π′◦π◦π′′−1∈Πj

ai,παi,j,π′

n1∑
i=1

∑
π

ai,π(
∑

π′|π′◦π◦π′′−1∈Πj

αi,j,π′) =N

n2∑
i=n1+1

∑
π

ai,π(
∑

π′|π′◦π◦π′′−1∈Πj

αi,j,π′)

n1∑
i=1

∑
π

ai,π(
∑

π′|π′∈Πj◦π′′◦π−1

αi,j,π′) =N

n2∑
i=n1+1

∑
π

ai,π(
∑

π′|π′∈Πj◦π′′◦π−1

αi,j,π′)

n1∑
i=1

∑
π

ai,π′′′−1◦π′′(
∑

π′|π′∈Πj◦π′′′
αi,j,π′︸ ︷︷ ︸

βi,j,π′′′

) =N

n2∑
i=n1+1

∑
π

ai,π′′′−1◦π′′(
∑

π′|π′∈Πj◦π′′′
αi,j,π′︸ ︷︷ ︸

βi,j,π′′′

)

For all j, (βi,j,π)i,π satisfies moreover Πj ◦ π1 = Πj ◦ π2 ⇒ βi,j,π1 = βi,j,π2 .

Hence βj = (βi,j,π)i,π is a solution of P
Πj
Dioph, βj is a linear combination of

some minimal solutions of P
Πj
Dioph.



Let P =
⋃
Π0
PΠ0

be the subset of minimal solutions of PDioph used at least

by one βj , hence one can write ∀j βj =
∑

m∈PΠj

cj,mm, where the cj,m are non-

negative. We extend the definition of the cj,ms for the ms which are minimal

solutions of PDioph but not of P
Πj
Dioph by 0. Note that σ can be written as:

Fiσ = λx.
∑
j∈J

∑
π′∈Π αi,j,π′tj(x

π′)

= λx.
∑
j∈J

∑
π′′′∈Π/Πj

∑
π′∈Πj◦π′′′ αi,j,π′tj(x

π′)

= λx.
∑
j∈J

∑
π′′′∈Π/Πj (

∑
π′∈Πj◦π′′′ αi,j,π′)tj(x

π′′′)

= λx.
∑
j∈J

∑
π′′′∈Π/Πj βi,j,π′′′tj(x

π′′′)

= λx.
∑
j∈J

∑
π′′′∈Π/Πj (

∑
m∈P cj,mm(i, π′′′))tj(x

π′′′)

= λx.
∑
m∈P

∑
j∈J

∑
π′′′∈Π/Πj cj,mm(i, π′′′)tj(x

π′′′)

Let us define θ as ∀m ∈ P Lm 7→ λx.
∑
j∈J

cj,mtj(x). θ is a valid substitution

since if cj,m 6= 0, the subgroup of invariant permutations of tj is Πj , hence Lmθ
satisfies the constraint. It is easy to verify that σ is equal to σPθ.

We have shown how to solve a pure equation modulo AC, but actually, we
solve systems of such equations P+i , together with the frozen equations in PF
which involve a variable occurring in P+i . Such frozen equations may be consid-
ered as pure equations, without any AC symbols. Obviously Proposition 1 and
Proposition 2 are still valid.

4 Recombination

We first present a combination algorithm for combining the solutions of the
different solved subproblems. It is closely inspired by our algorithm for (first-
order) AC-unification. [1, 4, 3]. There, the termination proof is based on the
notion of shared variables which we adapt here. With this modification of the
notion of shared variables, our proof can be reused exactly as such since it
basically relies upon the fact that solving a pure subproblem will not increase
the number of shared variables.

4.1 Combination

In the previous section, we have seen how to turn PF ∧ Pi into an equivalent
problem P ′F ∧ P ′i where P ′i is now solved and P ′F may contain additional frozen
flexible-flexible equations. Now, it may happen that solving a subproblem Pi
yields some solved equations of the form F = λx.G(x). These equations are by
definition solved in Pi, but the free variables F and G may occur in some other
subproblem Pj . Replacing F by λx.G(x) in the other subproblems may make
some of them unsolved.



Definition 10. Two distinct non-solved free variables are shared in Pi if
they both occur in Pi and are identifiable outside Pi. Two non-solved free
variables F1 and Fk are identifiable outside Pi if there exists a sequence
(F1, F2), (F2, F3), . . . , (Fn−1, Fk) such that for 1 ≤ i < k, both Fi and Fi+1 have
a free occurrence in some problem Pj with i 6= j.

The rules of figure 2 mimic those mentioned above for first-order AC-
unification. They have to be applied as follows. If P0 is not solved, then it will
be solved by using the rules of figure 1. The pure AC subproblems will be solved
using the algorithm for elementary AC unification of patterns of section 3. In
both cases, the flexible-flexible equations with the same free variable on both
sides are frozen in PF . Let us stress that the frozen equations in PF are never
used, nor altered at this stage. In particular, the substitutions are not applied
to PF .

Solve
Pi → P ′i
if Pi is not solved, and P ′i is a solved form of Pi.

Variable-Replacement
F = λx.G(y) ∧ P → F = λx.G(y) ∧ P{F 7→ λx.G(y)}
if both F and G have a free occurrence in P .

Clash
F = s ∧ F = t → ⊥
if s and t have different constant heads.
Cycle
F1 = t1[F2] ∧ F2 = t2[F3] · · · ∧ Fn = tn[F1] → ⊥
if there is a constant on the path between the head and Fi+1(mod n) in some
ti.

Fig. 2. The combination rules

The following lemmas are the same as in the first-order case, and we omit
the proofs which translate naturally in our context.

Lemma 1. Solve does not increase the number of shared variables in any of
the subproblems P0, . . . , Pn.

Lemma 2. If Variable-Replacement makes a solved subproblem Pi unsolved,
then it decreases the multiset of the numbers of shared variables in P0, . . . , Pn.

The termination proof is then provided by the following measure which com-
pares lexicographically



1. The multiset of the numbers of shared variables in P0, . . . , Pn,
2. the number of unsolved subproblems in {P0, . . . , Pn}.

Proposition 3. The rules of figure 2 terminate and yield either the unsolvable
problem ⊥, or a problem

P ≡ PF ∧ P0 ∧ · · · ∧ Pn

where

– PF contains only flexible-flexible equations with the same head variable on
both sides,

– Pi is solved for 0 ≤ i ≤ n,
– each free variable F occurs at most once in P0 ∧ · · · ∧ Pn as a left-hand

side of an equation,
– there is no cycle as in the premise of the rule Cycle.

What the above proposition says is that the problem obtained, if one forgets
the frozen part PF , is a DAG-solved form (see [9]), that is a problem from which a
unifier is trivially obtained by applying as long as possible a variable elimination
rule. We make a technical (yet cost-less) assumption on the rule Solve that
will ease the termination proof of the next section. If solving a pure subproblem
yields a solved equation F = λx.L(x) and a frozen equation λx.L(x) = λx.L(xπ),
where L is a new variable, then L is replaced by F in the rest of the problem,
and the frozen equation is replaced by λx.F (x) = λx.F (xπ). In other words, we
want to avoid to just rename a variable by a variable of a frozen equation.

4.2 Frozen variables

The problem that we have omitted so far is that of the frozen flexible-flexible
equations. As we have seen in section 3, such equations have no minimal complete
set of unifiers, hence the solution (suggested by Qian and Wang) to keep them
as constraints. In practice, such equations will never be explicitly solved, but one
still needs to test their compatibility with the rest of the problem.

This is achieved by applying the rules of figure 3. By abuse of notations,
we write t(x) and t(xπ), even if all the variables of x do not appear in t so as
to be able to apply the permutations. The only rule that may seem to cause
non-termination is Merge, since Compatibility and Incompatibility can ob-
viously cause no trouble, and Propagate will eventually lead to applying Com-
patibility, Incompatibility or Merge. But Merge may make some previously
solved problems unsolved. One has then to apply again as long as possible the
rules of figure 2.

Lemma 3. Merge cannot be applied infinitely many times.

Proof (Sketched). If solving Pi makes it possible to apply Merge to some other
problem Pj , then the solving of Pi must have created a new frozen equation
λx.F (x) = λx.F (xπ), where F appeared free in both Pi and Pj . We call such



Compatibility
λx.F (x) = λx.F (xπ) ∧ F = λx.u(x) → F = λx.u(x)
if λx.u(x) =ηβAC λx.u(xπ).

Incompatibility
λx.F (x) = λx.F (xπ) ∧ F = λx.u(x) → ⊥
if λx.u(x) is ground and λx.u(x) 6=ηβAC λx.u(xπ).

Propagate
λx.F (x) = λx.F (xπ) ∧ F = λx.γ(t1(x), . . . , tn(x)) →
λx.t1(x) = λx.t1(xπ) ∧ · · · ∧ λx.tn(x) = λx.tn(xπ)
if γ is not an AC constant.

Merge
λx.F (x) = λx.F (xπ) ∧ F = λ(x).t1(x) + · · ·+ tn(x) →
λ(x).t1(x) + · · ·+ tn(x) = λ(x).t1(xπ) + · · ·+ tn(xπ)
If + is an AC constant.

Fig. 3. The rules for testing the compatibility of the frozen part with the
solved subproblems.

a variable a weakly shared variable. Note also that this occurs only when F has
no value with head +i. After applying Merge, Pj is to be solved again but this
time the value of F will be a term with head +j . Hence, no new frozen equation
with variable F will be created by solving Pj . The key of the proof relies on the
following lemma.

Lemma 4. No rule of figures 2 and 3 creates new weakly shared variables.

Theorem 3. The following algorithm terminates and computes a DAG solved
form for for unification of higher-order patterns modulo AC.

1. Apply as long as possible VA,
2. as long as possible do

(a) apply as long as possible the rules of figure 2
(b) apply the rules of figure 3 until a DAG solved form is obtained, or some

pure subproblem is made unsolved by Merge.

5 Conclusion

We have presented a unification algorithm for higher-order patterns modulo AC.
This will have applications in functional programming, algebraic-functional pro-
gramming and hopefully for testing the local confluence of higher-order rewrite
systems in the presence of associative-commutative constants. Our result will



not extend as such to E-unification of higher-order patterns for an arbitrary
theory E, since the algorithm heavily relies on the properties of AC. Yet, it will
be interesting to apply similar methods to other well-known theories of interest.
We have in mind the usual extensions of AC (like AC1, ACI,...), but also richer
theories like Abelian groups or Boolean rings. This will require not only to de-
sign an elementary unification algorithm for these theories, but also to adapt
the combination method to non-regular or collapsing equational theories.

References

1. Alexandre Boudet. Unification dans les Mélanges de Théories équationnelles.
Thèse de doctorat, Université Paris-Sud, Orsay, France, February 1990.

2. Alexandre Boudet. Combining unification algorithms. Journal of Symbolic Com-
putation, 16:597–626, 1993.

3. Alexandre Boudet. Competing for the AC-unification race. Journal of Automated
Reasoning, 11:185–212, 1993.

4. Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A new AC-unification al-
gorithm with a new algorithm for solving diophantine equations. In Proc. 5th IEEE
Symp. Logic in Computer Science, Philadelphia, pages 289–299. IEEE Computer
Society Press, June 1990.

5. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. In Michel Bidoit and Max Dauchet, editors, Theory and
Practice of Software Development, volume 1214 of Lecture Notes in Computer Sci-
ence, Lille, France, April 1997. Springer-Verlag.

6. Val Breazu-Tannen. Combining algebra and higher-order types. In Proc. 3rd IEEE
Symp. Logic in Computer Science, Edinburgh, July 1988.

7. R. Hindley and J. Seldin. Introduction to Combinators and λ-calculus. Cambridge
University Press, 1986.

8. Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . ω. Thèse
d’Etat, Univ. Paris 7, 1976.

9. Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract alge-
bras: A rule-based survey of unification. In Jean-Louis Lassez and Gordon Plotkin,
editors, Computational Logic: Essays in Honor of Alan Robinson. MIT-Press, 1991.

10. Jean-Pierre Jouannaud and Mitsuhiro Okada. Executable higher-order algebraic
specification languages. In Proc. 6th IEEE Symp. Logic in Computer Science,
Amsterdam, pages 350–361, 1991.

11. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. In P. Schroeder-Heister, editor, Extensions of Logic
Programming. LNCS 475, Springer Verlag, 1991.

12. T. Nipkow. Higher order critical pairs. In Proc. IEEE Symp. on Logic in Comp.
Science, Amsterdam, 1991.

13. Zhenyu Qian and Kang Wang. Modular AC-Unification of Higher-Order Patterns.
In Jean-Pierre Jouannaud, editor, First International Conference on Constraints
in Computational Logics, volume 845 of Lecture Notes in Computer Science, pages
105–120, München, Germany, September 1994. Springer-Verlag.

14. Jörg H. Siekmann. Unification theory. Journal of Symbolic Computation, 7(3 &
4), 1989. Special issue on unification, part one.


