AC-Unification of Higher-order Patterns

Alexandre Boudet Evelyne Contejean

LRI Orsay France

Motivations

- * Higher-order unification is undecidable
- * Unification of higher-order patterns is decidable
- * Combination of algebraic and functional programming paradigms
- \ast Local confluence of HRSs

 \parallel

Unification of higher-order patterns modulo equational theories

Patterns

Definition A pattern is

- * a term of the simply-typed λ -calculus in β -normal form
- * in which the arguments of a free variable are η -equivalent to distinct bound variables.

No equational theory, but α, β, η .

Theorem (Miller) The unifiability of patterns is decidable and if two patterns are unifiable, there is an algorithm computing a unique most general unifier.

Notation $\lambda \overline{x}.F(\overline{x}^{\pi})$ denotes $\lambda x_1 \dots \lambda x_n.F(x_{\pi(1)}, \dots, x_{\pi(n)})$, where π is a permutation over $\{1, \dots, n\}$.

AC-unification of Patterns

Definition Let $E = \{l_1 \simeq r_1, \ldots, l_n \simeq r_n\}$ a set of *axioms* such that l_i and r_i of the same type, for $1 \leq i \leq n$.

The equational theory $=_E$ is

the least congruence (compatible also with application and abstraction) containing all the instances of the axioms of E.

Definition An equation s = t is a pair of patterns of the same type.

A unification problem is $\begin{cases} - & \top \\ - & \bot \\ - & P \equiv s_1 = t_1 \ \land \cdots \ \land \ s_n = t_n. \end{cases}$

A substitution σ is an *E*-unifier of *P* if $\forall i, s_i =_{\beta \eta E} t_i$.

Theorem (Tannen)
$$\forall u, v \ u =_{\beta \eta E} v \iff u \updownarrow_{\beta}^{\eta} =_E v \downarrow_{\beta}^{\eta}$$
.

We consider the case where E is

$$\bigcup_{+ \in AC} \{x + y = y + x, x + (y + z) = (x + y) + z\}$$

Oct 30th, 1997

The type of + is $\alpha \to \alpha \to \alpha$, where α is a base type.

Linz, Austria.

Alien subterms and Purification

Definition $u = t|_{p \cdot i}$ is an alien subterm of t

- * if $t(p) \in AC$ and $Head(u) \notin \mathcal{FV}$,
- * or $t(p) \in \mathcal{FC}$ and $\text{Head}(u) \in \text{AC}$.

$\mathbf{V}\mathbf{A}$

 $\lambda \overline{x}.t[u]_p = \lambda \overline{x}.s \rightarrow \lambda \overline{x}.t[H(\overline{y})]_p = \lambda \overline{x}.s \wedge \lambda \overline{y}.H(\overline{y}) = \lambda \overline{y}.u$ if u is an alien subterm of $t[u]_p$ at position p, and $\overline{y} = \mathcal{FV}(u) \cap \overline{x}$, where H is a new variable.

A unification problem in normal form wrt **VA** has the form

$$P \equiv P_F \wedge P_0 \wedge P_1 \wedge \cdots \wedge P_n$$

- * P_0 is pure in the free theory, with no $\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}).$
- * P_F contains all the Flex-Flex equations $\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}).$
- * P_i is a pure unification problem in the AC theory of $+_i$, the arguments of $+_i$ being of the form $F(\overline{x})$ where F is a free variable.

Why Frozen Equations?

Example (Qian & Wang)

$$\lambda xy \cdot F(x,y) = \lambda xy \cdot F(y,x)$$

has the solutions

$$\sigma_n = \{ F \mapsto \lambda xy \cdot G(H_1(x,y) + H_1(y,x), \dots, H_n(x,y) + H_n(y,x)) \}$$

for all $n \in \mathbb{N}$.

In addition σ_{n+1} is strictly more general than σ_n (nullary theory).

Free: a subset of Nipkow's rules for pattern unification

Dec-free

$$\lambda \overline{x}.a(s_1,\ldots,s_n) = \lambda \overline{x}.a(t_1,\ldots,t_n) \wedge P_0 \rightarrow \lambda \overline{x}.s_1 = \lambda \overline{x}.t_1 \wedge \cdots \wedge \lambda \overline{x}.s_n = \lambda \overline{x}.t_n \wedge P_0$$

if a is a free constant symbol or a bound variable of \overline{x} .

FR-free

$$\lambda \overline{x}.F(\overline{y}) = \lambda \overline{x}.a(s_1,\ldots,s_m) \wedge P_0 \rightarrow$$

$$\lambda \overline{y}.H_1(\overline{y}) = \lambda \overline{y}.s_1 \wedge \cdots \wedge \lambda \overline{y}.H_m(\overline{y}) = \lambda \overline{y}.s_m$$

$$\wedge P_0\{F \mapsto \lambda \overline{x}.a(H_1(\overline{y}), \dots, H_m(\overline{y}))\}$$

$$\wedge F = \lambda \overline{x}.a(H_1(\overline{y}), \dots, H_m(\overline{y}))$$

If F is a free variable, a a free constant and $F \notin \mathcal{FV}(s_i)$ for $1 \leq i \leq m$, where H_1, \ldots, H_m are new variables.

$\mathbf{FF} \neq$

$$\lambda \overline{x}.F(\overline{y}) = \lambda \overline{x}.G(\overline{z}) \land P_0 \rightarrow$$

$$P_0\{F \mapsto \lambda \overline{y}.H(\overline{v}), G \mapsto \lambda \overline{z}.H(\overline{v})\}$$

$$\wedge \ F = \lambda \overline{y}.H(\overline{v}) \ \wedge \ G = \lambda \overline{z}.H(\overline{v})$$

if F and G are different free variables where $\overline{v} = \overline{y} \cap \overline{z}$.

Fail1

$$\lambda \overline{x}.a(\overline{s}) = \lambda \overline{x}.b(\overline{t}) \rightarrow \bot$$

if a and b are constants or bound variables and $a \neq b$.

Fail2

$$\lambda \overline{x}.F(\overline{y}) = \lambda \overline{x}.a(\overline{s}) \rightarrow \bot$$

if F is free in \overline{s} or $a \in \overline{x} \setminus \overline{y}$.

Linz, Austria.

Oct 30th, 1997

Freeze

 $P_F \wedge (\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}) \wedge P_0) \wedge P_1 \wedge \cdots \wedge P_n \rightarrow (\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}) \wedge P_F) \wedge P_0 \wedge P_1 \wedge \cdots \wedge P_n$ if F is a free variable.

Normal Forms

A unification problem (with no alien subterms) in normal form wrt ($\mathbf{Free} + \mathbf{Freeze}$) has the form

$$P_F \wedge P_0 \wedge P_1 \wedge \cdots \wedge P_n$$

where

- * P_F contains only $\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}),$
- * P_0 is solved,
- * P_i is a pure problem in the AC-theory of $+_i$.

CP'97 9

Pure AC Patterns: An Example

From AC Problems to Diophantine Problems

$$\lambda xyz.2F(x,y,z) + F(y,z,x) = \lambda xyz.2G(x,y,z)$$

Let σ be a solution of the above equation:

* σ may introduce t(x, y, z) such that t(x, y, z) = t(y, z, x).

 (α, β) is a positive solution of 3n = 2m.

* σ may introduce t(x, y, z) such that $t(x, y, z) \neq t(y, z, x)$.

$$\lambda xyz.2F(x,y,z)+F(y,z,x)=\lambda xyz.2G(x,y,z)$$

of
$$t(z, x, y)$$
 $2\alpha_3$ $+\alpha_2$ = $2\beta_3$

 $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$ are positive solutions of the system

$$2n_1 + n_3 = 2m_1$$

$$2n_2 + n_1 = 2m_2$$

$$2n_3 + n_2 = 2m_3$$

Pure AC Patterns: An Example (Continued)

${\bf Recombination + Constraints}$

The set of minimal solutions of 3n = 2m is $\{(2,3)\}$ The set of minimal solutions of

 $2n_1 + n_3 = 2m_1$

 $2n_2 + n_1 = 2m_2$

 $2n_3 + n_2 = 2m_3$

is $\{(2,0,0,2,1,0), (0,2,0,0,2,1), (0,0,2,1,0,2)\}.$

	F	(x,y,	z)	G(x,y,z)			
L_1	2			3			
L_2	2	0	0	2	1	0	
L_3	0	2	0	0	2	1	
L_4	0	0	2	1	0	2	

Pure AC Patterns: An Example (En

A solution of the original problem is

$$\left\{ \begin{array}{ll} F \mapsto \lambda xyz. & 2L_{1}(x,y,z)\theta + 2L_{2}(x,y,z) + 2L_{3}(y,z,x) + 2L_{3}(y,z,x) + 2L_{4}(x,y,z)\theta + 2L_{4}(x,y,z) + 2L_{4}(x,y,z) + 2L_{4}(x,y,z) + 2L_{4}(x,x,y) \end{array} \right\}$$

provided that $L_1(x, y, z)\theta = L_1(y, z, x)\theta = L_1(z, x, y)\theta$.

Pure AC Patterns: Another Example

$$\lambda xyz.G(x,y,z) = \lambda xyz.G(y,z,x) \land$$
$$\lambda xyz.2F(x,y,z) + F(y,z,x) = \lambda xyz.2G(x,y,z)$$

Let σ be a solution of the above problem:

 σ may introduce t(x, y, z) such that $t(x, y, z) \neq t(y, z, x)$.

 $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$ are positive solutions of the system

$$2n_1 + n_3 = 2m_1$$
 $2n_2 + n_1 = 2m_2$
 $2n_3 + n_2 = 2m_3$
 $m_1 = m_3$
 $m_2 = m_1$
 $m_3 = m_2$

Pure AC Patterns: Another Example (End)

The set of minimal solutions of 3n = 2m is $\{(2,3)\}$ The set of minimal solutions of P_{Dioph} is $\{(2,2,2,3,3,3)\}$.

$$P_{Dioph} \equiv \left\{ egin{array}{lll} 2n_1 + n_3 & = & 2m_1 \ 2n_2 + n_1 & = & 2m_2 \ 2n_3 + n_2 & = & 2m_3 \ m_1 & = & m_3 \ m_2 & = & m_1 \ m_3 & = & m_2 \ \end{array}
ight.$$

	F	(x,y,	z)	G(x,y,z)		
L_1		2		3		
L_2	2	2	2	3	3	3

A solution of the original problem is

$$\{F \mapsto \lambda xyz.2L_1(x,y,z)\theta + 2L_2(x,y,z) + 2L_2(y,z,x) + 2L_2(z,x,y), G \mapsto \lambda xyz.3L_1(x,y,z)\theta + 3L_2(x,y,z) + 3L_2(y,z,x) + 3L_2(z,x,y)\}$$
 provided that $L_1(x,y,z)\theta = L_1(y,z,x)\theta = L_1(z,x,y)\theta.$

Pure AC Patterns: General Case

$$E \equiv \lambda \overline{x} \cdot \sum_{i=1}^{n_1} \sum_{\pi \in \Pi} a_{i,\pi} F_i(\overline{x}^{\pi}) = \lambda \overline{x} \cdot \sum_{i=n_1+1}^{n_2} \sum_{\pi \in \Pi} a_{i,\pi} F_i(\overline{x}^{\pi})$$

 Π is the group of permutations over all the variables of \overline{x} .

$$E_{Dioph}^{\Pi_0} \equiv \bigwedge_{i=1}^{n_2} \bigwedge_{(\pi_1, \pi_2) \mid \Pi_0 \circ \pi_1 = \Pi_0 \circ \pi_2} y_{i,\pi_1} = y_{i,\pi_2} \land$$

$$\bigwedge_{\pi' \in \Pi} \sum_{i=1}^{n_1} \sum_{\pi \in \Pi} a_{i,\pi^{-1} \circ \pi'} y_{i,\pi} = \sum_{i=n_1+1}^{n_2} \sum_{\pi \in \Pi} a_{i,\pi^{-1} \circ \pi'} y_{i,\pi}$$

 E_{Dioph} is the disjunction $\bigvee_{\Pi_0 \text{ subgroup of } \Pi} E_{Dioph}^{\Pi_0}$.

Proposition Let \mathcal{P} be any subset of the minimal solutions of P_{Dioph} , which is great enough. Then $\sigma_{\mathcal{P}}$ is a solution of E:

$$\sigma_{\mathcal{P}} = \{ F_i \mapsto \lambda \overline{x}. \sum_{\Pi_0} \sum_{m \in \mathcal{P}_{\Pi_0}} \sum_{\pi' \in \Pi/\Pi_0} m(i, \pi') L_m(\overline{x}^{\pi'}) \}$$

where $L_m, m \in \mathcal{P}_{\Pi_0}$ is a new variable constrained by $\forall \pi \in \Pi_0 \ L_m(\overline{x}^{\pi}) = L_m(\overline{x}).$

Proposition $\{\sigma_{\mathcal{P}} \mid \mathcal{P} \text{ is great enough}\}$ is a complete set of solutions for P.

Recombination (without the frozen part)

Solve

$$P_i \rightarrow P'_i$$

if P_i is not solved and P'_i is a solved form of P_i .

${\bf Variable\hbox{-}Replacement}$

$$F = \lambda \overline{x}.G(\overline{y}) \wedge P \rightarrow F = \lambda \overline{x}.G(\overline{y}) \wedge P\{F \mapsto \lambda \overline{x}.G(\overline{y})\}$$
 if both F and G have a free occurrence in P .

Clash

$$F = s \land F = t \rightarrow \bot$$

if s and t have different constant heads.

Cycle

$$F_1 = t_1[F_2] \land F_2 = t_2[F_3] \cdots \land F_n = t_n[F_1] \rightarrow \bot$$
 if there is a constant on the path between the head and $F_{i+1(mod\ n)}$ in some t_i .

Recombination (frozen part)

Compatibility

$$\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}) \wedge F = \lambda \overline{x}.u(\overline{x}) \rightarrow F = \lambda \overline{x}.u(\overline{x})$$
 if
$$\lambda \overline{x}.u(\overline{x}) =_{\eta \beta AC} \lambda \overline{x}.u(\overline{x}^{\pi}).$$

Incompatibility

$$\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}) \wedge F = \lambda \overline{x}.u(\overline{x}) \rightarrow \bot$$

if $\lambda \overline{x}.u(\overline{x})$ is ground and $\lambda \overline{x}.u(\overline{x}) \neq_{\eta\beta AC} \lambda \overline{x}.u(\overline{x}^{\pi})$.

Propagate

$$\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}) \wedge F = \lambda \overline{x}.\gamma(t_1(\overline{x}), \dots, t_n(\overline{x})) \rightarrow \lambda \overline{x}.t_1(\overline{x}) = \lambda \overline{x}.t_1(\overline{x}^{\pi}) \wedge \dots \wedge \lambda \overline{x}.t_n(\overline{x}) = \lambda \overline{x}.t_n(\overline{x}^{\pi})$$
 if γ is not an AC constant.

Merge

$$\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}) \wedge F = \lambda(\overline{x}).t_1(\overline{x}) + \dots + t_n(\overline{x}) \rightarrow \lambda(\overline{x}).t_1(\overline{x}) + \dots + t_n(\overline{x}) = \lambda(\overline{x}).t_1(\overline{x}^{\pi}) + \dots + t_n(\overline{x}^{\pi})$$
If + is an AC constant.

Result

Theorem The following algorithm terminates and computes a DAG solved form for unification of higher-order patterns modulo AC.

- 1. Apply as long as possible **VA**,
- 2. as long as possible do
 - (a) apply as long as possible the rules for recombination without frozen equations
 - (b) apply the rules for compatibility of frozen equations until a DAG solved form is obtained, or some pure subproblem is made unsolved by **Merge**.

Conclusion and Further Works

We have a unification algorithm for higher-order patterns modulo AC.

Ongoing Work

Local confluence test for higher-order rewriting modulo AC (à la Jouannaud-Kirchner).

Future Work

Extensions to ACU, ACI, AG, BR, etc.