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Motivations '

* Higher-order unification is undecidable
« Unification of higher-order patterns is decidable

x Combination of algebraic and functional programming
paradigms
+ Local confluence of HRSs

Unification of higher-order patterns

modulo equational theories
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4 N
Patterns '

Definition A pattern is

x a term of the simply-typed A-calculus in S-normal form
* in which the arguments of a free variable are n-equivalent to

distinct bound variables.

\

Ny f (H (2, ), H(z, 2))

Ao . F(Az.x(2)) =, Ax.F(x)
Ay .G(x, x,y)
Axy.H(F(x),y) )

> are patterns

<

> are not patterns

No equational theory, but «, 3, 1.

Theorem (Miller) The unifiability of patterns is decidable

and if two patterns are unifiable, there is an algorithm com-

puting a unique most general unifier.

Notation \Z.F'(Z™) denotes Az ... Axp. F'(Tr(1)s .-+, Tr(n)),

where 7 is a permutation over {1,...,n}.
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AC-unification of Patterns.

Definition Let £ = {l; ~ry,...,l,, >~ r,} a set of axioms such

that [; and r; of the same type, for 1 <1 < n.
The equational theory =g is
the least congruence (compatible also with application and

abstraction) containing all the instances of the axioms of F.

Definition An equation s =t is a pair of patterns of the same

type.

A unification problem is ¢ — |

L PEslztl/\“'/\Sn:tn.
A substitution o is an E-unifier of P if Vi, s; =g,E t;.

Theorem (Tannen) YV u,v u=g,pv <> uli=pv]}.

We consider the case where E is

U e+y=y+za+@y+2)=(@@+y) +2}
+€AC

The type of + is @« — o — «, where « is a base type.
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Alien subterms and Puriﬁcation.

Definition u = t|,.; is an alien subterm of ¢
 if t(p) € AC and Head(u) ¢ FV,
x or t(p) € FC and Head(u) € AC.

VA
AT.tlul, = AT.s  — ATt[H(Y)], = A\T.s AN A\y.H(Y) = A\y.u
if u is an alien subterm of t[u], at position p, and § = FV(u)NZ,

where H is a new variable.

A unification problem in normal form wrt VA has the form
PEPF/\Po/\Pl/\“'/\Pn

* Py is pure in the free theory, with no A\Z.F'(T) = A\z.F'(T").

* Pp contains all the Flex-Flex equations A\Z.F (%) = A\Z.F'(z").
x P; is a pure unification problem in the AC theory of +;, the
arguments of 4; being of the form F' (%) where F' is a free

variable.
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Why Frozen Equations 7 I

Example (Qian & Wang)

Azy - F(z,y) = Avy - F(y, x)

has the solutions

On — {F = )\sr:y ) G<H1(x7y)+H1(y7x)7 s ,Hn(sc,y)+Hn(y,az))}

for all n € N.

In addition 0,41 is strictly more general than o,, (nullary
theory).
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Free: a subset of Nipkow’s rules for pattern uniﬁcation.

Dec-free
AT.a(S1,. .., 8n) = AT.a(ty,...,tn) N Py —
AT.S1 = AT.t1 A -+ AN AT.s, = A\x.t, \ Py

if a is a free constant symbol or a bound variable of .

FR-free

M. F(g) = AT.a(s1,.--,8m) N Py —

MNY.H1(y) = Ag.s1 A -+ AN XY.Hp(§) = A\y.$p,

A Po{F — Xz.a(H1(9),...,Hn(®))}

N F=Xt.a(H1(Y),...,Hn(9))}

If F'is a free variable, a a free constant and F' ¢ FV(s;) for
1 <1< m, where Hy, ..., H,, are new variables.

FF=+£

M F(y) =X X2.GZ) N Py —

Py{F — M\y.H(v),G+— \z.H(v)}

N F=MNg.H@) N G=)Xz.H(7)

if F' and G are different free variables where v =9y N Z.
Faill

AT.a(3) = \T.b(t) — L

if a and b are constants or bound variables and a # b.

Fail2
M. F(y) = AT.a(5) — L
if F'is freein sora €\ 7.
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Freeze

Pr AN (M. F(Z) = . F(Z") N Phb) N PL N\ --- N P, —
(N F(Z) = 2. F(@") N Pr) N Po N PL N --- N P,

if I'is a free variable.

Normal Forms .

A unification problem (with no alien subterms) in normal form
wrt (Free + Freeze) has the form

Pr NPy NP N+ NP,

where
* Pp contains only \Z.F(Z) = A\z.F(T™),
x Py is solved,

x P; is a pure problem in the AC-theory of +;.
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Pure AC Patterns: An Example.

From AC Problems to Diophantine Problems

Axyz. 2F (x,y,2) + F(y, z,x) = Axyz.2G(x,y, 2)

Let o be a solution of the above equation:

* 0 may introduce t(x,y, z) such that t(z,y, z) = t(y, z, x).

Axyz.2F (x,y, 2)+F (y, z, )= ryz.2G(x, y, )
# of t 200 +o = 203

(a, B) is a positive solution of 3n = 2m.

x o0 may introduce t(x,y, z) such that t(z,y, z) # t(y, z, x).
Axyz. 2F (x,y, 2)+F (y, z, x) = xyz.2G(x, y, 2)

# of t(z,y,2) 201 +as = 201
# of t(g,Z,CIT) 2042 +an — 262
# of t(z,x,y) 203 +aug = 233

(a1, s, ag, B1, B2, B3) are positive solutions of the system

2%1 -+ ng — 2m1
2712 +ny = 2m2
2713 +No = 2m3

\_
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Pure AC Patterns: An Example (Continued) I

Recombination + Constraints

The set of minimal solutions of 3n = 2m is {(2,3)}

The set of minimal solutions of

2711 +nsg = 2m1
2712 +ny = 2m2
2713 +ng = 2m3
is {(2,0,0,2,1,0),(0,2,0,0,2,1), b

b O (e (3 O 2

2 2 2 2

)'};\ej ),_fy )‘})) ;e/ ;,{yﬂ:}j

~
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Pure AC Patterns: An Example (Ex

golution of the original problem is

F = Avyz. 2L (z,y,2)0 + 2La(z,y, 2) + 2L3(y, 2z, ) +
G — Axyz. 3Li(x,y,2)0 + 2Ls(x,y,2) + Lo(y, z,x) + 2L

}

vided that Li(z,y,2)0 = Li(y, z,2)0 = L1(z,x,y)0.
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# of t(z,y, 2)
# of t(y, z, )
# of t(z,2,y)

# of t(z,y, 2)
# of t(y, 2, 1)
# of t(z,z,y)

\_

/ Pure AC Patterns: Another Example. \

Aryz.G(x,y, z) = Aeyz.G(y, z, x) A\
Aeyz.2F (x,y,2) + F(y, z,x) = Aryz.2G(x,y, 2)

Let o be a solution of the above problem:

o may introduce t(x,y, z) such that t(z,y, z) # t(y, z, x).

Axyz. 2F (x,y, 2)+F (y, z,x)=

2051 +Q3
209 +a
20&3 +Qo

Aryz.G(x,y, 2)

B
B2
B3

2711 + ns =
2722 +ny =

2ng +ny =

(a1, s, ag, B1, B2, B3) are positive solutions of the system

2m1
2m2

27713

Axyz.2G(x,y, z)
201
22
203
Aryz.G(x,y, 2)
B3
B
55
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Pure AC Patterns: Another Example (End) I

The set of minimal solutions of 3n = 2m is {(2,3)}
The set of minimal solutions of Pp;.pp is {(2,2,2,3,3,3)}.

2

27%1 + nsg = 2m1
27%2 + N = 2m2
2ns3 +ny9g = 2ms
PDioph = <
ma = ms
mo = mq
X ms3 = M2

b O (e (3 O (2

. 2 B . 2 B

Jé/ ;\,fy JJJQ};@ J,_va{:}j
A solution of the original problem is

{FH )\:C;yz2L1(ﬂc,y,Z)9—|—2L2(:C,y,Z)—|—2L2(y,z,x)—l—QLg(z,:c,y),
G — )‘xyszl(xa Y, Z)8+3L2($,y, Z)+3L2(y7 2y $)+3L2(2, x,y)}

provided that Li(x,y,2)0 = Li(y, z,2)0 = L1(z,x,y)0.
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Pure AC Patterns: General Case'
E =)z Z Z ai,ﬂ-F@(fw) = \T - Z Z ai,ﬂFi(fw)

1=1 we&ll 1=n1+1 w€ll

II is the group of permutations over all the variables of .

n2

/\ /\ Yim — yi,ﬂg/\

1=1(my,m2)|Ilgomy=IIgoms

ni1 n2
/\ E E A; r=long'Yi,m — E E A; r—1ox'Yi,m

/€Il 1=1 w&ll 1=ni1+1 well

o
EDz'oph —

. .. . I
Epiopn is the disjunction \/HO subgroup of T ED(Z?Oph.

Proposition Let P be any subset of the minimal solutions of

Ppioph, which is great enough. Then op is a solution of E:
op ={F; =22y Y > mli,7)Ln(@)}
Ho mE’PnO TF/EH/HO

where L,,, m € Pp, is a new variable constrained by
Vr € lly Lpn(T™) = Ly (T).

Proposition {op | P is great enough} is a complete set of
solutions for P.
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Recombination (without the frozen part) I
Solve

if P; is not solved and P/ is a solved form of F;.

Variable-Replacement
F=Xx.G(y) N P — F=Xt.G(y) N P{F — \Xx.G(y)}
if both F' and G have a free occurrence in P.

Clash
F=sNF=t — L
if s and ¢t have different constant heads.

Cycle
Flztl[Fg] N\ FQZtQ[Fg]"' N Fn:tn[Fl] — L
if there is a constant on the path between the head and

Fit1(mod n) In sOme t;.

\_
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Recombination (frozen part) I

Compatibility
if \Xz.u(Z) =40 A\Tu(T™).

Incompatibility
M F(Z)=Xe.F(Z") N F=Xtu@E) — L
if \Xz.u() is ground and A\Z.u(Z) #,pac AT.u(T™).

Propagate

M. F(Z) = M2 F(ZT") N F =X2.9(t1(T),...,tn(T))
AT (T) = AT (7)) A -+ A AT, (T) = ATt (T7)
if v is not an AC' constant.

Merge

N F(Z) =M 2. F(Z™) N F=XZ).t1(Z) + - + tn(T)
ANT) () + -+ t,(T) = NT)t1(TT) + -+ - + to(TT)
If + is an AC' constant.

\_

M F(Z) =M. F(Z") N F=Xzu(@) — F=Mt.u(T)

_>
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Theorem The following algorithm terminates and computes

a DAG solved form for for unification of higher-order patterns
modulo AC.

1. Apply as long as possible VA,

2. as long as possible do
(a) apply as long as possible the rules for recombination
without frozen equations
(b) apply the rules for compatibility of frozen equations un-
til a DAG solved form is obtained, or some pure sub-

problem is made unsolved by Merge.
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Conclusion and Further Works'

We have a unification algorithm for higher-order patterns
modulo AC.

Ongoing Work

Local confluence test for higher-order rewriting modulo AC' (a

la Jouannaud-Kirchner).

Future Work

Extensions to ACU, ACI, AG, BR, etc.
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