
About the Confluence of Equational
Pattern Rewrite Systems?

Alexandre Boudet and Evelyne Contejean

LRI, CNRS URA 410
Bt. 490, Universit Paris-Sud, Centre d’Orsay

91405 Orsay Cedex, France

Abstract. We study the confluence of higher-order pattern rewrite sys-
tems modulo an equational theory E. This problem has been investigated
by Mayr and Nipkow [13], for the case of rewriting modulo a congruence
à la Huet [8], (in particular, the equations of E can be applied above
the position where a rewrite rule is applied). The case we address here
is rewriting using matching modulo E as done in the first-order case by
Jouannaud and Kirchner [10].
The theory is then applied to the case of AC-theories, for which we
provided a complete unification algorithm in [1]. It happens that the AC-
unifiers may have to be constrained by some flexible-flexible equations
of the form λx1 · · ·λxn.F (x1, . . . , xn) = λx1 · · ·λxnF (xσ(1), . . . , xσ(n)),
where F is a free variable and σ a permutation. This situation requires
a slight technical adaptation of the theory.

Introduction

Using equations as a programming language is very tempting because very natu-
ral. A theory of term rewriting systems (TRSs) has been developed so as to make
this paradigm effective by orienting the equations into rewrite rules (in order to
gain efficiency) while restoring the completeness by a completion process [11, 9].
Completion relies on a critical pair lemma which shows that whenever a term t
can be rewritten using rules l1 → r1 and l2 → r2 in two different terms s1 and
s2, then either s1 and s2 rewrite (maybe in several steps) to a common reduct,
or there exists a critical pair between l1 → r1 and l2 → r2. The critical pairs are
obtained by unifying a left-hand side of a rule with a subterm of a left-hand side
of a rule.

Some equations (like commutativity) cannot be oriented into terminating
rewrite rules, hence the need of rewriting modulo an equational theory. The
confluence of a terminating rewrite system R modulo an equational theory E
(denoted by R/E) has been studied by Huet [8] who allows to choose an arbitrary
term in the E-equivalence class of a term before to rewrite it. Jouannaud and
Kirchner use a different reduction (denoted hereafter byRE), in which E-equality

? This research was supported in part by the EWG CCL, the HCM Network CON-
SOLE, and the “GDR de programmation du CNRS”.

steps can be performed only under the position to be rewritten [10]. Matching
modulo E is used for rewriting instead of standard matching. On the other hand,
a weaker notion of confluence suffices and the rewrite rules do not need to be
left-linear.

A major drawback of using equations as a programming language is that
they lack the expressiveness for providing higher-order features. Hence the idea
of higher-order rewrite systems (HRSs) which allow to define functions by the
means of rewrite rules over terms of the simply-typed lambda calculus. Actually
HRSs are difficult to handle since the decidability of higher-order matching is
still an open problem [4, 18] and higher-order unification is known to be undecid-
able [7, 5]. Matching and unification being crucial for reduction and deduction
respectively, we need to restrict our attention to pattern rewrite systems, which
are HRSs where the left-hand sides of the rules are patterns. Patterns are the
largest subset of the terms of the simply-typed lambda calculus for which higher-
order unification is known to be decidable [15]. Nipkow [17] has proved a critical
pair lemma for pattern rewrite systems (PRSs) and Mayr and Nipkow [13] have
lifted the theory of rewriting modulo an equational theory of Huet [8] to the case
of PRSs [13]. On the other hand, Boudet and Contejean have provided an AC-
unification algorithm for higher-order patterns [1]. The purpose of the present
work is to lift the theory of Jouannaud and Kirchner [10] to the higher-order
case, and to apply it to pattern rewrite systems modulo AC, completing the
following table:

R R/E RE

First-order Knuth–Bendix 70 Huet 80 Jouannaud–Kirchner 86
TRSs Huet 81

Higher-order Nipkow 91 Mayr–Nipkow 97 This paper
PRSs

We give now a simple motivating example. For this, we have to use some termi-
nology that will be defined later, but a little background about term rewriting
should suffice to follow the example.

Example 1. We consider the two base types elt and mset, having in mind to
define a map function on multisets of elt. We will use the following constant
function symbols:

empty : mset

mk-mset : elt→ mset

union : mset→ mset→ mset

map : (elt→ elt)→ mset→ mset

and we consider the following rewrite rules:

1. map(λx.F (x),empty) → empty

2. map(λx.F (x),union (mk-mset(E),M)) → union(map(F,M),

mk-mset(F (E)))
3. map(λx.x,M) → M

The third rule is just an optimization for avoiding to apply identity to
all the elements of a multiset. Consider now the term t (obtained by su-
perposing the left-hand size of rule 3. in the left-hand size of rule 2.):

t ≡ map(λx.x,union(mk-mset(E),M))

The term t rewrites by rule 3. to
s1 ≡ union (mk-mset(E),M)

which is no longer reducible. On the other hand, rule 2. applies to t yielding the
term

s′2 ≡ union(map(λ(x).x,M),mk-mset(λx.x(E)))
After a β-reduction and an application of the rule 3., the term s′2 reduces to the
irreducible term

s2 ≡ union(M, mk-mset(E))
Hence, the term t can be reduced to two different irreducible terms s1 and s2.

But s1 and s2 are in fact equal modulo the associativity and commutativity
of union.

1 Preliminaries

We assume the reader is familiar with simply-typed lambda-calculus, and term
rewriting. Given a set B of base types, the set T of all types is the closure of
B under the (right-associative) function space constructor →. The terms of the
simply-typed lambda-terms is generated from a set

⊎
τ∈T Vτ of typed variables

and a set
⊎
τ∈T Cτ of typed constants using the following construction rules:

x ∈ Vτ
x : τ

c ∈ Cτ
c : τ

s : τ → τ ′ t : τ

(s t) : τ ′
x : τ s : τ ′

(λx.s) : τ → τ ′

Some background is available in e.g. [6, 3] for lambda-calculus and term
rewriting systems. We shall use the following notations: λx1 · · ·λxn.s will be
written λxn.s, or even λx.s if n is not relevant. If in a same expression x appears
several times it denotes the same sequence of variables. In addition, we will use
the notation t(u1, . . . , un) or t(un) for (· · · (t u1) · · ·)un. If π is a permutation of
(1, . . . , n), xn

π stands for the sequence xπ(1), . . . , xπ(n). The free (resp. bound)
variables of a term t are denoted by fv(t) (resp. bv(t)). The positions of a term t
are words over {1, 2}, Λ is the empty word and t|p is the subterm of t at position
p. More precisely, t|Λ = t, (t1 t2)|i = ti for i ∈ {1, 2}, and (λx.t)|1 = t. The
notation t[u]p stands for a term t with a subterm u at position p. Pos(t) is the
set of positions of a term t. We shall write p ≤ q if q = p ·p′ for some p′, and p||q
if neither p ≤ q nor q ≤ p hold. bv(t, p) is the set of variables that are bound in
t above position p.

Unless otherwise stated, we assume all terms to be in η-expanded, β-normal
form, the η-expanded, β-normal form of a term t being denoted by t lηβ .

A substitution σ is a mapping from a finite set of variables to terms of the same
type. If σ = {x1 7→ t1, . . . , xn 7→ tn}, the domain of σ is Dom(σ) = {x1, . . . , xn}
and the set of variables introduced by σ is V Cod(σ) = fv(t1)∪· · ·∪fv(tn). When
applying a substitution σ to a term t, we will always assume that V Cod(σ) ∩
bv(t) = ∅ in order to avoid variable captures. In this case, tσ denotes the term
λxn.t(t1, . . . , tn) lηβ . We define θ1 + θ2 by x(θ1 + θ2) = xθ2 if x ∈ Dom(θ2), xθ1
otherwise.

2 Equational pattern rewrite systems

Definition 1. A pattern is a term of the simply-typed λ-calculus in β-normal
form in which the arguments of a free variable are η-equivalent to distinct bound
variables.

For instance, λxyz.f(H(x, y), H(x, z)) and λx.F (λz.x(z)) are patterns while
λxy.G(x, x, y), λxy.H(x, f(y)) and λxy.H(F (x), y) are not patterns.

Lemma 1. Let s be a pattern, p a position of s and θ a substitution such that
bv(s, p) ∩ Dom(θ) = ∅. Then (s|p)θ = sθ|p.

Let E = {l1 ' r1, . . . , ln ' rn} a set of axioms such that li and ri are
terms of a same base type, for 1 ≤ i ≤ n. The equational theory =E generated
by E is the least congruence1 containing all the instances of the axioms of E
(in the sequel, we shall not distinguish between E and =E). For instance, the
associative-commutative (AC) theory of + is the equational theory generated
by AC(+) = {(x+ y) + z ' x+ (y + z), x+ y ' y + x}. A substitution σ is an
E-unifier of s and t if sσ and tσ are equivalent modulo ηβ-equivalence and the
theory =E , which we write sσ =βηE tσ. A complete set of E-unifiers of s and t
is a set Σ of substitutions such that every σ in Σ is an E-unifier of s and t and
for every E-unifier θ of s and t, there exist σ ∈ Σ and ρ such that θ =βηE σρ.

The relation =E coincides with the reflexive, symmetric, transitive closure
∗↔E

of the relation→E defined by s→E t if there exist a position p of s, an equation
l ' r ∈ E and a substitution θ such that s|p = lθ and t = s[rθ]p.

Since we consider only terms in η-long β-normal form, the following result
from Mayr and Nipkow will allow us to restrict our attention to =E instead of
=βηE .

Theorem 1 ([14]). For any terms u and v, u =βηE v if and only if u lηβ=E

v lηβ.

The above theorem extends a result by Tannen where the equational theory is
assumed to be defined by first-order equations [2].

1 i.e., compatible also with application and abstraction, in our context.

Definition 2. A rewrite rule is a pair < l, r > of terms, denoted by l→ r such
that l is not a free variable, l and r are of the same base type and fv(r) ⊆ fv(l). If
l is a pattern, then l→ r is a pattern rewrite rule. A set of rewrite rules is called
a higher-order rewrite system (HRS). A set of pattern rewrite rules is called a
pattern rewrite system (PRS). A HRS R induces a rewriting relation →R on
terms defined by s→R t iff there exist l → r ∈ R, p ∈ Pos(s) such that s|p = lθ
and t = s[rθ]p for some substitution θ. If necessary, we shall use one or more of
the subscripts s →R t, s →l→r t, s →p t, s →θ t to specify the rewrite system,
the rule, the position and the substitution used in the reduction. The subscript
s→≥p t means that the reduction occurred under position p. Where σ and θ are
two substitutions, we shall write σ →R θ if for any variable x ∈ Dom(σ)∪Dom(θ)
xσ →R xθ.

For any binary relation →,
=→ will denote its reflexive closure,

∗→ its reflexive
transitive closure.

Definition 3. Let R be a pattern rewrite system and E an equational theory
whose axioms have patterns as left-hand and right-hand sides. < R,E > is
called an equational PRS. We write s →RE t if s|p =E u for some u and

s[u]p −→R,p s[v]p = t. In other words, RE denotes the relation
∗←→E,≥p−→R,p.

Lemma 2. Let < R,E > be an equational PRS such that the left-hand sides
and right-hand sides of the equations of E are patterns and E is collapse-free.
Let s, s′ be two terms in η-long, β-normal form, and θ, θ′ two substitutions such
that s

∗→RE s′ and θ
∗→RE θ′. Then sθ

∗→RE s′θ′.

Proof. By induction on (i) the order of θ and (ii) the number of steps in the

proof s
∗→RE s′.

1. When n = 0 (s = s′), we proceed by induction on the structure of s. The
term s is in β-normal form: s = λxm.a(sk) and by induction hypothesis

siθ
∗→RE siθ

′.

(a) If a /∈ Dom(θ), then a /∈ Dom(θ′). Indeed, aθ
∗→RE aθ′ and aθ = a. But

the left-hand sides of the rules are not free variables and E is collapse-
free, hence the case a =E lσ for some rule l → r is impossible and
aθ = aθ′ = a. We have sθ = λxm.a(skθ)

∗→RE λxm.a(skθ′) = s′θ′.
(b) If a ∈ Dom(θ), let aθ = λyk.t (we know that a requires k arguments)

and aθ = λyk.t →RE aσ
∗→RE aθ′. There exist l → r ∈ R, p ∈ Pos(aθ)

and θ′′ such that aθ|p =E lθ′′ and aσ = aθ[rθ′′]p. But lθ′′ is of a base
type and the rewriting takes place below λyk in λyk.t. Hence aσ = λyk.t

′′

and t′′
∗→RE t′. Let δ = {yk 7→ skθ} and δ′ = {yk 7→ skθ′}. By induction

hypothesis, siθ
∗→RE siθ

′, hence δ
∗→RE δ′. Now, a has type τk → τ

whose order is strictly greater than the order of each τi, hence, the order
of θ is strictly greater than that of δ and δ′. We have t

∗→RE t′ and
δ
∗→RE δ′ and by the induction hypothesis, tδ

∗→RE t′δ′. Finally,

sθ = λxm.(aθ)(skθ) ↓β= λxm.tδ
∗→RE λxm.t

′δ′ = sθ′

2. Assume now that s
∗→RE s′ →RE s′′. By the induction hypothesis, sθ

∗→RE

s′θ′. We are left to show that s′θ′
∗→RE s′′θ′. Since s′ →RE s′′, there exist

l → r ∈ R, θ′′ and p ∈ Dom(s′) such that s′|p = lθ′′ and s′′ = s′[rθ′′]p. We
proceed by induction on the length of position p.

(a) If p = Λ, then s′ = lθ′′, s′′ = rθ′′, hence s′θ′ =E lθ′′θ′ and s′′θ′ = rθ′′θ.

We have s′θ′
Λ→RE

s′′θ′.

(b) If |p| ≥ 1 and s′ = λx.t′ and s′′ = λx.t′′ with t′ →RE
t′′, by induction

hypothesis, t′θ′
∗→RE t′′θ′ and s′θ′ = λx.t′θ′

∗→RE λx.t′′θ′ = s′′θ′.
Finally if |p| ≥ 1 and s′ = a(s′k) and s′′ = a(s′′k), there exists an s′i
such that s′i →RE s′′i (for j 6= i, s′j = s′′j). By the induction hypothesis,

s′iθ
′ →RE s′′i θ

′. If a /∈ Dom(θ′), s′θ′ = a(s′kθ
′)
∗→RE a(s′′kθ

′) = s′′θ′. If

a ∈ Dom(θ′), aθ′ = λyk.t, define δ = {yk 7→ s′kθ
′} and δ′ = {yk 7→ s′′kθ

′}.
Again, the order of δ′ and δ′′ is strictly smaller than that of θ and θ′. By
induction hypothesis, tδ

∗→RE tδ′. Hence, s′θ′ = (aθ′)(s′kθ
′) ↓β= tδ

∗→RE

tδ′ = s′′θ′.

The following definition is borrowed from Mayr and Nipkow [14]. It is useful
for keeping track of the bound variables above a position p when considering a
subterm at position p and for avoiding to have non-disjoint variable sets when
superposing left-hand sides of rewrite rules.

Definition 4. An xk-lifter of a term t away from a set W of variables is a
substitution σ = {F 7→ Fρ(xk) | F ∈ fv(t)}, where ρ is a renaming such that
Dom(ρ) = fv(t), V Cod(ρ) ∩W = ∅ and Fρ has type τ1 → · · · → τk → τ if xi
has type τi for 1 ≤ i ≤ k and F has type τ .

Lemma 3 (adapted from [14]). Consider two patterns l1 and l2, p a non-
variable position of l1. Let {xk} = bv(l1, p) and σ an xk-lifter of l2 away from
fv(l1). Then λxk.(l1|p) and λxk.l2σ are E-unifiable iff there exist two substitu-
tions θ1 and θ2 such that l1|pθ1 =E l2theta2 and {xk} ∩ V Cod(θ1) = ∅.

We close this section by making precise the assumptions we make in the
rest of the paper. They are similar to those of Jouannaud and Kirchner in the
first-order case.

Assumptions In the sequel < R,E > denotes an equational pattern rewrite
system. Moreover E is assumed to be a simple equational theory that is a theory
such that there is no proof s =E t where s and t are in η-long β-normal form and
t is a strict subterm of s. This implies in particular that the sets of free variables
of the left-hand and right-hand sides of the axioms of E are the same and are
not reduced to a variable. We also assume that the relation R/E := (=E→R=E)
is terminating. This implies that R/E∪sst is terminating, where sst is the strict
subterm relation.

3 Critical pairs and coherence pairs

Mayr and Nipkow [13] do not need to consider coherence pairs since they deal
with R/E which allows E-equalities above the position to be rewritten. Similarly
as in the work of Jouannaud and Kirchner [10], we need to consider not only
critical pairs, but also coherence pairs to take into account the interactions of
R and E. Standard completion relies upon the fact that the local confluence
amounts to the joinability of critical pairs. Then, confluence is obtained via
Newman’s lemma [16] with the additional termination assumption. In our case,
as in Jouannaud and Kirchner’s paper, we need to put together the assumptions
of joinability of the critical pairs, and of the coherence pairs, plus the termination
of R/E to get the confluence. In this section, we give two technical lemmas
(lemmas 5 and 6), which correspond to the “interesting” peaks. The next section
is devoted to the confluence.

Definition 5 (Critical pairs of RE). Let l1 → r1 and l2 → r2 be two rewrite
rules in an equational PRS < R,E >, and p ∈ Pos(l1) such that

– fv(l1) ∩ bv(l1) = ∅,
– the symbol at position p in l1 is not a free variable,
– λxk.l1|pθ =E λxk.l2σθ, where {xk} = bv(l1, p) and σ is an xk-lifter of l2

away from fv(l1) and θ ∈ CSUE(λxk.l1|p, λxk.l2σ) such that Dom(θ) ∪
{xk} = ∅.

Then < r1θ, l1[r2σ]pθ > is an E-critical pair of l2 → r2 on l1 → r1 at position
p. The set of all E-critical pairs of < R,E > is denoted by CP (RE).

The following lemma is straightforward in the first-order case, but requires
a proof here, due to the presence of λ-binders. It states that when there is a
critical pair, then there exists a corresponding critical peak.

Lemma 4. If < u1, u2 >∈ CP (RE) then there exists a term s such that
s→R,Λ u1 and s→RE u2.

Proof. < u1, u2 >∈ CP (RE) implies by definition that u1 = r1θ and
u2 = l1[r2σ]pθ, where xk = bv(l1, p) and σ is an xk-lifter of l2 away from fv(l1)
and θ is an E-unifier of λxk.l1|p and λxk.l2σ. Let s ≡ l1θ. Then s→R,Λ r1θ ≡ u1
with the rule l1 → r1 ∈ R. On the other hand, we have

λxk.(l1|pθ)≡ (λxk.l1|p)θ using α-conversion if necessary
=E (λxk.l2σ)θ by definition of critical pairs
≡ λxk.(l2σθ) (Dom(θ) ∪ Cod(θ)) ∩ xk = ∅

hence l1|pθ =E l2σθ.
But l1|p is a pattern and bv(l1, p) = {xk}∩Dom(θ) = ∅: by lemma 1, l1|pθ ≡ l1θ|p.
Hence l1θ|p ≡ l1|pθ =E l2σθ. Finally

s ≡ l1θ ≡ l1θ[l1θ|p]p
∗↔E,≥p l1θ[l2σθ]p →R l1θ[r2σθ]p ≡ u2

Definition 6 (Coherence pairs of R on E). A coherence pair of R on E is
a critical pair of R on E ∪E−1. The set of coherence pairs of R on E is denoted
by CHP (R,E).

Definition 7. Two terms s and t are RE-joinable if there exist two terms s′

and t′ such that s
∗→RE s′ and t

∗→RE t′ and s′
∗←→E t′.

Definition 8.

– RE is confluent if whenever there exist s, s1, s2 such that s
∗→RE s1 and

s
∗→RE s2, then s1 and s2 are RE-joinable.

– RE is coherent if whenever there exist s, s1, s2 such that s
∗↔E s1 and

s
∗→RE s2, then s1 and s2 are RE-joinable.

Lemma 5. Assume that for all critical pairs < u1, u2 >∈ CP (RE),
u1 and u2 are RE-joinable. Consider a peak of the form:

s
R,p

~~}}}}}}}
RE ,p·q

 AAAAAAA

s1 s2
Then s1 and s2 are joinable in the following way:

s
R,p

~~}}}}}}}
RE ,p·q

 AAAAAAA

RE

∗

!!BBBBBBBB s1//
E

∗oo s2 oo
E

∗ //

RE

∗

}}||||||||

oo
E

∗ //

Proof. Two cases are to be considered:
1. The redexes do not overlap.
s|p = l1θ1, s1 ≡ s[r1θ1]p, q = q1 · q2 with l1|q1 = F (xk) where F is a free
variable. Fθ1 is of the form λxk.t. Let θ′1 = θ1 + {F 7→ λxk.t[r2θ2]q2}. Now
t|q2 = (F (xk)θ1)|q2 = (l1|q1θ1)|q2 = (l1θ1)|q1 |q2 (because l1 is a pattern and ap-
plying θ1 creates no new redex).
Fθ1 = λxk.t →RE λxk.t[r2θ2]q2 = Fθ′1. Hence θ1

=→RE θ′1. By lemma 2,

r1θ1
∗→RE r1θ

′
1.

Let H be a new variable and l0 = l1[H(xk)]q1 . let θ0 = θ1 ∪ {H 7→ Fθ′1} and

θ′0 = θ1 + {F 7→ Fθ′1}. We have θ1
=→RE θ′1, hence θ0

=→RE θ′0. Now,

s2|p = (l1θ1)[r2θ2]q
= (l1θ1)[F (xk)θ′1]q1
= l0θ0

∗→RE l0θ
′
0

= l1θ
′
1 →R r1θ

′
1

We are in the following situation:

s
R,p

ssffffffffffffffffff
RE ,p·q

++XXXXXXXXXXXXXXXXXX

s[r1θ1]p

RE

∗
((QQQQQQ

s[r2θ2]p·q
∗

REvvmmmmmmm

s[r1θ
′
1]p s[l1θ

′
1]p

R
oo

2. The two redexes overlap.
s|p = l1θ1 and l1|q is defined and is not a free variable. s|p·q =E l2θ2.

l1θ1|q= l1|qθ1 by lemma 1
= s|p·q =E l2θ2

Define θ0 as θ0 = θ1 ∪ θ′2 with θ′2 = {Fρ 7→ λxk.Fθ2 | F ∈ fv(l2)}. We meet
the hypotheses of lemma 3: let {xk} = bv(l1, q) and let σ be an xk-lifter of l2
away from fv(l1), and ρ the renaming associated with σ. λxk.l1|q and λxk.l2σ
are E-unifiable by θ0: (λxk.l1|q)θ0 =E (λxk.l2σ)θ0.

There exists θ ∈ CSU(λxk.l1|q, λxk.l2σ) such that θ0 =E θδ, for some sub-
stitution δ. Hence there exist a critical pair < r1θ, (l1[r2σ]q)θ > and the corre-
sponding critical peak, which is joinable by hypothesis:

l1θ
R,Λ

ttiiiiiiiiiiiiii
RE ,q

++VVVVVVVVVVVVVV

r1θ

RE

∗

%%KKKKKK (l1[r2σ]q)θ
RE

∗vvmmmmmmm

v1 v2//
E

∗oo

We apply δ to this diagram (remember that θ0 =E θδ).

l1θ0

R,Λ

||yyyyyyyy
RE ,q

%%JJJJJJJJJ

r1θδ

RE

∗

""EEEEEEEE r1θ0//
E

∗oo l1[r2σ]q)θ0 oo
E

∗ // l1[r2σ]q)θδ

RE

∗

wwpppppppppppp

v1δ oo
E

∗ // v2δ

Now, l1θ0 = l1(θ1 ∪ θ′2) = l1θ1 because fv(l1) ∩ Dom(θ′2) = ∅.
r1θ0 = r1(θ1 ∪ θ′2) = l1θ1 because fv(r1) ⊆ fv(r1).
We have (l1[r2σ]q)θ0 = (l1θ0)[r2σθ0]q = l1θ1[r2θ2]q. It is now sufficient to plug
the whole diagram in the context s[·]p to get the result.

Note that if in the above proof r1 is not a variable, then the positions of
the E-equality steps in r1θ0←→∗E r1θδ are not Λ. Under our assumption that E
has no variables as left-hand sides or right-hand sides of its axioms, a slightly
stronger result holds when an E-equality step is applied above an RE- step:

Lemma 6. Assume that for all coherence pairs < u1, u2 >∈ CP (RE , E),
u1 and u2 are RE-joinable. Consider a proof of the form:

s>>
E,p

~~}}}}}}}
RE ,p·q

 AAAAAAA

s1 s2
Then s1 and s2 are joinable in the following way:

s>>
E,p

~~}}}}}}}
RE ,p·q

 AAAAAAA

RE

∗

!!BBBBBBBB s1//
E,>p

∗
oo s2 oo

E

∗
//

RE

∗

}}||||||||

oo
E

∗ //

4 Confluence

We are now ready to state our main result.

Theorem 2. Assume that for all critical pair < u1, u2 >∈ CP (RE) u1 and u2
are RE-joinable and that for every coherence pair < u1, u2 >∈ CHP (R,E)
u1 and u2 are RE-joinable. Assume in addition that the relation R/E =
(↔E→R↔E) is terminating. Then RE is confluent (and coherent).

We actually prove a little more than the confluence of RE . We define a general
peak as a proof of the following form:

•

RE

∗

%%JJJJJJ

RE

∗

yytttttt

• oo
E

∗ // • • oo
E

∗ // •

and we show that the extremes of every general peak are RE-joinable.
There are 4 types of general peaks, and for each type, we define a measure.

The first component of our measure is a term. The first components will be
compared using the union of the strict subterm relation and the relation R/E.
The second component is 1 if the peak really has RE-steps in both directions,
0 otherwise. The third component is the number of E-equality steps at the top
of the peak. The last two components are compared using the usual ordering on
naturals.

– type 1: There are RE-steps in both directions and the first RE steps of the
peak occur at comparable positions p and p · q.

s oo n

E,≥p
//

R,pwwppppppp t

RE ,p·q ''OOOOOOO

•

RE

∗
wwppppppp •

RE

∗
''OOOOOO

s′ oo
E

∗ // • • oo
E

∗ // t′

measure = (s, 1, n)

– type 2: There are RE-steps in both directions and the first RE steps of the
peak occur at some parallel positions p and q.

s

RE ,pwwppppppp

RE ,q ''OOOOOO

•

RE

∗
wwppppppp •

RE

∗
''OOOOOO

s′ oo
E

∗ // • • oo
E

∗ // t′

measure = (s, 1, 0)

– type 3: There is no RE-step on one side of the peak.

s

REwwppppppp oo
E

n // t′

•

RE

∗
wwppppppp

s′ oo
E

∗ // •

measure = (s, 0, n)

– type 4: There is no RE-step in the peak.

s′ oo
E

∗ // t′ measure = (s′, 0, 0)

We investigate all the possible general peaks and we show the joinability of
their extremes. The original peaks are drawn with plain arrows, and the various
dashed arrows show how the peaks are joinable.

– When the general peak is of type 1, (with (s, 1, n)), we have to consider two
distinct subcases, n = 0 and n > 0.
• n = 0 s

R,p

uukkkkkkkkkkkkkkkkkkkk

RE ,≥p
))SSSSSSSSSSSSSSSSSSSS

•

RE

∗
xxqqqqqq

oo
E

∗ // •

RE

∗
&&

RE

∗

���
�

�
�

•

RE

∗
xx

oo
E

∗ //

RE

∗

�"
<

<
<

<

<
<

<
< •

RE

∗
&&MMMMMM

• oo
E

∗ //

RE

∗
&&M

M
M • • oo

E

∗ // •

RE

∗

t|

• oo
E

∗ // •

RE

∗
t| q q q

q q q

• oo
E

∗ //___

RE

∗
"*

• • ks
E

∗ +3__ __ •

RE

∗

qr�

• ks
E

∗ +3

RE

∗
M�,

•

• _jt
E

∗ _*4 •
Lemma 5

___ Induction hypothesis (1rst comp.)

___ ___ Induction hypothesis (1rst comp.)

Induction hypothesis (1rst comp.)

Induction hypothesis (1rst comp.)

5 Application to AC theories

In [1], we presented an AC-unification algorithm for higher-order patterns. It
happens that AC-unification problems do not have minimal complete set of
unifiers. Indeed, the equations of the form λx.F (x) = λx.F (xπ), while trivially
solvable, have an infinite complete set of unifiers {σ1, σ2, · · ·} such that σn+1 is

strictly more general than σn. This was noticed by Qian and Wang [19] who give
the following example:

Example 2 ([19]). Consider the equation e ≡ λxy.F (x, y) = λxy.F (y, x) in the
AC-theory of +. For m ≥ 0, the substitution

σm = {F 7→ λxy.Gm(H1(x, y) +H1(y, x), . . . ,Hm(x, y) +Hm(y, x))}

is an AC-unifier of e. Every solution of e is an instance of some σi and σn+1 is
strictly more general than σn.

On the other hand, the algorithm presented in [1] computes a finite complete
set of constrained AC-unifiers Σ. A constrained AC-unifier is σ|C where σ is
a substitution and C a conjunction of flexible-flexible equations of the form
λx.F (x) = λx.F (xπ). Every AC-unifier of an equation e is then an instance of
σ satisfying C for some σ|C ∈ Σ.

AC-critical pairs will hence be represented by < r1θ, l1[r2σ]pθ > |C, where
l1 → r1 and l2 → r2 are two rewrite rules and θ|C is a constrained AC-unifier of
λxk.l1|p and λxk.l2σ as given in definition 5. As usual, < u1, u2 > |C represents
all the equations u1δ = u2δ such that δ is a solution of C. Checking the RAC-
joinability of < u1, u2 > |C requires to check that for all the above mentioned
u1δ = u2δ, u1δ and u2δ are RAC-joinable.

We briefly sketch how to check the RAC-joinability of the constrained RAC-
critical pairs. First, we assume that for each F appearing in equations of the
form λx.F (x) = λx.F (xπ), the sequences of λ-bound variables above each oc-
currence of F in the critical pair are the same. This can be acheived by using
α-conversion if necessary. Second, we assume that the constraint is saturated
in the following sense : the set of permutations related to each F is saturated
wrt composition, yielding a subgroup GF of the permutation group of the argu-
ments of F . Once the GF s have been computed, we can assume that F (t) and
F (t

π
) do not both occur in the critical pair if π ∈ GF . The computation of a

canonical representation of the argument sequence of the arguments of F can
be computed starting from the leaves of the terms of the critical pair. Now, it
is clear that if an unconstrained critical pair < u1, u2 > is RAC-joinable, so is
the constrained critical pair < u1, u2 > |C. The difficulty is to show that if the
unconstrained critical pair is irreducible, then there exists a solution δ of C such
that < u1δ, u2δ > is irreducible. This is the purpose of the following proposition:

Proposition 1. Let < R,AC > be an AC pattern rewrite system. Let t be a
term, and C a conjunction of equations of the form λx.F (x) = λx.F (xπ). Let GF
be the subgroup of permutations generated by the permutations of the equations
involving F in C. We assume that t has not both occurrences of F (t) and F (t

π
)

for π ∈ GF . If t is not RAC-reducible, then there exists an instance of t by a
solution of C which is irreducible.

Proof (Sketched). The result is straightforward if R is left-linear. The only case
when applying a solution of C to an irreducible term t turns t into a reducible

term is when this makes two non AC-equal subterms F (tn) and F (t′n) AC-
equal. Assume that {tn} contains a term ti which does not appear in {t′n} (or
the converse). The substitution δ = {F 7→ λx ·Σπ∈GF

H(xπ(i))} is a solution of

C but F (tn)δ contains an occurrence of H(ti) while F (t′n)δ does not, hence the
two terms cannot be AC-equal.

We assume now that the sets of terms occurring in {tn} and {t′n} are the
same. The sequences tn and t′n can be completed in tm and t′m respectively in such
a way to obtain the same associated multisets. Now, there exists a permutation
π such that t′m = tm

π
. If π ∈ GF , it operates only on the n first elements, hence

t′n = tn
π
. But both F (tn) and F (t′n) = F (tn

π
) appear in t, a contradiction.

We are left to consider the case when π /∈ GF . If for every π′ ∈ GF , t′n =

(tπ(1), . . . , tπ(n)) 6= tn
π′

, then the substitution δ = {F 7→ λxn.Σπ′∈GF
H(xn

π′)} is

a solution of C. But F (tn)δ has no occurrence of H(tπ(1), . . . , tπ(n)) while F (t′n)δ
has one. The two terms are not AC-equal. Finally, if there exists π′ ∈ GF such

that (tπ(1), . . . , tπ(n)) = tn
π′

, then π operates only on the n first elements, hence

n = m. Now tn
π

= tn
π′

and π 6= π′ because π /∈ GF . Hence π = θπ′ for some θ

which permutes only identical tis (this means that tn = tn
θ
). We have F (t′n) =

F (tn
θ−1π

) = F (tn
π′

) with π′ ∈ GF . Again, both F (tn) and F (t′n) = F (tn
π′

)
appear in t, a contradiction.

6 Conclusion

We have proposed a theory of pattern rewrite systems modulo an equational
theory. The assumptions we make on both the rewrite system and the equational
theory are very similar to those considered by Jouannaud and Kirchner in the
first-order case. In particular, while AC meets the assumptions on E, our work
will need to be significantly extended for dealing with non-simple theories (the
first that comes to mind being ACU). We will investigate the possibility to
extend Marché’s theory of S-normalized rewriting [12] to PRSs. For this, it
will also be necessary to design unification algorithms for other theories than
AC. The AC-unification algorithm proposed in [1] should extend to the usual
extensions of AC.

References

1. Alexandre Boudet and Evelyne Contejean. AC-unification of higher-order patterns.
In Gert Smolka, editor, Principles and Practice of Constraint Programming, volume
1330 of Lecture Notes in Computer Science, pages 267–281, Linz, Austria, October
1997. Springer-Verlag.

2. Val Breazu-Tannen. Combining algebra and higher-order types. In Proc. 3rd IEEE
Symp. Logic in Computer Science, Edinburgh, July 1988.

3. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 243–
309. North-Holland, 1990.

4. Gilles Dowek. Third order matching is decidable. In Proc. 7th IEEE Symp. Logic
in Computer Science, Santa Cruz, pages 2–10. IEEE Comp. Society Press, 1992.

5. Warren D. Goldfarb. Note on the undecidability of the second-order unification
problem. Theoretical Computer Science, 13:225–230, 1981.

6. R. Hindley and J. Seldin. Introduction to Combinators and λ-calculus. Cambridge
University Press, 1986.

7. Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . ω. Thèse
d’Etat, Univ. Paris 7, 1976.

8. Gérard Huet. Confluent reductions: abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, October 1980.

9. Gérard Huet. A complete proof of correctness of the Knuth-Bendix completion
algorithm. Journal of Computer and System Sciences, 23:11–21, 1981.

10. Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo
a set of equations. SIAM Journal on Computing, 15(4), November 1986.

11. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970.

12. Claude Marché. Normalized rewriting: an alternative to rewriting modulo a set of
equations. Journal of Symbolic Computation, 21(3):253–288, 1996.

13. R. Mayr and T. Nipkow. Higher-order rewrite ststems and their confluence. To
appear in TCS.

14. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their conflu-
ence. Theoretical Computer Science, 192(1):3–29, February 1998.

15. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. In P. Schroeder-Heister, editor, Extensions of Logic
Programming. LNCS 475, Springer Verlag, 1991.

16. M. H. A. Newman. On theories with a combinatorial definition of ‘equivalence’.
Ann. Math., 43(2):223–243, 1942.

17. T. Nipkow. Higher order critical pairs. In Proc. IEEE Symp. on Logic in Comp.
Science, Amsterdam, 1991.

18. Vincent Padovani. Filtrage d’ordre supérieur. PhD thesis, Université de Paris VII,
1996.

19. Zhenyu Qian and Kang Wang. Modular AC-Unification of Higher-Order Patterns.
In Jean-Pierre Jouannaud, editor, First International Conference on Constraints
in Computational Logics, volume 845 of Lecture Notes in Computer Science, pages
105–120, München, Germany, September 1994. Springer-Verlag.

