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Abstract. We present an algorithm for unification of higher-order pat-
terns modulo combinations of disjoint first-order equational theories.
This algorithm is highly non-deterministic, in the spirit of those by
Schmidt-Schauß [20] and Baader-Schulz [1] in the first-order case. We
redefine the properties required for elementary pattern unification al-
gorithms of pure problems in this context, then we show that some
theories of interest have elementary unification algorithms fitting our
requirements. This provides a unification algorithm for patterns mod-
ulo the combination of theories such as the free theory, commutativity,
one-sided distributivity, associativity-commutativity and some of its ex-
tensions, including Abelian groups.
Keywords. Combination of unification algorithms – Pattern equational
unification

Introduction

Patterns have been defined by Miller [18] in order to provide a compromise
between simply-typed lambda-terms for which unification is known to be
undecidable [12, 9] and mere first-order terms which are deprived of any
abstraction mechanism. A pattern is a term of the simply-typed lambda-
calculus in which the arguments of a free variable are all pairwise distinct
bound variables. Patterns are close to first-order terms in that the free
variables (with their bound variables as only permitted arguments) are
at the leaves. Under this rather drastic restriction, unification becomes
decidable and unitary:
Theorem 1 ([18]). It is decidable whether two patterns are unifiable,
and there exists an algorithm which computes a most general unifier of
any two unifiable patterns.
Yet, patterns are useful in practice for defining higher-order pattern
rewrite systems [17, 6], or for defining functions by cases in functional
programming languages. Some efforts have been devoted to the study of
languages combining functional programming (lambda-calculus) and al-
gebraic programming (term rewriting systems) [15, 13, 7].
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In this paper we provide a nondeterministic algorithm for combining
elementary equational patterns unification algorithms. This is the object
of section 2. In sections 3 and 4, we show that such elementary unifica-
tion algorithms exist for theories such as the free theory, commutativ-
ity, one-sided distributivity, as well as associativity-commutativity and its
common extensions including Abelian groups.

Our method does not consist of using a first-order unification algo-
rithm for the combined equational theories extended to the case of pat-
terns. Such an approach has been used by Qian & Wang [19], but con-
sidering a first-order unification algorithm as a black box leads to incom-
pleteness (see example in [5]). What we need here is a pattern unification
algorithm for each of the theories to be combined plus a combination al-
gorithm for the elementary Ei-pattern unification algorithm. Evidence of
this need is that contrarily as in the first-order case, the unifier set of the
pure equation λxy.Fxy = λxy.Fyx modulo the free theory (no equational
axioms) changes if one adds say a commutative axiom x+ y = y + x (see
[19]). The requirements we have on elementary pattern unification algo-
rithms are very much in the spirit of those needed in the first-order case,
yet there are relevant differences due in particular to the possible presence
of equations with the same free variable at the head on both sides (like
λxy.Fxy = λxy.Fyx).

The worst difficulties, for the combination part as well as for the el-
ementary unification algorithms, come from such equations which have
no minimal complete sets of E-unifiers, even for theories which are fini-
tary unifying in the first-order case. On top of this, the solutions of such
equations introduce terms which are not patterns. For this reason, we will
never attempt to solve such equations explicitly, but we will keep them
as constraints. The output of our algorithm is a (DAG-) solved form con-
strained by some equations of the above form and compatible with them.
As the algorithm by Baader and Schulz [1], ours can be used for combining
decision procedures.

1 Preliminaries
We assume the reader is familiar with simply-typed lambda-calculus, and
equational unification. Some background is available in e.g. [10, 14] for
lambda-calculus and E-unification.

1.1 Patterns and equational theories

Miller [18] has defined the patterns as those terms of the simply-typed
lambda-calculus in which the arguments of a free variables are (η-



equivalent to) pairwise distinct bound variables: λxyz.f(H(x, y), H(x, z))
and λx.F (λz.x(z))1 are patterns while λxy.G(x, x, y), λxy.H(x, f(y)) and
λxy.H(F (x), y) are not patterns. We shall use the following notations:
the sequence of variables x1, . . . , xn will be written xn or even x if n
is not relevant. Hence λx1 · · ·λxn.s will be written λxn.s, or even λx.s.
If in a same expression x appears several times it denotes the same se-
quence of variables. If π is a permutation of {1, . . . , n}, xπ denotes the
sequence xπ(1), . . . , xπ(n). In the following, we shall use either λx.F (xπ)
or the α-equivalent term λyϕ.F (y), where ϕ = π−1, in order to denote
λx1 · · ·λxn.F (xπ(1), . . . , xπ(n)). The curly-bracketed expression {xn} de-
notes the (multi) set {x1, . . . , xn}. In addition, we will use the notation
t(u1, . . . , un) or t(un) for (· · · (t u1) · · ·un). The free variables of a term t
are denoted by FV(t).

t|p is the subterm of t at position p. The notation t[u]p stands for a
term t with a subterm u at position p, t[u1, . . . , un] for a term t having
subterms u1, . . . , un.

Unless otherwise stated, we assume that the terms are in η-long β-
normal form [10], the β and η rules being respectively oriented as follows:
(λx.M)N →β M{x 7→ N} and F →η↑ λxn.F (xn) if the type of F is
α1 → . . .→ αn → α, and α is a base type. In this case, F is said to have
arity n. The η-long β-normal form of a term t is denoted by tlηβ .

A substitution σ is a mapping from a finite set of variables to terms
of the same type, written σ = {X1 7→ t1, . . . , Xn 7→ tn}. The set
{X1, . . . , Xn} is called the Domain of σ and denoted by Dom(σ).

The equational theories we consider here are the usual first-order equa-
tional theories: given a set E of (unordered) first-order axioms built over
a signature F , =E is the least congruence2 containing all the identities
lσ = rσ where l = r ∈ E and σ is a suitably typed substitution. =ηβE is
then the least congruence containing =E , =η and =β .

The following is a key theorem by Tannen. It allows us to restrict
our attention to =E for deciding η-β-E-equivalence of terms in η-long,
β-normal form:

Theorem 2 ([7]). Let E be an equational theory and s and t two terms.
Then s =ηβE t⇐⇒ s lηβ=E t lηβ.

1 We will always write such a pattern in the (η-equivalent) form λx.F (x), where the
argument of the free variable F is indeed a bound variable.

2 compatible also with application and λ-abstraction in our context.



1.2 Unification problems

Unification problems are formulas built-up using only the equality predi-
cate = (between terms), conjunctions, disjunctions and existential quanti-
fiers. The solutions of s = t are the substitutions σ such that sσ =ηβE tσ.
This definition extends the natural way to unification problems. We re-
strict our attention to problems of the form (∃X) s1 = t1∧· · ·∧sn = tn,
the only disjunctions being implicitly introduced by the non-deterministic
rules.
Terminology In the following, free variable denotes an occurrence of
a variable which is not λ-bound and bound variable an occurrence of a
variable which is λ-bound. To specify the status of a free variable with
respect to existential quantifications, we will explicitly write existentially
quantified or not existentially quantified. In the sequel, upper-case F , G,
X,... will denote free variables, a, b, f , g,... constants, and x, y, z, x1,...
bound variables.

Without loss of generality, we assume that the left-hand sides and
right-hand sides of the equations have the same prefix of λ-bindings. This
is made possible (by using α-conversion if necessary) because the two
terms have to be in η-long β-normal form and of the same type. In other
terms, we will assume that the equations are of the form λx.s = λx.t
where s and t do not have an abstraction at the top.

Definition 1. A flexible pattern is a term of the form λx.F (y) where
F is a free variable and {y} ⊆ {x}. A flex-flex equation is an equation
between two flexible patterns. An equation is quasi-solved if it is of the
form λxk.F (yn) = λxk.s and FV(s)∩{xk} ⊆ {yn} and F /∈ FV(s)∪{xk}.
A variable is solved in a unification problem if it occurs only once as the
left-hand side of a quasi-solved equation.

Lemma 1. If the equation λxk.F (yn) = λxk.s is quasi-solved, then it is
has the same solutions as λyn.F (yn) = λyn.s and (by η-equivalence) as
F = λyn.s. A most general unifier of such an equation is {F 7→ λyn.s}.

For the sake of readability, we will often write a quasi-solved equation
in the form F = λyn.s instead of λxk.F (yn) = λxk.s.

Definition 2. A DAG-solved form is a problem of the form
(∃Y1 · · ·Ym) X1 = s1 ∧ · · · ∧ Xn= sn where for 1 ≤ i ≤ n, Xi and si
have the same type, and Xi 6= Xj for i 6= j and Xi /∈ FV(sj) for i ≤ j. A
solved form is a problem of the form (∃Y1 · · ·Ym) X1=s1 ∧ · · · ∧ Xn=sn
where for 1 ≤ i ≤ n, Xi and si have the same type, Xi is not existentially
quantified, and Xi has exactly one occurrence.



A solved form is obtained from a DAG-solved form by applying as
long as possible the rules:

Quasi-solved λxk.F (yn) = λxk.s ∧ P → F = λyn.s ∧ P

Replacement F = λyn.s ∧ P → F = λyn.s ∧ P{F 7→ λyn.s}
if F has a free occurrence in P .

EQE (∃F ) F = t ∧ P → P if F has no free occurrence in P .

1.3 Combinations of equational theories

As in the first-order case [22, 16, 8, 5], we will consider a combination of
equational theories. We assume that E0, . . . , En are equational theories
over disjoint signatures F0, . . . ,Fn, and we will provide a unification al-
gorithm for the theory E presented by the reunion of the presentations,
provided an elementary Ei-unification algorithm for patterns is known for
each Ei. As in the first-order case, we have some further assumptions on
elementary Ei-unification that will be made precise later.

Definition 3. The theory of a bound variable, or of a free algebraic sym-
bol i.e., a symbol which does not appear in any axiom is the free theory
E0. The theory of an algebraic symbol f ∈ Fi is Ei. A variable F is
Ei-instantiated in a unification problem P if it occurs in a quasi-solved
equation F = s where the head of s has theory Ei. A variable F is Ei-
instantiated by a substitution σ if the head of Fσ has theory Ei.

We first give two well-known rules in order to obtain equations between
pure terms only.

Definition 4. The subterm u of the term t[u]p is an alien subterm in t
if it occurs as an argument of a symbol from a different theory from its
head symbol.

VA λx.s[u]p = λx.t → ∃F λx.s[F ]p = λx.t ∧ λy.F (y) = λy.u
if u is an alien subterm and {y} = {x} ∩ FV(u) and F is a new variable
of appropriate type.

Split λx.γ(s)=λx.δ(t) →∃F λx.F (x)=λx.γ(s) ∧ λx.F (x)=λx.δ(t)
if γ and δ are not free variables and belong to different theories, where
F is a new variable of appropriate type.

The above rules obviously terminate and yield a problem which is
equivalent to the original problem and where all the equations are pure,



i.e., containing only symbols from a same theory. We can now split a
unification problem into several pure subproblems:

Definition 5. A unification problem P will be written in the form

P ≡ (∃X) PF ∧ PV ∧ P0 ∧ P1 ∧ · · · ∧ Pn where

– PF is the set of equations of the form λxn.F (xn)=λxn.F (xn
π), where

π is a permutation of {1, . . . , n}. Such equations will be called frozen3.
– PV is the set of equations of the form λx.F (y) = λx.G(z), where F
and G are different free variables.
– P0, . . . , Pn are pure problems in the theories E0, . . . , En respectively.

2 A combination algorithm

In this section, we will present a non-deterministic algorithm, one step
beyond that by Baader and Schulz [1], who extend the method initiated
by Schmidt-Schauß [20] for unification in combinations of equational the-
ories. In particular, we will guess a projection for each free variable, and
then restrict our attention to constant-preserving substitutions, like we
suggested in [4].

The aim of these rules is to guess in advance the form of a unifier,
and to make the algorithm fail when the solutions of the problem do
not correspond to the choices that are being considered currently. The
drawback of such an approach is a blow-up in the complexity, but it allows
to avoid recursion, hence guaranteeing termination.

After the variable abstraction step, we want to guess, for each free
variable F of arity k (i.e., whose η-long form is λxk.F (x1, . . . , xk)) which
of the bound variables x1, . . . , xk will effectively participate in the solution.

Definition 6. A constant-preserving substitution is a substitution σ such
that for all F ∈ Dom(σ) if Fσlηβ=λxk.s then every variable of xk has a
free occurrence in s. A projection is a substitution of the form

σ={F 7→ λxk.F
′(ym) | F ∈ Dom(σ), {ym} ⊆ {xk}}

Lemma 2. For every substitution σ, there exist a projection π and a
constant-preserving substitution θ such that σlηβ=(πθ)lηβ.

3 These equations are always trivially solvable, for example by F 7→ λxn.C, where C
is a variable of the appropriate base type, but we will never solve them explicitly
because they have no minimal complete sets of unifiers and their solutions introduce
terms which are not patterns, see [19, 5].



Lemma 3. The equation λx.s=λx.t where {x} ∩ FV(s) 6={x} ∩ FV(t)
has no constant-preserving E-solution. In particular, the equation
λx.F (y)=λx.G(z), where {y} and {z} are not the same set, has no
constant-preserving E-solution.

This will allow us to choose (and apply) a projection for the free variables
and to discard in the sequel the problems whose solutions are not constant-
preserving.

2.1 Non-deterministic choices

At this point, we will guess through “don’t know” nondeterministic choices
some properties of the solutions. The idea is that once a choice has been
made, some failure rules will apply when the solutions of the current
problem correspond to other choices. This method initiated by Schmidt-
Schauß [20] is obviously correct because the solutions of the problems that
are discarded this way correspond to another choice and will be computed
in the corresponding branch.

The following transformations have to be successively applied to the
problem:
C.1 Choose a projection for the free variables

We first guess for a given solution σ, the projection of which σ will
be an instance by a constant-preserving substitution, in the condi-
tions of lemma 2. This is achieved by applying nondeterministically
the following rule to some of the free variables F of the problem:

Project P → (∃F ′) F =λxn.F
′(yk) ∧ P{F 7→ λxn.F

′(yk)}
where F has arity n and F ′ is a new variable and {yk} ⊂ {xn}

After this step, we can restrict our attention to constant-preserving solu-
tions.
C.2 Choose some flex-flex equations

We now guess the equations of the form λx.F (y) = λx.G(z) that will
be satisfied by a solution σ. This is done by applying the follow-
ing rule to some pairs {F,G} of the free variables of the problem:

FF6= P → F =λx.G(xπ) ∧ P{F 7→ λx.G(xπ)}
where π is a permutation of {1, . . . , n}, F has type τ1 → · · · → τn → τ ,
G has type τπ(1) → · · · → τπ(n) → τ , F 6= G and F and G occur in P .

We restrict the application of this rule to pairs of variables of the same
arity and of the same type (up to a permutation of the types of the
arguments), because after applying Project, the only flex-flex equations
admitting constant-preserving solutions are of this form.



C.3 Choose the permutations on the arguments of the variables
For each free variable F of type τ1 → · · · → τn → τ , we choose the group of
permutations Perm(F ) such that a solution σ satisfies λxn.Fσ(xn) =ηβE

λxn.Fσ(xn
π) for each π ∈ Perm(F ). For this, we apply the following rule

to some of the free variables F of the problem:

FF= P → λxn.F (xn) = λxn.F (xn
π) ∧ P

where F is a free variable of P of type τ1 → · · · → τn → τ and π is a
permutation such that τπ(i)=τi for 1 ≤ i ≤ n.

C.4 Apply as long as possible the following transformation:

Coalesce
λxk.F (yn) = λxk.G(zn) ∧ P → F =λyn.G(zn) ∧ P{F 7→ λyn.G(zn)}
if F 6= G and F,G ∈ FV(P ), where yn is a permutation of zn.

After Project has been applied, the arity of the values of the variables
is fixed, hence two variables may be identified only if they have the same
arity. Note that F =λyn.G(zn) is solved after the application of Coalesce.
After this step, we have an equivalence relation on the variables, and a
notion of representative:

Definition 7. Two variables F and G are identified in P if they appear
in an equation λx.F (y) = λx.G(z) of P . The relation =V is the least
equivalence containing any pair of identified variables.
Assume that Coalesce has been applied as long as possible to P . In an
equivalence class of =V , only a single variable may occur more than once
in P . When such a variable exists, it is chosen as a representative for all
variables in that class. Otherwise, the representative is chosen arbitrarily
in the equivalence class.

C.5 Choose a theory for the representatives
We now guess for each representative F , the theory Ei such that F is
allowed to have the head symbol of its value by a solution in Ei. Again,
this was already done by Schmidt-Schauß [20] and by Baader and Schulz.
C.6 Choose an ordering on representatives

Finally, we guess a total strict ordering compatible with the occur-check
relation defined by F<G if Gσ is a proper subterm of Fσ. Choose a total
ordering <oc on the representatives of the variables of the problem. This
is exactly what Baader and Schulz do in the first-order case [1], reflecting
the fact that if σ is a finite solution, then the occur-check relation must
be acyclic.



2.2 Solving pure subproblems

We make now precise our assumptions on the elementary Ei unification
algorithms. First, we take note of the fact that there is not much to do
with the frozen equations of PF :

Frozen Equations
Although they are always trivially solvable in the free theory, we will
never try to solve the equations of the form λx.F (x) = λx.F (xπ) of PF .
These equations will be kept as constraints because they do not have finite
complete sets of unifiers even for theories which have finitary first-order
unification, and their solutions introduce terms which are not patterns.
Here is an example by Qian and Wang:
Example 1 ([19]). Consider the equation λxy.F (x, y) = λxy.F (y, x)
in the AC-theory of +. For m ≥ 0, the substitution
σm={F 7→ λxy.Gm(H1(x, y) +H1(y, x), . . . ,Hm(x, y) +Hm(y, x))}
is an AC-unifier of the above equation. On the other hand, every solution
of e is an instance of some σi. In addition σn+1 is strictly more general
than σn.
Hence, AC-unification of patterns is not only infinitary, but nullary, in
the sense that some problems do not have minimal complete sets of AC-
unifiers [21]. All we can do is to make sure that the frozen equations in
PF are compatible with a (DAG-) solved form of the problem:

Definition 8. Given a conjunction PF of flex-flex equations of the form
λx.F (x) = λx.F (xπ), we will write PF |= s =ηβE t if s lηβ= t lηβ can
be proved using the axioms of E and the equations λx.F (x) = λx.F (xπ)
of PF , where F is treated like a free algebraic symbol. A substitution σ
is compatible with PF if for all equation λx.F (x) = λx.F (xπ) of PF ,
PF |= λx.Fσ(x) =ηβE λx.Fσ(x

π).

Lemma 4. If a substitution σ (seen as a conjunction of equations) is
compatible with PF as defined above, then the E-solutions of σ ∧ PF are
the substitutions σθ, where θ is an E-solution of PF .

Definition 9. Given a unification problem P , with no flex-flex equa-
tions and a conjunction PF of (frozen) equations of the form
λx.F (x)=λx.F (xπ), a constrained E-solved form of P is P ′ ∧ P ′F where

– P ′ is a solved form with mgu σ, containing no equations of the form
λx.F (x)=λx.F (xπ).
– P ′F contains PF plus some equations of the form λx.G(x)=λx.G(xπ),
where G is a new variable not E-instantiated in P ′.



– P ′F |= sσ =ηβE tσ for every equation s= t of P .
– σ is compatible with P ′F .

In this case, σ constrained by P ′F , denoted by σ |P ′F is called a constrained
E-unifier of P ∧ PF . The solutions of σ |P ′F are the substitutions of σθ
where θ is a solution of P ′F .

Definition 10 (Solve rule for elementary theories).
A Solve rule for the theory Ei is an algorithm that takes as input a
problem Pi, pure in Ei and a conjunction PF of frozen equations (as in
definition 5) and that returns P ′i and P

′
iF such that

1. P ′i is a solved form with mgu a constant-preserving substitution σ4.
2. P ′i has no flex-flex equations.
3. P ′iF contains the equations of PF plus some only flexible-flexible equa-
tions of the form λx.F (x)=λx.F (xπ), where F /∈ FV(Pi) ∪Dom(σ).
4. F can be Ei-instantiated by σ only if Ei has been chosen as the theory
of F at the step C.5
5. Fσ can be of the form λx.c[G(· · ·)], where F,G ∈ FV(Pi) and an-
other theory than Ei has been chosen for G at the step C.5, only if
F <oc G, for the ordering chosen at the step C.6.
6. σ is compatible with P ′F .
7. P ′iF |= λx.s =Ei λx.t for all the equations λx.s =Ei λx.t of Pi.

Proposition 1. Let s= t be an equation, pure in the theory Ei, and let σ
be an E-solution of s= t. Then there exists a set of equations Pperm of the
form λxπ.F (x)=λxϕ.F (x), and two substitutions σEi and θ such that

– σ =E σEiθ.
– σEi is pure in the theory Ei,
– θ is an E-solution of Pperm.
– Pperm |=sσEi =ηβEi

tσEi ,
– if F ∈ Dom(σ) and there exists a permuta-
tion π such that λx.F (x)σ =ηβE λx.F (xπ)σ, then
Pperm |=λx.F (x)σEi =ηβEi

λx.F (xπ)σEi .

The result is obtained by using Theorem 2 and adapting the proof of
Theorem 5.1 of [3], which is the corresponding theorem in the first-order
case.

4 The correctness will be preserved if one allows non-constant-preserving substitutions,
but the redundancy of the complete sets of unifiers will be increased in this case.



The algorithm

Algorithm for pattern unification modulo E0 ∪ · · · ∪ En
1. Apply as long as possible the rules VA and Split of section 1.
2. Perform successively the steps C.1 to C.6.
3. Apply a Solve rule for theory Ei to each Pi accordingly to defini-
tion 10.

4. Return P ′0 ∧ P ′1 ∧ · · · ∧ P ′n ∧ PF ∧
∧

1≤i≤n P
′
iF .

Theorem 3. Given an equational theory E=E0∪· · ·∪En, where the Eis
are defined over disjoint signatures F0, . . . ,Fn and a unification problem
P , containing only algebraic symbols of F0 ∪ · · · ∪ Fn,

– The above algorithm returns a constrained DAG-E-solved form of P .
– Every E-unifier of P is a solution of a constrained DAG-solved form
computed by the above algorithm.

Corollary 1. Unifiability of higher-order patterns is decidable in combi-
nations of theories having a Solve rule.

3 A Solve rule for some syntactic theories

In [4], we show how to do pattern unification for a narrow class of theories:
a subset of the simple syntactic theories. For lack of space, we just give
here some hints on how to design a Solve rule for the free theory, the
theory of left-distributivity LD and the commutativity C. These three
theories are simple theories, i.e., they have no equality between a term
and one of its proper subterms. As it is well-known from the works on first-
order unification, compound cycles or theory conflicts cannot be solved in
such theories. It is easy to show that the following two rules are correct
for simple theories:

Clash F = s → ⊥
if F is Ei-instantiated and Ej , j 6=i has been chosen for F at C.5.
Cycle F = c[G] → ⊥
if c is a non-empty context and F 6<ocG for the ordering chosen at C.6.

Now, the free theory and LD have their symbols decomposable (i.e.,
f(s1, . . . , sn) =E f(t1, . . . , tn) iff si =E ti) and C enjoys a similar property:
s1+s2 =C t1+t2 iff s1=C t1 ∧ s2=C t2 or s1=C t2 ∧ s2=C t1. Hence, the
rules for testing the compatibility of a solved form with a frozen equation
are:



Fail λx.F (x) = λx.F (xπ) → ⊥
if F is not a new variable and π /∈ Perm(F ) as chosen at the step C.3.
Dec-Propagate
F =λx.f(sn) ∧ λx.F (x)=λx.F (xπ) →
F =λx.f(sn)

∧
1≤i≤n λx.si=λx

π.si
if f is a decomposable constant or a bound variable.
C-Propagate
F = λx.s1 + s2 ∧ λx.F (x) = λx.F (xπ) →
F = λx.s1 + s2 ∧ ((λx.s1 = λxπ.s1 ∧ λx.s2 = λxπ.s2)

∨ (λx.s1 = λxπ.s2 ∧ λx.s2 = λxπ.s1))
if + is a commutative algebraic symbol.

The Mutate rule of [4], together with the rule Coalesce and a failure
rule when two (non-new) variables are identified allow us to compute a
solved form satisfying the conditions 1 to 3 and 7 of definition 10. The
first of the two above sets of rules allows us to fulfill conditions 4 and 5,
and the second, condition 6.

4 From AC to Abelian Groups

In this section, we consider the associativity-commutativity, AC and some
of its usual extensions ACU (AC with unit), AG (the Abelian groups) and
ACUN (ACU with nilpotence). For lack of space, we only give the flavor
of a Solve rule for these theories. Some more details can be found for AC
in our previous paper [5].

In the first order case, the unification algorithm consists of counting
the number of times an immediate subterm from another theory occurs in
each side of an equation: both sides must have the same number of occur-
rences. We associate with each algebraic variable x an integer variable xt
representing the number of times the value of x contains the term t as an
immediate subterm, and we translate each equation between two terms
into a linear equation over the integers. These linear equations have to be
solved over different integer domains depending on the considered theory.
Then the solutions for the unification problem are built from the integer
solutions, modulo some restrictions, in order to get some “well-formed”
terms, and a complete set of unifiers. Thanks to Theorem 2, the same
approach can also be used in the pattern case, as shown in [5] for the
AC case. The main difference comes from the bound variables: if λx.F (x)
introduces a term t(x), then λx.F (xπ) introduces t(xπ), and we do not
know a priori whether t(x) and t(xπ) are equal or not. This is exemplified
below:



4.1 An example of AC(+)-unification problem
Consider the equation E ≡ λx3.2F (x3) + F (x3

π) + 9G(x3) = λx3.2H(x3)
where π = {1 7→ 2; 2 7→ 3; 3 7→ 1}, to be solved modulo AC(+). If F in-
troduces α times the term t(x3), then F π introduces α times the term
t(x3

π). If t(x3) and t(x3π) are distinct, we have to count also the number
of times F introduces t(x3π), and finally, we have to count the number of
t(x3

π2
). Then we can stop since π3 is the identity. Let us denote by G(π)

the group of permutations generated by π. The above unification problem
is translated into 2 subsystems:

SG(π) = 2α + α + 9β = 2γ S{id} =


2α′id + α′π2 + 9β′id = 2γ′id
2α′π + α′id + 9β′π = 2γ′π
2α′π2 + α′π + 9β′π2 = 2γ′π2

where F (resp.G,H) introduces α (resp. β, γ) times a term t(x3) such that
λx3.t(x3) =E λx3.t(x3

π), and α′ϕ (resp. β′ϕ, γ′ϕ) times s(x3ϕ), ϕ = id, π, π2

where λx3.s(x3) 6=E λx3.s(x3
π). These two systems are solved over non-

negative integers, and as in the first order case, the unifiers are built from
the Diophantine solutions, with the main difference that in the pattern
case the introduced variables Lis corresponding to a solution of SG(π) are
constrained by Perm(Li) = G(π).

In the same spirit, this can be done in the extensions of AC, such as
ACU, AG and ACUN, where the equations are solved by counting how
many times a variable introduces a given term.

4.2 Handling the additional constraints for a Solve rule
Let us assume now that the problem to be solved is a part of a combination
problem and have to be solved modulo the conditions of definition 10.
Each variable F comes with some additional assumptions, such as the
theory in which it can be instantiated, and its group of permutations
Perm(F ) as defined in section 3. These constraints are also translated
into linear constraints over integers. Indeed the constraint Perm(H) =
H corresponds to the equations λx3.H(x3) = λx3.H(x3

ψ), where ψ ∈
H, and these equations are translated into a system of linear equations
over variables exactly in the same way as before, except that we have to
consider all subgroups of the permutation group generated by π and H as
possible invariants for an introduced term.

A constraint like “the variable G cannot be instantiated in the consid-
ered theory” means here that the number of terms from another theory
introduced by its value is exactly one. Only one among all of the integer
variables corresponding to G has to be equal to 1, the others being null.



A constraint like H 6<oc G will be treated in a second step, after one
has built the solutions to the unification problem. If we get a solution
where G occurs in the value of H, this is due to the fact that G is (equal
to a new variable which is) associated with a solution which has some
non-zero values for some integer variables corresponding to H. In the AC
and ACU cases, such a integer solution has to be discarded, while in the
AG and ACUN cases, this problem can be fixed by computing a particular
solution such that these integer variables are null.

In all the 4 cases of AC, ACU, AG and ACUN, we are able to get a
solved form which satisfies the additional hypotheses of the Solve rule.

5 Conclusion

We believe that with the emergence of higher-order rewriting and higher-
order logic programming, there will be a use for pattern unification modulo
equational theories. The algorithm that we proposed here is meant to
provide a decidability result: it will not behave satisfactorily in practice,
due to the heavy nondeterminism. It will be necessary to investigate how
to reduce the nondeterminism as we did in the first-order case in [2, 3].
Another issue of interest will be to develop matching algorithms which
should be dramatically more efficient in practice.

Although our method for elementary unification works well for theAC-
like theories, we do not have a general method for ensuring the compati-
bility of a unifier with an equation of the form λxy.F (x, y) = λxy.F (y, x).
For instance, the known methods for unification in Boolean rings do not
use equations over the integers, and such equations do not translate natu-
rally as shown in the previous section. Actually, we conjecture that there
exists a theory with decidable unification of problems with linear constant
restriction (the equivalent in the first-order case of our Solve rule [1]) and
undecidable pattern unification.
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