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Abstract—We present a new approach for the prediction of
the coarse-grain 3D structure of RNA molecules. We model
a molecule as being made of helices and junctions. Those
junctions are classified into topological families that determine
their preferred 3D shapes. All the parts of the molecule are then
allowed to establish long-distance contacts that induce a three-
dimensional folding of the molecule. An algorithm relying on
game-theory is proposed to discover such long-distance contacts
that allow the molecule to reach a Nash equilibrium. As reported
by our experiments, this approach allows one to predict the global
shape of large molecules of several hundreds of nucleotides that
are out of reach of the state-of-the-art methods.

Index Terms—RNA, tertiary structure prediction, coarse-grain
structure prediction, game theory

I. INTRODUCTION

NA molecules fold into complex three-dimensional

structures, and knowing that structure is of great help to
determine biological function. RNA structure is hierarchical,
with a secondary structure made of canonical Watson-Crick
base-pairs forming first, followed by a tertiary structure in-
volving several other interaction types [25].

Prediction of the secondary structure from one or several
sequences is well studied and provides good results, especially
when sequence alignments are available. Ab initio single
sequence approaches include Mfold [27] and RNAfold [7],
that use dynamic programming to optimize a free-energy
function. Other approaches, like CONTRAfold [4], do not rely
on an energy function but on a stochastic model with learned
parameters. Most of the approaches are restricted to secondary
structures without pseudoknots, but some can predict pseudo-
knots, at a higher complexity cost. Comprehensive reviews of
various approaches can be found in [5] and [13].

Automatic prediction of the tertiary structure, and of the
three-dimensional (3D) shape of RNA molecules is still a
very difficult task. The most efficient ab initio prediction
software packages, iFOldRNA [24], FARNA [3], NAST [9]
and MC-Fold/MC-Sym [21], can handle molecules of about
one hundred nucleotides. In this paper, we take advantage
of the modular and hierarchical nature of RNA structures to
predict the general shape of 3D structures of larger molecules.
We present a coarse-grain, step-by-step approach in which
we consider a molecule to be made of helices and junction
between helices (modules). We first determine the shape of
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the modules, by classifying the junctions into topological
families; we then put them together to build the global shape
of the molecule. Finally, this shape is improved by discovering
potential interactions between separate parts of the secondary
structure. We compare two approaches to this step: a global
optimization algorithm, and a novel game theory approach that
favors local, egoistical choices instead of searching for a global
optimum.

II. MATERIALS AND METHODS
A. Workflow overview

The general workflow for our prediction is as follows:

1) build a coarse-grain representation of the secondary
structure without pseudoknots, called a skeleton graph,
representing helices and junctions between helices;

2) classify the junctions into 3D topological families (local
3D shapes);

3) assemble all those local shapes together, to obtain an
initial embedding of the skeleton graph in 3D without
tertiary interactions;

4) try to predict (coarse-grain) new interactions between
the distant nodes of the skeleton graph. These long-
distance interactions can take part in the tertiary struc-
ture and are used to obtain the final shape of the
molecule.

The idea behind that last step is that the initial embedding
represents an ideal shape where each node is locally satisfied,
but that it neglects the possibility for the nodes to establish
interactions with other nodes that might provide more stability.
These interactions induce a folding of the molecule away from
its initial embedding, into a more stable form.

We explored two ways to predict long-distance interactions:
by maximization of a global payoff function, and by searching
a stable configuration (possibly a Nash equilibrium) in a game
where each node tries to maximize its own payoff function.

We now expand on all the steps of that general workflow,
and introduce a payoff function suitable for both approaches.

B. Models

1) Skeleton graph: we use a coarse-grain representation
of the structure of the molecule, that we call a skeleton
graph (see Fig. 1). Each helix or junction between helices
is represented by a node. Nodes are linked by a secondary
edge if the two corresponding helices or junctions are adjacent
in the secondary structure, and by a long-distance edge if the



corresponding helices or junctions are modeled as being linked
by long-distance interactions that contribute to the tertiary
structure.

Fig. 1. Skeleton graph superimposed on the secondary structure of INBS
(bacterial RNase P). An example of a tertiary interaction is shown on the
secondary structure as a dotted line, and the corresponding long-distance edge
in the skeleton graph is shown as a thin line. Figure created with VARNA [2].

As we have just said, junctions are modeled as a node
in the graph. However, for distance and angle computations,
considering the position of the center of that node is too
imprecise; we notably lose the intuitive idea of a stacking
between two helices as a straight line. To solve that problem,
we represent nm-way junctions as a node with n handles to
which the neighboring nodes can attach (see Fig.2). Those
handles form a solid body during 3D transformations, and can
be seen as points on the surface of a sphere that represents
the junction.

Fig. 2. In the three-way junction pictured left, all helices seem equivalent,
and no stacking is apparent. If we picture the junction as a sphere with three
handles, and attach helices to the handles, the stacking becomes obvious.

We call a skeleton graph that contains no long-distance
edge a secondary skeleton. In the rest of this paper, we
do not consider pseudoknots in the secondary structures we
start from, and consider that long-distance interactions include
pseudoknots.

Each node of the skeleton graph is associated with the
set of corresponding nucleotides in the detailed structure.
Moreover, each junction node of the skeleton is classified into
a topological family, as described in the following section.

2) Classification of the junctions: our approach relies on
the correct classification of RNA junctions (or multiloops) in

topological families. In this section, we briefly describe our
classification methods, for each order of junction.

In a previous paper [16], we have shown that three-way
junctions can be automatically classified into three topological
families, called A, B and C. These families, as shown in
Fig. 3, are local, three-dimensional shapes, independent of the
context of the molecule. From the secondary structure of a
three-way junction, without information about the context of
the molecule, we predict the correct family 64% of the time,
and this performance is noticeably improved by using several
homologous secondary structures.

Family B Family C
| % 5%5
3' 5'[3

Families A, B and C of three-way junctions, as published in [18].

Family A

Fig. 3.

We have developed a similar method for classifying four-
way junctions. Those junctions have been studied previously
and classified into nine families [14]. Of these nine families,
only three contain several instances in multiple molecules,
families H, cH and cL. We only tried predicting those three
well represented families. In order to avoid overfitting due
to the low number of available four-way junction crystal
structures, we did not apply any machine learning technique,
and used only strand lengths criteria, by putting strands in
three categories: short (< 3 nt), long (3 or 4 nt) or very-
long (> 5 nt) (see Fig. 4). We now describe the “if-then-else”
criteria we used:

1) if there are two short strands on opposite parts, for exam-
ple (short-long-short-long) or (short-short-short-long),
then we predict a stacking between the helices linked
by those strands;

2) if we have a (short-long-short-long) configuration, with
short being 2 or 3 nt, then we predict family cH;

3) if the two long strands are very long (more than 4 or
5 nt), we predict family cL;

4) if at least three strands are short, we predict family H;

5) in the case where all strands are short, we order them by
transcription order, and predict a family H with stacking
on the second and fourth strands);

6) if none of those rules apply, we do not give a prediction.

Family H Family cH Family cL
short
short long
short short short short  short very long
short
long
Fig. 4. The three main families of four-way junctions. Single-strands are

considered short if they include 3 nt or less, and long otherwise.



Using only those lengths criteria, we predict 44% of the
four-way junctions studied in [14] in the correct family. We fail
to predict 36% of the junctions in either family H, cH or cL,
but this is a correct answer, since they do not belong in any of
those families. Finally, we provide an incorrect prediction for
20% of the junctions. Since we use only very general criteria,
and do not take the sequence into account, these are very
promising results. The eventual availability of more four-way
junctions in the databases will be useful for both confirmation
of the validity of our criteria (particularly the fifth one) and
the creation of classification criteria for the junctions that do
not belong to families H, cH or cL.

In our study, two-way junctions were considered more
flexible than helices, but were not classified in topological
families. Since angles between helices can vary greatly be-
tween different families (for example between a Kink-turn
and a C-loop), introducing such a classification would be an
interesting perspective. Preliminary work suggests that we can
reliably distinguish between some two-way families, based on
observations from [17].

Finally, junctions involving more than four helices represent
less than 4% of all the junctions available in the crystal
structure databases. While their shapes have been studied
in [12], the observed “families” contain at most two different
instances, which makes it impossible to study regularities and
establish meaning classification criteria. Until more crystal
structures of big RNA molecules are made available, we will
leave higher order junctions unclassified.

3) Initial embedding: let S be a skeleton graph, and C be a
classification of its junction nodes in families. We can embed
S in 3D space by putting the first node n at a random position,
and then recursively adding its neighbors, as illustrated in
Fig. 5. This gives an initial “ideal” embedding where the
helices adjacent to each junction j have exactly the desired
angles according to C(j) and the desired length according to
the base-pairs they represent.

1l-way helix

° T

3-way

Fig. 5. Creation of the initial embedding by adding successively the local 3D
shapes of the components of the secondary structure. Each part should be seen
as a three-dimensional shape, despite being shown in 2D here. Angles and
distances in 3D are determined by the topological families of the junctions,
and the lengths of the helices.

As we will see in section III-A, the initial embedding of a
secondary skeleton can be very close to the real (coarse-grain)
shape of a molecule, assuming the junctions were correctly
classified.

4) Folding of the initial embedding: we can think of the
initial embedding as the shape the molecule would have if it
were void of long-distance tertiary interactions. Adding long-
distance interaction means introducing additional distance

constraints in the graph. This induces a folding of the initial
embedding to satisfy those constraints.

We model this folding of the molecule with a spring-based
graph drawing algorithm inspired from [11]. In this algorithm,
the constraints are modeled by springs with various parameters
and, by repeated small movements, an equilibrium between
the forces exerced by the springs is reached. We use different
spring parameters for different types of constraints. We have
springs:

e connecting a junction node with a helix node, modelling

half-helices;

« connecting a helix node with the center between the two
neighboring junctions, modelling that helices tend to be
straight, not bent;

¢ connecting a junction node with its ideal position accord-
ing to the classification of another junction it is connected
to;

e connecting any two nodes, modelling tertiary, long-
distance interactions.

5) Payoff function: after reaching a stable shape when
applying the spring algorithm, we define the cost of this
embedding for a node as the sum of the absolute values of
all the forces applied to that node. This cost represents how
much the final shape deviates from the initial embedding.
However, since we hope to discover long-distance interactions
automatically, there must be an incentive for nodes to establish
those interactions. Each long-distance interaction between two
nodes reduces the costs of those nodes by a fixed amount,
representing the contribution of that interaction to the stability
of the molecule. The cost function for a node n is then:

Z |force(s)| — Z I(e) (1)

sesprings(n) e€LD(s)

cost(n) =

where springs(n) is the set of springs that apply to n, LD(n)
the set of long distance interactions involving n, and I(e)
the gain attributed to a single long-distance interaction. In our
study, we considered I(e) to be a constant, independent of the
nature of the interaction e.

As it is more common to think about payoffs than costs in
game theory, we then define the payoff of an embedding for
a node as the maximum possible cost minus the cost of that
node:

payoff(n) = max(cost) — cost(n). 2)

C. Discovery of long-distance interactions

1) Global optimization: in order to use the payoff function
defined above to automatically find long-distance interactions,
the first idea is to use a global optimization approach to
maximize, for instance, the sum of the payoffs of all the
nodes. We used a genetic algorithm [6], [8], where individuals
represent possible sets of long-distance interactions.

The algorithm we used is defined as follows:

1) Starting with a population of X individuals

2) Set aside the X /2 individuals with the best fitness

3) Create X/2 new individuals by crossing the ones from

step 2



4) Add random changes to the individuals

5) Go to step 2 until the population is stable

6) Return the individual with the best fitness

An individual is a set I of long-distance edges between
nodes of the skeleton graph. However, in order to reduce the
number of possibilities, we constrain the total nomber of long-
distance edges to be lower than n (the number of nodes) by
allowing each node to pick at most one interaction partner (see
Fig. 6).

Node 1 2 3 4
Partner 0 4 1 1
Fig. 6.  One possible individual in our population. In this example, node 1

makes no interaction, node 2 makes an interaction with node 4, and so on.

The fitness of an individual I is defined as the sum of the
payoffs of all the nodes of the skeleton graph S after we have
added all the long-distance edges of I to S and applied the
folding algorithm defined in II-B4.

2) Game theory: it is well known that, for global optimiza-
tion approaches to structure prediction, the optimal structure
is not necessarily close to the real structure. This can be
due to inaccuracies in the energy model, but also to the fact
that, in vivo, molecules do not try to globally maximize their
stabilities, but fold due to local contacts that are locally stable.
This usually leads to a search among the structures that are
close to a global optimum with regards to the energy function,
hoping to find the real structure among them. In this paper, we
study another approach by replacing global optimization with
a local optimization, where each component of the molecule
maximizes its own payoff function, egoistically.

Reaching equilibria by means of a local, selfish optimization
is the subject of game theory [26]. This leads us to model the
folding problem as a game where each node of the skeleton
graph is a player that tries to maximize its own payoff function.
In this game, the players’ strategies to try to increase their
payoffs is to establish one interaction with another node.

Nash equilibria [19] are situations where no player can
increase its payoff by changing its strategy by itself (but payoff
can increase if two or more players change their strategies
simultaneously). Being in a Nash equilibrium does not mean
that players maximize their payoffs, but that they have nothing
to gain by changing their stategies alone, and as such, Nash
equilibria are stable situations. Finding them is one of the
main goals in game theory. The problem of finding a Nash
equilibrium is thought to be difficult in general [20].

We define our game as follows: the players are the nodes
of the skeleton graph; each player can choose an interaction
partner (ie. a node), or choose no partner; finally, the payoff
function for each node is the function defined in equation (2) of
Section II-B5. The set of all the players’ choices of strategies
is similar to the individuals we defined for our evolutionary
algorithm (Fig. 6).

Algorithm 1: Linear reward-inaction [23]

1 while algorithm did not converge do

2 foreach player i do

3 ‘ actions[i] = select(F;)

4 end

5 payoffs = payoff_function(actions);
6 foreach player i do

7 ‘ update_vector(F;, payoffs[i])

8 end

9

end

Algorithm 2: Update of the probability vector after a player ¢
played strategy action and gained payoff

1 ¢ = number of strategies s with P;[s] > 0 ;
2 z = b x payoff x (1 — P;[action]);
3 P;laction] = P;[action] + x;
4 foreach strategy s do
if P;[s] > 0 and s # action then
| Pilsl = Pls] - o/c;
end

5
6
7
8 end

In our game, each of the n players has n possible strategies:
finding a partner among the n — 1 other nodes, or no partner
at all. Hence, there are n™ possible combinations of strategies,
which makes it impossible to compute the payoff matrix
entirely. We treat the payoff function as a black box. This gives
us a very general game where it seems difficult to compute a
Nash equilibrium. Therefore, we use a reinforcement learning
approach, in order to find an equilibrium by repeating the game
many times.

We implemented a linear reward-inaction algorithm given
in [23] (Algorithm 1), where each player ¢ keeps a probability
vector P;, where P;[s] denotes its probability of picking
strategy s (ie. choosing an interaction partner) when playing
the game. The game is repeated and, at each step, the players
pick their strategies, compute their payoffs, and then update
their probability vectors to increase the likelihood of picking
the same strategy again. The amount by which the probability
is increased depends on the payoff that the player obtained,
as described in Algorithm 2. In this algorithm, the parameter
b slows the convergence down and it is shown in [23] that if
b tends to zero and the algorithm converges, it converges to a
Nash equilibrium.

Algorithm 1 is not very practical, because the parameter b
needs to be very small so that the algorithm does not converge
to an incorrect solution, which leads to a very large number
of iterations for all but the simplest games. Those iterations
cannot be parallelized because the probability vectors need to
be updated at each step, depending on the result of the previous
iteration.

We propose a modification of this algorithm that aims at
greatly reducing the number of iterations needed to converge
by increasing the cost of each iteration, in a way that al-
lows parallelization to compensate for the added cost. Our



TABLE 1
MOLECULES STUDIED

PDB Id Name Nucleotides
1E80O Core of Alu Domain, Mammalian SRP 49
IMFQ S-Domain Complex of Human SRP 127
INBS Specificity Domain, Ribonuclease P RNA 155
2A64 Bacterial Ribonuclease P RNA 417

modification is to replace line 3 in Algorithm 1 by a Monte-
Carlo method. Instead of drawing its strategy according to its
probablity vector, each player performs X simulations of the
game for each of its possible strategies, and picks the strategy
that gave him the best average payoff. In those simulations, the
player assumes that other players will follow their probability
vector (which can be viewed as the frequency of their choices).
This algorithm can be viewed as performing a best-response
strategy [1] on a sampling of what the other players played
before.

This modified algorithm requires Xn? calls to the payoff
function, instead of one call for Algorithm 1. However, those
calls are independent and can be parallelized. Using GPU
cards, all the calls can be done simultaneously, even for large
molecules, making one iteration of our algorithm as fast as
one iteration of Algorithm 1.

This algorithm is similar to the Sampled Fictitious Play
(SFP) algorithm [15], with a different update rule. One notable
difference is that, in SFP, the sample size is chosen when
an iteration starts (and should increase at each step to avoid
convergence wells), whereas in our algorithm, each player
can choose its own sample size. By computing the standard
deviation of the payoffs obtained for one strategy, one can
adjust the sample size dynamically.

III. RESULTS AND DISCUSSION

We report results of our approaches on a set of four
molecules from the PDB, shown in Table I, and compare them
to other known approaches. These molecules were chosen
because they are representative of various sizes of RNA
molecules, contain 3-way junctions, and because we have
good crystal structures for them (ie. with resolution 3.5 A or
better). Larger structures like subunits of the ribosome were
considered, but the amount of large junctions that we cannot
classify puts them out of our reach for the time being. Small
structures without junctions are, too, outside the scope of this
method.

A. Accuracy of the initial embedding

In order to verify whether the initial embedding of the
molecules is close to their real shape, we computed the
RMSD [10] between the initial embeddings of the skeleton
graphs and embeddings computed from the crystal structures
of the four molecules. The initial embeddings were computed
by putting helices and junction nodes at the geometric center of
all the atoms that they represent. In those initial embeddings,
all the junctions were assumed to be predicted in the correct
family. The results are given in Table II. In this table, the

TABLE II
RMSD BETWEEN THE INITIAL EMBEDDING OF THE SKELETON GRAPHS
AND THE EMBEDDINGS OBTAINED FROM CRYSTAL STRUCTURES.

PDB Id Nodes Nucleotides RMSD  Junctions
1E8O 7 49 3.53 3

IMFQ 19 127 6.10 3

INBS 21 155 10.29 4,3

2A64 37 417 21.18 6,4,3,3,3

)

complexity of the molecules is measured both in terms of the
number of nodes in the skeleton graph and of its composition
in junctions. For example, molecule INBS contains 21 nodes,
1 three-way and 1 four-way junction.

As we can see, the RMSD between the initial embedding
and the real shape is relatively low and, as expected, grows
with the complexity of the molecules. As we will see in
the following subsection, obtaining a RMSD of about 10 A
for a molecule of the complexity of INBS already is an
improvement over what can be done with other programs.

B. Comparison of global optimization and game theory

TABLE III
RESULTS FOR GLOBAL OPTIMIZATION.

Molecule RMSD (A)

Initial  Genetic Real
1E8O C 3.53 3.48  3.80
1ESO A 5.89 6.00  4.66
1ESO B 7.86 8.17  7.08
1IMFQ C 6.10 6.88  5.97
IMFQ A 14.99 7.57  7.33
IMFQ B 23.78 23.69 13.20
INBS C 10.29 9.38  8.39
INBS A 17.28 8.86  8.56
INBS B 26.53 28.30 17.28
2A64 CAC  21.40 23.22  19.82
2A64 AAA  21.36 23.40 19.67
2A64 CCC  25.61 26.88  24.74

1) Results for global optimization: Table III shows the
RMSD values between predicted structures and skeletons
derived from the crystal structures, for four molecules and,
for each molecule, several classifications of the junctions (see
figure 3). The correct classification is shown in bold.

For each molecule/classification pair, we computed the
RMSD values for the initial embedding, the embedding re-
sulting from the global optimization step do discover long-
distance interactions, and the one obtained by providing the
folding algorithm with the real tertiary interactions, as found
in the PDB structures (“Real” column). This last value gives
a lower bound to the RMSD values we can hope to obtain
by predicting the long-distance interactions (even though it is
still possible to obtain a lower RMSD by chance).

As we can see in Table III, when the junctions are cor-
rectly predicted in the first place, the optimization step does
not produce a significant change in RMSD. Introducing the
real interactions only marginally improves the RMSD, which



proves that the initial embedding is good to begin with.
However, when junctions are incorrectly predicted, sometimes,
the optimization steps can correct the error.

Finally, in the last molecule (2A64, RNase-P), we do not
see any improvement in the RMSD, no matter what the initial
classifications were. This is because, for that molecule, most of
the error is due to the presence of a 6-way junction. Since we
do not have a classification for that junction, it is represented
as a regular hexagon.

TABLE IV
RESULTS FOR GAME THEORY.

Molecule RMSD (A)

Initial Game Real
1E80 C 3.53 3.98 3.80
1E8O A 5.89 5.42 4.66
1E80 B 7.86 7.94 7.08
IMFQ C 6.10 5.65 5.97
IMFQ A 14.99 7.15 7.33
IMFQ B 23.78 22.32 13.20
INBS C 10.29 9.71 8.39
INBS A 17.28 16.63 8.56
INBS B 26.53 28.13 17.28
2A64 CAC 2140 23.58 19.82
2A64 AAA 2136 24.14 19.67
2A64 CCC  25.61 26.75 24.74

2) Results for game theory: Table IV shows the RMSD
values for the initial embedding, folding obtained by searching
an equilibrium in the game, and initial embedding folded with
the real tertiary interactions. The results, in terms of RMSD,
are similar to what we obtained with global optimization,
showing at best a slight improvement when the junctions were
correctly classified (in bold in the table), but correcting some
wrong classifications (IMFQ A and INBS A). However, as
we will see in the next subsection, the resulting structures are
different.

TABLE V
COMPARISON BETWEEN THE RESULTS FOR GLOBAL OPTIMIZATION AND
GAME THEORY.

Molecule Nodes  Genetic  Game Real
1E8O 7 3.48 3.98 3.80
1MFQ 19 6.88 5.65 5.97
INBS 21 9.38 9.71 8.39
2A64 37 23.22 23.58 19.82

3) Comparison: we reproduced the RMSD of the predicted
structures for global optimization and game optimization in Ta-
ble V for easier comparison. As we can see, they give similar
results in terms of RMSD. Sometimes, global optimization is
slightly better, sometimes the game gives better results.

C. Comparison with other approaches

We compared our predictions with those of four other
approaches: iFoldRNA [24], FARNA [3], MC-Fold/MC-
Sym [21] and NAST [9]. Our approach produces a coarse-
grain structure, whereas other approaches work at the atomic

Global:

Game:

Crystal structure:

Fig. 7.

Comparison of the skeleton graph obtained by global optimization,
by searching an equilibrium in a game, and the skeleton derived from the
crystal structure of molecule IMFQ. The two predicted structures are close
in terms of RMSD, but are qualitatively different.

scale. This is what allows us to handle larger molecules, but
it makes comparison difficult. In order to compare candidate
structures, we need to find a common ground. When possible
(with FARNA, MC-Fold/MC-Sym and NAST), we created
the skeleton graph of the atomic-scale predictions, and then
computed the RMSD between this skeleton graph and the
skeleton graph of the crystal structure. This was not possible
with iFoldRNA, as it tended to produce wildly different
secondary structures, which produced skeletons than could
not be aligned with ours. For this software, we computed the
RMSD at the atomic scale, and for that reason, this value
cannot be directly compared with the RMSD values of our
(coarse-grain) predictions.

TABLE VI
RMSD (IN A) BETWEEN ATOMIC STRUCTURES, FOR FARNA

Id 1 2 3
1E80 16.7 179 20.0
IMFQ 30.5 319 279
INBS 24.8 282 21.0
2A64 85.7 344 399

1) FARNA: Table VI shows, for the three best FARNA
predictions, the RMSD values between the predicted struc-
ture and the crystal structure, at the atomic scale (atomic-
RMSD). Table VII shows the same figures at the skeleton
scale (skeleton-RMSD). As could be expected, the RMSD are
lower for skeleton graphs than for atomic structures; however,
they are not qualitatively different. It is clear from those two
tables that the error in the predicted structures lies more in the
relative positions of the components of the molecule than in
the details of the positions of each nucleotide. For this reason,
we can consider both skeleton-RMSD and atomic-RMSD as
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Fig. 8.
structures produced by FARNA.

TABLE VII
RMSD (IN A) BETWEEN SKELETON GRAPHS, FOR FARNA

Us FARNA
Id Genetic  Game 1 2 3
1E8O 3.5 4.0 11.3 11.2 16.7
1IMFQ 6.9 5.7 28.0 31.7 24.7
INBS 9.4 9.7 21.1 269 204
2A64 23.2 23.6 84.7 32.0 23.6

a good measure of the quality.

Table VII also compares the RMSD values for skeletons
predicted with FARNA and those predicted with our approach.
We can see that our predictions are significantly better, except
for one FARNA candidate for 2A64, that obtains a RMSD
value similar to that of our predictions.

Fig. 8 shows, for molecule INBS (the specificity domain
of RNase P), the skeleton graphs corresponding to the crystal
structure, our prediction, and the best three FARNA predic-
tions. As we can see, the overall shape of our prediction is
much closer to the correct answer.

TABLE VIII
RMSD (IN A) BETWEEN ATOMIC STRUCTURES, FOR IFOLDRNA

Molecule 1 2 3
1E80 20.3 19.1 18.7
IMFQ 28.2 404 41.8
INBS 30.1  29.1

2A64 no result

2) iFoldRNA: Table VIII shows the atomic-RMSD between
the three best iFoldRNA prediction and the crystal structures.
For the biggest molecule, 2A64, iFoldRNA fails to produce
candidate structures. As explained previously, we did not com-
pute the skeleton-RMSD because iFoldRNA produces wildly
different skeletons. However, atomic-RMSD is generally only
a few A higher than skeleton-RMSD, and we can see that
iFoldRNA and FARNA predictions for those molecules are of
similar quality.

Skeleton graphs of the crystal structure of molecule INBS (specificity domain of RNase P), our predicted structure, and the three best candidate

TABLE IX
RMSD (IN A) BETWEEN SKELETON GRAPHS, FOR MC-FOLD/MC-SYM

Us MC-Sym
Id Genetic  Game 1 2 3
1E80 3.5 40 99 109 8.7

3) MC-Fold/MC-Sym: MC-Fold/MC-Sym gives better pre-
dictions than iFoldRNA or FARNA, but takes a lot more
computation time. In fact, for all but one of our molecules,
we were unable to obtain candidate structures, or sometimes
even an MC-Fold output. Table IX shows the result for
molecule 1E8O; MC-Fold/MC-Sym gives better prediction on
that molecule than iFoldRNA or FARNA, but our approach
still performs better.

TABLE X
RMSD (IN A) BETWEEN SKELETON GRAPHS, FOR NAST

Us NAST
Id Genetic  Game
1E8O 3.5 4.0 6.8
1IMFQ 6.9 5.7 15.5
INBS 9.4 9.7 25.4
2A64 23.2 23.6 48.1

4) NAST: Table X shows the RMSD values for skeletons
predicted with NAST [9], a coarse-grain prediction software
that applies molecular dynamics to a graph where nucleotides
are modeled as spheres. In our simulations using NAST, we
used at least one million steps per molecule, performed several
runs and kept the best candidate structure (in terms of RMSD
with the real structure).

While NAST is often better than the previous approaches,
our approach still performs significantly better.

IV. CONCLUSION

The results first show that the coarse-grained approach that
we consider here, which considers not the atomic level of
molecules but the architecture of their components (stems,



junctions) allows structural predictions, with a fairly good
quality, for large molecules that are out of reach of the atomic-
scale approaches. Aiming to better results, it would be worth
exploring multi-scale approaches that combine such a coarse-
grained approach with atomic-scale approaches.

Our approach relies on predicting local structures for junc-
tions. We used our previous works on classification [16] but
other approaches could be considered, such as the very recent
one published in [22].

Despite the difficulty to set the best parameters of cost
functions, the use of algorithmic game theory for 3D pre-
dictions provides similar results, sometimes better, than a
well controlled approach of global optimization by genetic
algorithms and this game theory approach is more realistic in
the prediction of tertiary links between architectural elements
of the RNA molecules. This opens promising research areas
in bioinformatics and suggests that the molecules are not
stabilized on a global optimum but rather an equilibrium.
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